Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2016, Vol. 9 Issue (2) : 238-248     DOI: 10.1007/s12200-016-0621-4
Microwave photonics connected with microresonator frequency combs
Xiaoxiao XUE1,*(),Andrew M. WEINER1,2,*()
1. School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, Indiana 47907-2035, USA
2. Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, Indiana 47907, USA
Download: PDF(1915 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Microresonator frequency combs (microcombs) are very promising as ultra-compact broadband sources for microwave photonic applications. Conversely, microwave photonic techniques are also employed intensely in the study of microcombs to reveal and control the comb formation dynamics. In this paper, we reviewed the microwave photonic techniques and applications that are connected with microcombs. The future research directions of microcomb-based microwave photonics were also discussed.

Keywords microwave photonics      optical frequency comb      microresonator      Kerr effect      four-wave mixing     
Corresponding Authors: Xiaoxiao XUE,Andrew M. WEINER   
Just Accepted Date: 26 February 2016   Online First Date: 28 March 2016    Issue Date: 05 April 2016
 Cite this article:   
Xiaoxiao XUE,Andrew M. WEINER. Microwave photonics connected with microresonator frequency combs[J]. Front. Optoelectron., 2016, 9(2): 238-248.
E-mail this article
E-mail Alert
Articles by authors
Xiaoxiao XUE
Andrew M. WEINER
Fig.1  (a) Illustration of microresonator based optical frequency comb generation. A single pump frequency is converted to a broadband frequency comb by using a high-Q nonlinear microresonator. The comb line spacing (


) is determined by the free spectral range of the microresonator which is usually in the microwave frequency range; (b) optical frequency comb working as a gear that links optical frequency and microwave frequency (adapted from Ref. [35])

Fig.2  (a) Scheme of PDH signal detection. The inset illustrates how the phase modulation is converted to intensity modulation after the light passes through the microresonator; (b) example PDH signal detected for a microring resonator. Upper: optical power after the microresonator; lower: PDH signal. The small dips and ripples marked in dash boxes are due to the sidebands scanning across the resonance
Fig.3  Diagnosing the effective detuning in comb generation by detecting the PDH signal. The pump laser frequency scans across the resonance from the blue side (i.e., laser frequency higher than resonance frequency). (a) Optical power after the microresonator; (b) PDH signal. The PDH signal changes polarity at ~12 ms indicating a change of the effective detuning from blue to red; (c) a smooth frequency comb generated in the effectively red detuned region corresponding to a single bright soliton propagating in the microresonator. The inset shows the narrow-linewidth beat note of adjacent comb lines (adapted by permission from Macmillan Publishers Ltd: Nature Photonics [41], copyright 2014). FWHM: full-width at half-maximum; RBW: resolution bandwidth
Fig.4  Testing the microresonator coupling condition. The optical transmission is transferred to the electrical domain by sweeping the microwave modulation frequency. (a) Experimental setup; (b) and (c)examples of measured amplitude and phase responses when the resonance is over-coupled and under-coupled (adapted by permission from Macmillan Publishers Ltd: Nature Photonics [42], copyright 2015)
Fig.5  Reconstruction of the intracavity time-domain waveform through line-by-line shaping and pump correction at a through port. (a) Comb spectrum and phase profile. The red circles are retrieved through line-by-line shaping. The green triangles correspond to additional comb lines that fall outside of the pulse shaper operating band, and are estimated based on symmetry about the pump line. The black cross is the intracavity pump phase estimated by considering the nonlinear loss induced by comb generation and the cold cavity coupling condition; (b) reconstructed intracavity waveform showing a complex dark pulse. Inst. freq.: instantaneous frequency (adapted by permission from Macmillan Publishers Ltd: Nature Photonics [42], copyright 2015)
