Please wait a minute...

Frontiers of Structural and Civil Engineering

Front Arch Civil Eng Chin    2011, Vol. 5 Issue (3) : 344-354
Ambient vibration testing and updating of the finite element model of a simply supported beam bridge
Ivan Gomez ARAUJO(), Esperanza MALDONADO, Gustavo Chio CHO
School of Civil Engineering, Research Group INME, Industrial University of Santander, Santander, Colombia
Download: PDF(693 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

An ambient vibration test on a concrete bridge constructed in 1971 and calibration of its finite element model are presented. The bridge is characterized by a system of post-tensioned and simply supported beams. The dynamic characteristics of the bridge, i.e. natural frequencies, mode shapes and damping ratios were computed from the ambient vibration tests by using the Eigensystem Realization Algorithm (ERA). Then, these characteristics were used to update the finite element model of the bridge by formulating an optimization problem and then using Genetic Algorithms (GA) to solve it. From the results of the ambient vibration test of this type of bridge, it is concluded that two-dimensional mode shapes exist: in the longitudinal and transverse; and these experimentally obtained dynamic characteristics were also achieved in the analytical model through updating. The application of GAs as optimization techniques showed great versatility to optimize any number and type of variables in the model.

Keywords modal analysis      parameter identification      ambient vibration test      Eigensystem Realization Algorithm (ERA) method      finite element method     
Corresponding Authors: Gomez ARAUJO Ivan,   
Issue Date: 05 September 2011
 Cite this article:   
Ivan Gomez ARAUJO,Esperanza MALDONADO,Gustavo Chio CHO. Ambient vibration testing and updating of the finite element model of a simply supported beam bridge[J]. Front Arch Civil Eng Chin, 2011, 5(3): 344-354.
E-mail this article
E-mail Alert
Articles by authors
Ivan Gomez ARAUJO
Gustavo Chio CHO
Fig.1  Superstructure cross section of the viaduct Garcia Cadena
Fig.2  Longitudinal section of the viaduct Garcia Cadena
Fig.3  Detailed plan of the viaduct Garcia Cadena
Fig.4  Vibration modes of the preliminary analytical model for B7 span without piers. (a) Mode 1; (b) mode 2; (c) mode 3; (d) mode 4
Fig.5  Setups of sensors
Fig.6  Correlation functions for setup 1 on the west side, span B7
Fig.7  Singular value diagram for setup 1, west side, span B7
symbolpairs of complex conjugate poles0<ξ<20%stable poles Δf relative<5%stable poles Δξ relative<5%stable poles with a MAC>0.9
Tab.1  Meaning of symbols used in the stabilizations diagrams
Fig.14  Stability diagram, ERA method, setup 1, west side, span B7
Fig.15  Stability diagram, ERA method, setup 1, central, span B7
Fig.16  Stability diagram, ERA method, setup 1, east side, span B7
Fig.17  Flowchart of the calibration process of the structure
modesfrequency identified/Hzdamping/%
Tab.2  Frequencies and damping rates identified by the ERA method
frequencies/Hzeast sidecentralwest side
Tab.3  Vertical vibration modes identified, ERA method
selectionroulettepopulation size100
crossovertwo pointscrossover rate0.85
mutationjumpmutation rate0.005
otherselitismmaximum number of generations150
Tab.4  Operators and GA parameters used
run AGmain bean/(N·m-2)expansion beam/(N·m-2)slab/(N·m-2)brace beam/(N·m-2)
Tab.5  Modules of elasticity calibrated by the GA
modesfrequenc of FEM calibrated/Hzfrequenc identified (ERA method)/Hzerror/%
Tab.6  Comparison of frequencies of the calibrated finite element model and experimentally identified
Fig.30  Mode shapes of the calibrated finite element model. (a) = 3.12 Hz; (b) = 4.01 Hz; (c) = 5.05 Hz; (d) = 7.47 Hz; (e) = 11.54 Hz; (f) = 12.50 Hz; (g) = 13.19 Hz; (h) = 16.22 Hz
Fig.31  Fitness evolution of the best individual in the GA in the calibration. The best error is 0.3388
1 Cunha á, Caetano E, Magalh?es F, Moutinho C. From input-output to output-only modal identification of civil engineering structures. SAMCO Final Report (FEUP), Portugal, 2006
2 Ren W, Wael Z, Issam E. Harik. Ambient vibration-based seismic evaluation of a continuous girder bridge. Engineering Structures , 2004, 26(5): 631–640
doi: 10.1016/j.engstruct.2003.12.010
3 Gentile C, Gallino N. Ambient vibration testing and structural evaluation of an historic suspension footbridge. Advances in Engineering Software , 2008, 39(4): 356–366
doi: 10.1016/j.advengsoft.2007.01.001
4 Catbas F N, Ciloglu S K, Hasancebi O, Grimmelsman K, Aktan A E. Limitations in structural identification of large constructed structures. Journal of Structural Engineering , 2007, 133(8): 1051–1066
doi: 10.1061/(ASCE)0733-9445(2007)133:8(1051)
5 Brownjohn J M W, Xia P Q. Dynamic assessment of curved cable stayed bridge by model updating. Journal of Structural Engineering , 2000, 126(2): 252–260
