Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2016, Vol. 9 Issue (3) : 346-352     DOI: 10.1007/s12200-016-0597-0
Principle and applications of semiconductor optical amplifiers-based turbo-switches
Xuelin YANG(),Weisheng HU
State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
Download: PDF(421 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

All-optical high-speed turbo-switches can effectively increase the switching speed using cascaded semiconductor optical amplifiers (SOAs). The overall recovery time or the bandwidth of turbo-switch was numerically analyzed with time-domain and frequency-domain SOA models. The turbo-switch was explored from the fundamental carrier dynamics in SOAs for the purpose of further increasing its operation speed. An integrated turbo-switch was also been proposed and demonstrated, where a phase adjustable Mach-Zehnder interferometer (MZI) was applied as an optical band-pass filter between SOAs. Wavelength conversion was first demonstrated at 84.8 Gbit/s using the integrated turbo-switch.

Keywords semiconductor optical amplifier (SOA)      all-optical signal processing      high-speed switches      semiconductor integration     
Corresponding Authors: Xuelin YANG   
Just Accepted Date: 19 August 2016   Online First Date: 13 September 2016    Issue Date: 28 September 2016
 Cite this article:   
Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
E-mail this article
E-mail Alert
Articles by authors
Xuelin YANG
Weisheng HU
Fig.1  Schematic setup of turbo-switch
Fig.2  Normalized gain dynamics of a single SOA (blue) and turbo-switch (green)
Fig.3  Recovery time and overshoot level as a function of the number of the cascading SOAs
Fig.4  Structure of turbo-switch only (top), with a DI before SOA2 (middle) and with a DI after SOA2 (bottom)
Fig.5  Normalized SSFR of a single SOA, turbo-switch and a turbo-switch, (a) followed by a DI; (b) with a DI between two SOAs, corresponding to the setups shown in Fig. 4
Fig.6  Structure of the proposed integrated turbo-switch
Fig.7  Phase difference between two MZI arms versus bias SOA current
Fig.8  Spectra of the pump (2 ps pulses, FWHM) and probe (CW) optical signals before and after MZI
Fig.9  Gain dynamics measurements of the integrated turbo-switch under different SOA bias currents
Fig.10  Waveforms of CW modulated signal by 42.4 Gbit/s pump data pulses under different SOA bias currents
Fig.11  Experimental setup of wavelength conversion using integrated turbo-switch
Fig.12  Eye diagrams of wavelength conversion at 84.8 Gbit/s. (a) Input, and (b) output signals
1 Yang X, Manning R J,Webb R P. All-optical 85Gb/s XOR using dual ultrafast nonlinear interferometers and turbo-switch configuration. In: Proceedings of Europe Conference on Optical Communication (ECOC), 2006, 1–2
2 Liu Y, Tangdiongga E, Li Z, de Waardt H, Koonen A M J, Khoe G D, Shu X, Bennion I, Dorren H J S.Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier. Journal of Lightwave Technology, 2007, 25(1): 103–108
doi: 10.1109/JLT.2006.888484
3 Manning R J, Yang X, Webb R P, Giller R, Gunning F C G, Ellis A D. The turbo-switch – a novel technique to increase the high-speed response of SOAs for wavelength conversion. In: Proceedings of Optical Fiber Communication Conference (OFC), 2006, OSW8-1–OSW8-3
4 Weng Q, Yang X, Hu W.Theoretical analysis of high-speed all-optical turbo-switches. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(2): 662–669
doi: 10.1109/JSTQE.2011.2134074
5 Mecozzi A, Mørk J. Saturation effects in non-degenerate four-wavemixing between short optical pulses in semiconductor laser amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(5): 1190–1207