Fig.6  Optical clock based on parametric seeding of a microcomb. (a) Experimental setup; (b) change of comb line beat notes with the seeding frequency. The region with a single beat note is injection locked; (c) comb spectra after the microdisk resonator (upper) and after the highly nonlinear fiber (HNLF) (lower); (d) optical clock output in a>12 h period. For comparison, published Rb spectroscopic data on the D2-D1 difference divided by 108 has been subtracted. The solid [48] and hatched [49] gray regions represent previous data (adapted from Ref. [20]). EDFA: erbium-doped fiber amplifier; BPF: bandpass filter; BRF: bandreject filter
Fig.7  High spectral purity microwave generation with a microcomb. (a) Spectrum of the microwave signal measured with 9-Hz resolution bandwidth; (b) spectrum of the frequency comb generating the microwave signal; (c) single-sideband (SSB) phase noise of the microwave signal without (red line, (1)) and with (blue line, (2)) a narrow-band radiofrequency filter placed after the photodetector. The measured noise at offset frequencies below 1 kHz and above 10 MHz are within 3 dB of the noise floor of the microwave phase noise measurement system used. The other curves are: (3) theoretical thermo-refractive noise; (4) quantum noise; (5) sensitivity of the phase noise measurement system. The inset shows Allan deviation of the microwave signal (adapted from Ref. [21])
Fig.8  MPF based on a microcomb. (a) Experimental setup. FPC: fiber polarization controller; EDFA: erbium-doped fiber amplifier; MZM: Mach-Zehnder modulator; TDL: tunable delay line; SMF: single-mode fiber; PD: photodetector; (b) comb spectrum after the microring; (c) shaped comb spectrum after pulse shaper 1; (d) single-passband RF transfer function that is configured to a flat-top by programming pulse shaper 2. The center frequency is tuned between 0-20 GHz by changing the tunable delay line (adapted from Ref. [22])
Fig.9  Wideband Hilbert transformer based on a microcomb. Shaped comb spectrum for (a) 12-tap filter; (b) 20-tap filter; (c) amplitude and (d) phase of the microwave transfer function (adapted from Ref. [23])
1 Del’Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R, Kippenberg T J. Optical frequency comb generation from a monolithic microresonator. Nature, 2007, 450(7173): 1214–1217
doi: 10.1038/nature06401 pmid: 18097405
2 Del’Haye P, Herr T, Gavartin E, Gorodetsky M L, Holzwarth R, Kippenberg T J. Octave spanning tunable frequency comb from a microresonator. Physical Review Letters, 2011, 107(6): 063901
doi: 10.1103/PhysRevLett.107.063901 pmid: 21902324
3 Okawachi Y, Saha K, Levy J S, Wen Y H, Lipson M, Gaeta A L. Octave-spanning frequency comb generation in a silicon nitride chip. Optics Letters, 2011, 36(17): 3398–3400
doi: 10.1364/OL.36.003398 pmid: 21886223
4 Levy J S, Gondarenko A, Foster M A, Turner-Foster A C, Gaeta A L, Lipson M. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nature Photonics, 2010, 4(1): 37–40
doi: 10.1038/nphoton.2009.259
5 Razzari L, Duchesne D, Ferrera M, Morandotti R, Chu S, Little B E, Moss D J. CMOS-compatible integrated optical hyperparametric oscillator. Nature Photonics, 2010, 4(1): 41–45
doi: 10.1038/nphoton.2009.236
6 Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs. Science, 2011, 332(6029): 555–559
doi: 10.1126/science.1193968 pmid: 21527707
7 Papp S B, Del’Haye P, Diddams S A. Mechanical control of a microrod-resonator optical frequency comb. Physical Review X, 2013, 3(3): 031003
doi: 10.1103/PhysRevX.3.031003
8 Savchenkov A A, Matsko A B, Ilchenko V S, Solomatine I, Seidel D, Maleki L. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Physical Review Letters, 2008, 101(9): 093902
doi: 10.1103/PhysRevLett.101.093902 pmid: 18851613