doi: 10.1061/(ASCE)0733-9445(2000)126:2(252)
6 Gentile C, Saisi A. Dynamic-based F.E. Model updating to evaluate damage in masonry towers. In: Proceedings of the 4th International Seminar on Structural analysis of Historical Constructions. Padova, Italy , 2004: 439–449
7 Douglas B M, Reid W H. Dynamic tests and system identification of bridges. Journal of the Structural Division , 1982, 108(10): 2295–2312
8 Levin R I, Lieven N A J. Dynamic finite element model updating using simulated annealing and genetic algorithms. Mechanical Systems and Signal Processing , 1998, 12(1): 91–120
doi: 10.1006/mssp.1996.0136
9 Levin R I, Lieven N A J. Dynamic finite element model updating using neural networks. Journal of Sound and Vibration , 1998, 210(5): 593–607
doi: 10.1006/jsvi.1997.1364
10 Cantieni R. Experimental methods used in system identification of civil engineering structures. 2° Workshop: Problemi di vibrazioni nelle strutture civili e nelle costruzioni meccaniche. Perugia , 2004, 10–112
11 Juang J N. Applied System Identification. New Jersey: Prentice Hall, 1994
12 Friswell P J. Garvey S. A combined genetic eigensensitivity algorithm for the location of damage in structures. Computers & Structures , 1998, 69(5): 547–556
doi: 10.1016/S0045-7949(98)00125-4
13 Goldberg D. Genetic Algorithms in Search Optimization, and Machine Learning. Addison-Wesley: Publishinc Company, United States, 1989
14 Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs, 2nd ed. Berlin: Springer-Verlag, 1994
15 Mazzoni S, McKenna F, Scott M H, Fenves G L, Jeremic B. OPENSEES? Command Language Manual. Berkeley , 2004
16 MATLAB?. Users Manual Version 6.5. The Math Works Inc. Natick, MA , 2002
17 Koh B H, Dyke S J. Structural health monitoring for flexible bridge structures using correlation and sensitivity of modal data. Computers & Structures , 2007, 85(3-4): 117–130
doi: 10.1016/j.compstruc.2006.09.005
Related articles from Frontiers Journals
[1] Pengfei LIU, Dawei WANG, Frédéric OTTO, Markus OESER. Application of semi-analytical finite element method to analyze the bearing capacity of asphalt pavements under moving loads[J]. Front. Struct. Civ. Eng., 2018, 12(2): 215-221.
[2] P. ZAKIAN. An efficient stochastic dynamic analysis of soil media using radial basis function artificial neural network[J]. Front. Struct. Civ. Eng., 2017, 11(4): 470-479.
[3] M. H. NGUYEN-THOI,L. Le-ANH,V. Ho-HUU,H. Dang-TRUNG,T. NGUYEN-THOI. An extended cell-based smoothed discrete shear gap method (XCS-FEM-DSG3) for free vibration analysis of cracked Reissner-Mindlin shells[J]. Front. Struct. Civ. Eng., 2015, 9(4): 341-358.
[4] B. R. JAYALEKSHMI,S.V. JISHA,R. SHIVASHANKAR. Response in piled raft foundation of tall chimneys under along-wind load incorporating flexibility of soil[J]. Front. Struct. Civ. Eng., 2015, 9(3): 307-322.
[5] Xiaonong GUO,Zhe XIONG,Zuyan SHEN. Flexural-torsional buckling behavior of aluminum alloy beams[J]. Front. Struct. Civ. Eng., 2015, 9(2): 163-175.
[6] Kristine VANDENBOER,Vera van BEEK,Adam BEZUIJEN. 3D finite element method (FEM) simulation of groundwater flow during backward erosion piping[J]. Front. Struct. Civ. Eng., 2014, 8(2): 160-166.
[7] Konstantinos P. TZIVAKOS,Michael J. KAVVADAS. Numerical investigation of the ultimate lateral resistance of piles in soft clay[J]. Front. Struct. Civ. Eng., 2014, 8(2): 194-200.
[8] Yun-Zhu CAI, Yu-Ching WU. Two-scale modeling of granular materials: A FEM-FEM approach[J]. Front Struc Civil Eng, 2013, 7(3): 304-315.
[9] Yaoru LIU, Zhu HE, Bo LI, Qiang YANG. Slope stability analysis based on a multigrid method using a nonlinear 3D finite element model[J]. Front Struc Civil Eng, 2013, 7(1): 24-31.
[10] Amin MANOUCHEHRIAN, Mohammad Fatehi MARJI, Mohsen MOHEBBI. Comparison of indirect boundary element and finite element methods A case study: Shiraz-Esfahan railway tunnel in Iran[J]. Front Struc Civil Eng, 2012, 6(4): 385-392.
[11] Hui ZHU, Yuching WU. Finite element analysis of creep for plane steel frames in fire[J]. Front Struc Civil Eng, 2012, 6(3): 297-307.
[12] Qiang XU, Jianyun CHEN, Jing LI, Mingming WANG. Study of an artificial boundary condition based on the damping-solvent extraction method[J]. Front Struc Civil Eng, 2012, 6(3): 281-287.
[13] Dong WANG, Linbing WANG, Guoqing ZHOU. Fatigue of asphalt binder, mastic and mixture at low temperature[J]. Front Struc Civil Eng, 2012, 6(2): 166-175.
[14] Zuoguang FU, Yunlong HE, Sheng SU. Key problems and solutions in arch dam heightening[J]. Front Arch Civil Eng Chin, 2011, 5(1): 98-104.
[15] Bernhard A. SCHREFLER, Francesco PESAVENTO, Lorenzo SANAVIA, Giuseppe SCIUME, Stefano SECCHI, Luciano SIMONI. A general framework for modeling long-term behavior of earth and concrete dams[J]. Front Arch Civil Eng Chin, 2011, 5(1): 41-52.
Full text