doi: 10.1109/2944.658594
6 Davies D A O. Small-signal analysis of wavelength conversion in semiconductor laser amplifiers via gain saturation. IEEE Photonics Technology Letters, 1995, 7(6): 617–619
doi: 10.1109/68.388742
7 Wang G, Wu C, Yang X, Hu W.Frequency-domain analysis of high-speed all-optical SOA-based turbo-switches. In: Proceedings of Asia Communications and Photonics Conference (ACP), 2012, AS2B.2-1–AS2B.2-3
8 Reid D A, Clarke A M, Yang X, Maher R, Webb R P, Manning R J, Barry L P.Characterization of a turbo-switch SOA wavelength converter using spectrographic pulse measurement. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(3): 841–848
doi: 10.1109/JSTQE.2008.919742
9 Manning R J, Yang X, Webb R P, Giller R, Cotter D. Cancellation of nonlinear patterning in semiconductor amplifier based switches. In: Proceedings of Optical Amplifiers & their Applications (OAA), 2006, OTuC1-1–OTuC1-3
10 Giller R, Yang X, Manning R J, Webb R P, Cotter D. Pattern effect mitigation in the turbo-switch. In: Proceedings of International Conference on Photonics in Switching, 2006, 1–3
Related articles from Frontiers Journals
[1] Yunhong DING,Haiyan OU,Jing XU,Meng XIONG,Yi AN,Hao HU,Michael GALILI,Abel Lorences RIESGO,Jorge SEOANE,Kresten YVIND,Leif Katsuo OXENLØWE,Xinliang ZHANG,Dexiu HUANG,Christophe PEUCHERET. Linear all-optical signal processing using silicon micro-ring resonators[J]. Front. Optoelectron., 2016, 9(3): 362-376.
[2] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[3] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[4] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
[5] Chaotan SIMA, James C. GATES, Michalis N. ZERVAS, Peter G. R. SMITH. Review of photonic Hilbert transformers[J]. Front Optoelec, 2013, 6(1): 78-88.
[6] Claudio PORZI, Giovanni SERAFINO, Sergio PINNA, An NGUYEN, Giampiero CONTESTABILE, Antonella BOGONI. Review on SOA-MZI-based photonic add/drop and switching operations[J]. Front Optoelec, 2013, 6(1): 67-77.
[7] Li HUO, Qiang WANG, Yanfei XING, Caiyun LOU. Signal generation and processing at 100 Gb/s based on optical time division multiplexing[J]. Front Optoelec, 2013, 6(1): 57-66.
[8] Ehsan MOHADESRAD, Kambiz ABEDI. Proposal for modeling of tapered quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 457-464.
[9] Hussein TALEB, Kambiz ABEDI. Homogeneous and inhomogeneous broadening effects on static and dynamic responses of quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 445-456.
[10] Tan SHU, Yonglin YU, Hui LV, Dexiu Huang, Kai SHI, Liam BARRY. Influence of facet reflection of SOA on SOA-integrated SGDBR laser[J]. Front Optoelec, 2012, 5(4): 390-394.
[11] Yin ZHANG, Jianji DONG, Lei LEI, Hao HE, Xinliang ZHANG. 40-Gbit/s 3-input all-optical priority encoder based on cross-gain modulation in two parallel semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(2): 195-199.
[12] Xiaofan ZHAO, Caiyun LOU, Yanming FENG. Optical signal processing based on semiconductor optical amplifier and tunable delay interferometer[J]. Front Optoelec Chin, 2011, 4(3): 308-314.
[13] Jing HUANG, Deming LIU. WDM PON using 10-Gb/s DPSK downstream and re-modulated 10-Gb/s OOK upstream based on SOA[J]. Front Optoelec Chin, 2010, 3(4): 339-342.
[14] Zigang DUAN, Wei SHI, Yan LI, Guangyue CHAI. Gain properties and optical-feedback suppression of asymmetrical curved active waveguides[J]. Front Optoelec Chin, 2009, 2(4): 379-383.
[15] Yin ZHANG, Xinliang ZHANG, Xi HUANG, Cheng CHENG. Experimental investigation on slow light via four-wave mixing in semiconductor optical amplifier[J]. Front Optoelec Chin, 2009, 2(3): 259-263.
Full text