9 Grudinin I S, Baumgartel L, Yu N. Frequency comb from a microresonator with engineered spectrum. Optics Express, 2012, 20(6): 6604–6609
doi: 10.1364/OE.20.006604 pmid: 22418543
10 Wang C Y, Herr T, Del’Haye P, Schliesser A, Hofer J, Holzwarth R, Hänsch T W, Picqué N, Kippenberg T J. Mid-infrared optical frequency combs at 2.5 mm based on crystalline microresonators. Nature Communications, 2013, 4: 1345
doi: 10.1038/ncomms2335 pmid: 23299895
11 Ilchenko V S, Savchenkov A A, Matsko A B, Maleki L. Generation of Kerr frequency combs in a sapphire whispering gallery mode microresonator. Optical Engineering (Redondo Beach, Calif.), 2014, 53(12):122607
doi: 10.1117/1.OE.53.12.122607
12 Jung H, Xiong C, Fong K Y, Zhang X, Tang H X. Optical frequency comb generation from aluminum nitride microring resonator. Optics Letters, 2013, 38(15): 2810–2813
doi: 10.1364/OL.38.002810 pmid: 23903149
13 Hausmann B J M, Bulu I, Venkataraman V, Deotare P, Lončar M. Diamond nonlinear photonics. Nature Photonics, 2014, 8(5): 369–374
doi: 10.1038/nphoton.2014.72
14 Griffith A G, Lau R K, Cardenas J, Okawachi Y, Mohanty A, Fain R, Lee Y H, Yu M, Phare C T, Poitras C B, Gaeta A L, Lipson M. Silicon-chip mid-infrared frequency comb generation. Nature Communications, 2015, 6: 6299
doi: 10.1038/ncomms7299 pmid: 25708922
15 Levy J S, Saha K, Okawachi Y, Foster M, Gaeta A, Lipson M. High-performance silicon-nitride-based multiple-wavelength source. IEEE Photonics Technology Letters, 2012, 24(16): 1375–1377
doi: 10.1109/LPT.2012.2204245
16 Wang P H, Ferdous F, Miao H, Wang J, Leaird D E, Srinivasan K, Chen L, Aksyuk V, Weiner A M. Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs. Optics Express, 2012, 20(28): 29284–29295
doi: 10.1364/OE.20.029284 pmid: 23388754
17 Pfeifle J, Brasch V, Lauermann M, Yu Y, Wegner D, Herr T, Hartinger K, Schindler P, Li J, Hillerkuss D, Schmogrow R, Weimann C, Holzwarth R, Freude W, Leuthold J, Kippenberg T J, Koos C. Coherent terabit communications with microresonator Kerr frequency combs. Nature Photonics, 2014, 8(5): 375–380
doi: 10.1038/nphoton.2014.57 pmid: 24860615
18 Pfeifle J, Coillet A, Henriet R, Saleh K, Schindler P, Weimann C, Freude W, Balakireva I V, Larger L, Koos C, Chembo Y K. Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications. Physical Review Letters, 2015, 114(9): 093902
doi: 10.1103/PhysRevLett.114.093902 pmid: 25793816
19 Savchenkov A A, Eliyahu D, Liang W, Ilchenko V S, Byrd J, Matsko A B, Seidel D, Maleki L. Stabilization of a Kerr frequency comb oscillator. Optics Letters, 2013, 38(15): 2636–2639
doi: 10.1364/OL.38.002636 pmid: 23903097
20 Papp S B, Beha K, Del’Haye P, Quinlan F, Lee H, Vahala K J, Diddams S A. Microresonator frequency comb optical clock. Optica, 2014, 1(1): 10–14
doi: 10.1364/OPTICA.1.000010
21 Liang W, Eliyahu D, Ilchenko V S, Savchenkov A A, Matsko A B, Seidel D, Maleki L. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nature Communications, 2015, 6: 7957
doi: 10.1038/ncomms8957 pmid: 26260955
22 Xue X, Xuan Y, Kim H J, Wang J, Leaird D E, Qi M, Weiner A M. Programmable single-bandpass photonic RF filter based on Kerr comb from a microring. Journal of Lightwave Technology, 2014, 32(20): 3557–3565
doi: 10.1109/JLT.2014.2312359
23 Nguyen T G, Shoeiby M, Chu S T, Little B E, Morandotti R, Mitchell A, Moss D J. Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis. Optics Express, 2015, 23(17): 22087–22097
doi: 10.1364/OE.23.022087 pmid: 26368182
24 Maiman T H. Stimulated optical radiation in ruby masers. Nature, 1960, 187(4736): 493–494
doi: 10.1038/187493a0
25 Blumenthal R H. Design of a microwave frequency light modulator. Proceedings of the IRE, 1962, 50(4): 452–456
26 Riesz R P. High speed semiconductor photodiodes. Review of Scientific Instruments, 1962, 33(9): 994–998
doi: 10.1063/1.1718049
27 Seeds A J. Microwave photonics. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 877–887
doi: 10.1109/22.989971
28 Seeds A J, Williams K J. Microwave photonics. Journal of Lightwave Technology, 2006, 24(12): 4628–4641
doi: 10.1109/JLT.2006.885787
29 Capmany J, Novak D. Microwave photonics combines two worlds. Nature Photonics, 2007, 1(6): 319–330
doi: 10.1038/nphoton.2007.89
30 Yao J. Microwave photonics. Journal of Lightwave Technology, 2009, 27(3): 314–335
doi: 10.1109/JLT.2008.2009551
31 Capmany J, Li G, Lim C, Yao J. Microwave Photonics: current challenges towards widespread application. Optics Express, 2013, 21(19): 22862–22867
doi: 10.1364/OE.21.022862 pmid: 24104173
32 Marpaung D, Roeloffzen C, Heideman R, Leinse A, Sales S, Capmany J. Integrated microwave photonics. Laser & Photonics Reviews, 2013, 7(4): 506–538
doi: 10.1002/lpor.201200032
33 Capmany J, Doménech D, Muñoz P. Graphene integrated microwave photonics. Journal of Lightwave Technology, 2014, 32(20): 3785–3796
doi: 10.1109/JLT.2014.2310142
34 Marpaung D, Pagani M, Morrison B, Eggleton B J. Nonlinear integrated microwave photonics. Journal of Lightwave Technology, 2014, 32(20): 3421–3427
doi: 10.1109/JLT.2014.2306676
35 Optical Frequency Combs
36 Ye J, Cundiff S T. Femtosecond Optical Frequency Comb: Principle, Operation, and Applications. Boston, MA, USA: Springer, 2005
37 Torres-Company V, Weiner A M. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser & Photonics Reviews, 2014, 8(3): 368–393
doi: 10.1002/lpor.201300126
38 Carmon T, Yang L, Vahala K. Dynamical thermal behavior and thermal self-stability of microcavities. Optics Express, 2004, 12(20): 4742–4750
doi: 10.1364/OPEX.12.004742 pmid: 19484026
39 Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H. Laser phase and frequency stabilization using an optical resonator. Applied Physics B, Lasers and Optics, 1983, 31(2): 97–105
doi: 10.1007/BF00702605
40 Black E D. An introduction to Pound–Drever–Hall laser frequency stabilization. American Journal of Physics, 2001, 69(1): 79–87
doi: 10.1119/1.1286663
41 Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L, Kippenberg T J. Temporal solitons in optical microresonators. Nature Photonics, 2014, 8(2): 145–152
doi: 10.1038/nphoton.2013.343
42 Xue X, Xuan Y, Liu Y, Wang P H, Chen S, Wang J, Leaird D E, Qi M, Weiner A M. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nature Photonics, 2015, 9(9): 594–600
doi: 10.1038/nphoton.2015.137
43 Arcizet O, Schliesser A, Del’Haye P, Holzwarth R, Kippenberg T J. Optical frequency comb generation in monolithic microresonators. In: Matsko A B, ed. Practical Applications of Microresonators in Optics and Photonics . Boca Raton, FL, USA: CRC press, 2009, 483–506
44 Wang P H, Xuan Y, Xue X, Liu Y. Frequency comb-enhanced coupling in silicon nitride microresonators. In: Proceedings of IEEE Conference on Lasers and Electro-Optics (CLEO), 2015
45 Ferdous F, Miao H, Leaird D E, Srinivasan K, Wang J, Chen L, Varghese L T, Weiner A M. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nature Photonics, 2011, 5(12): 770–776
doi: 10.1038/nphoton.2011.255
46 Herr T, Hartinger K, Riemensberger J, Wang C Y, Gavartin E, Holzwarth R, Gorodetsky M L, Kippenberg T J. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photonics, 2012, 6(7): 480–487
doi: 10.1038/nphoton.2012.127
47 Papp S B, Del’Haye P, Diddams S A. Parametric seeding of a microresonator optical frequency comb. Optics Express, 2013, 21(15): 17615–17624
doi: 10.1364/OE.21.017615 pmid: 23938634
48 Marian A, Stowe M C, Lawall J R, Felinto D, Ye J. United time-frequency spectroscopy for dynamics and global structure. Science, 2004, 306(5704): 2063–2068
doi: 10.1126/science.1105660 pmid: 15550622
49 Maric M, McFerran J J, Luiten A N. Frequency-comb spectroscopy of the D1 line in laser-cooled rubidium. Physical Review A., 2008, 77(3): 032502
doi: 10.1103/PhysRevA.77.032502
50 Fortier T M, Kirchner M S, Quinlan F, Taylor J, Bergquist J C, Rosenband T, Lemke N, Ludlow A, Jiang Y, Oates C W, Diddams S A. Generation of ultrastable microwaves via optical frequency division. Nature Photonics, 2011, 5(7): 425–429
doi: 10.1038/nphoton.2011.121
51 Savchenkov A A, Matsko A B, Strekalov D, Mohageg M, Ilchenko V S, Maleki L. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Physical Review Letters, 2004, 93(24): 243905
doi: 10.1103/PhysRevLett.93.243905 pmid: 15697815
52 Savchenkov A A, Rubiola E, Matsko A B, Ilchenko V S, Maleki L. Phase noise of whispering gallery photonic hyper-parametric microwave oscillators. Optics Express, 2008, 16(6): 4130–4144
doi: 10.1364/OE.16.004130 pmid: 18542510
53 Matsko A B, Maleki L. On timing jitter of mode locked Kerr frequency combs. Optics Express, 2013, 21(23): 28862–28876
doi: 10.1364/OE.21.028862 pmid: 24514400
54 Matsko A B, Maleki L. Noise conversion in Kerr comb RF photonic oscillators. Journal of the Optical Society of America. B, Optical Physics, 2015, 32(2): 232–240
doi: 10.1364/JOSAB.32.000232
55 Capmany J, Ortega B, Pastor D. A tutorial on microwave photonic filters. Journal of Lightwave Technology, 2006, 24(1): 201–229
doi: 10.1109/JLT.2005.860478
56 Minasian R A. Photonic signal processing of microwave signals. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(2): 832–846
doi: 10.1109/TMTT.2005.863060
57 Capmany J, Mora J, Gasulla I, Sancho J, Lloret J, Sales S. Microwave photonic signal processing. Journal of Lightwave Technology, 2013, 31(4): 571–586
doi: 10.1109/JLT.2012.2222348
58 Supradeepa V R, Long C M, Wu R, Ferdous F, Hamidi E, Leaird D E, Weiner A M. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nature Photonics, 2012, 6(3): 186–194
doi: 10.1038/nphoton.2011.350
59 Song M, Long C M, Wu R, Seo D, Leaird D E, Weiner A M. Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs. IEEE Photonics Technology Letters, 2011, 23(21): 1618–1620
doi: 10.1109/LPT.2011.2165209
60 Hamidi E, Leaird D E, Weiner A M. Tunable programmable microwave photonic filters based on an optical frequency comb. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11): 3269–3278
doi: 10.1109/TMTT.2010.2076970
Related articles from Frontiers Journals
[1] Ashkan PASHAMEHR,Mahdi ZAVVARI,Hamed ALIPOUR-BANAEI. All-optical AND/OR/NOT logic gates based on photonic crystal ring resonators[J]. Front. Optoelectron., 2016, 9(4): 578-584.
[2] Yu XIANG,Shilong PAN. GaAs-based polarization modulators for microwave photonic applications[J]. Front. Optoelectron., 2016, 9(3): 497-507.
[3] Rui YANG,Linjie ZHOU,Minjuan WANG,Haike ZHU,Jianping CHEN. Application of SOI microring coupling modulation in microwave photonic phase shifters[J]. Front. Optoelectron., 2016, 9(3): 483-488.
[4] Mingying TANG,Shaoshuai SUI,Yuede YANG,Jinlong XIAO,Yun DU,Yongzhen HUANG. Investigation of mode characteristics in rectangular microresonators for wide and continuous wavelength tuning[J]. Front. Optoelectron., 2016, 9(3): 412-419.
[5] Meng XIONG,Yunhong DING,Haiyan OU,Christophe PEUCHERET,Xinliang ZHANG. Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator[J]. Front. Optoelectron., 2016, 9(3): 390-394.
[6] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[7] Ming LI,Ninghua ZHU. Recent advances in microwave photonics[J]. Front. Optoelectron., 2016, 9(2): 160-185.
[8] Jianji DONG, Yuan YU, Bowen LUO, Dexiu HUANG, Xinliang ZHANG. Simple solutions for photonic power-efficient ultra-wideband system assisted by electrical bandpass filter[J]. Front Optoelec, 2012, 5(4): 403-413.
[9] Jie BI. Angular feature of conical emission in an isotropic amorphous medium pumped by femtosecond pulses[J]. Front Optoelec Chin, 2011, 4(4): 407-410.
[10] Liang ZHAO, Junqiang SUN, Zhefeng HU, Qian HU, Yujie ZHOU, Jing SHAO, Tianye HUANG, Jun LI, . Theoretical demonstration for signal gain in multiple four-wave mixing processes based on cubic susceptibility medium[J]. Front. Optoelectron., 2010, 3(3): 270-282.
[11] Yin ZHANG, Xinliang ZHANG, Xi HUANG, Cheng CHENG. Experimental investigation on slow light via four-wave mixing in semiconductor optical amplifier[J]. Front Optoelec Chin, 2009, 2(3): 259-263.
[12] ZHANG Yejin, SHI Xiaoming, GUO Shuxu, MA Nan, CHEN Minghua, XIE Shizhong. Study on the suppression of IFWM in 40 Gb/s WDM systems[J]. Front. Optoelectron., 2008, 1(1-2): 70-74.
Full text