Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2014, Vol. 7 Issue (3) : 399-405     DOI: 10.1007/s12200-013-0376-0
Chromatic dispersion monitoring using semiconductor optical amplifier
Zhao WU,Yu YU,Xinliang ZHANG()
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Download: PDF(1127 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

An all-optical real-time chromatic dispersion (CD) monitoring technique is proposed and demonstrated for 40 Gbit/s differential phase-shifts keying (DPSK) signal, utilizing the cross modulation effects of semiconductor optical amplifier (SOA). The optical power of the output spectral components, which is from the probe’s frequency up to the signal bandwidth, is used for CD monitoring. This technique provides a wide monitoring range with large variation scale. The impacts of the polarization mode dispersion (PMD) and the optical signal-to-noise ratio (OSNR) on the CD monitoring results are theoretically analyzed and then experimentally investigated, showing that they have slight influence on the monitoring results within a certain range. Furthermore, simulated results for quadrature phase shift keying (QPSK) signal at 80 Gbit/s are also demonstrated, indicating that this technique is suitable for advanced modulated format as well.

Keywords optical performance monitoring      chromatic dispersion (CD)      semiconductor optical amplifier (SOA)      cross modulation     
Corresponding Authors: Xinliang ZHANG   
Issue Date: 09 September 2014
 Cite this article:   
Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
E-mail this article
E-mail Alert
Articles by authors
Zhao WU
Xinliang ZHANG
Fig.1  Optical spectrum (a) before and (b) after SOA
Fig.2  Experimental setup for CD monitoring
Fig.3  Optical spectra at the output of SOA
Fig.4  CD monitoring results for 40 Gbit/s NRZ-DPSK signals
Fig.5  F versus different cumulated dispersion under different DGDs
Fig.6  F versus different cumulated dispersion under different OSNRs for 40 Gbit/s NRZ-DPSK signal
Fig.7  F versus different cumulated dispersion under different (a) DGDs and (b) OSNRs for 40 Gbit/s RZ-DPSK signal
Fig.8  F versus different cumulated dispersion under different (a) DGDs and (b) OSNRs for 80 Gbit/s NRZ-QPSK signal
1 Pan Z Q, Yu C Y, Willner A E. Optical performance monitoring for the next generation optical communication networks. Optical Fiber Technology, 2010, 16(1): 20–45
doi: 10.1016/j.yofte.2009.09.007
2 Chan C C, ed. Optical Performance Monitoring: Advanced Techniques for Next-Generation Photonic Networks. Burlington, MA: Academic Press, 2010
3 Li Z, Li G. Chromatic dispersion and polarization-mode dispersion monitoring for RZ-DPSK signals based on asynchronous amplitude-histogram evaluation. Journal of Lightwave Technology, 2006, 24(7): 2859–2866
doi: 10.1109/JLT.2006.876089
4 Wu Z, Yu Y, Zhang X. Chromatic dispersion monitoring for NRZ-DPSK system using asynchronous amplitude histogram evaluation. Photonics Journal, IEEE, 2012, 4(4): 1212–1219
doi: 10.1109/JPHOT.2012.2207451
5 Kozicki B, Takuya O, Hidehiko T. Optical performance monitoring of phase-modulated signals using asynchronous amplitude histogram analysis. Journal of Lightwave Technology, 2008, 26(10): 1353–1361
doi: 10.1109/JLT.2008.917374
6 Zhao J, Li Z, Liu D, Cheng L, Lu C, Tam H Y. NRZ-DPSK and RZ-DPSK signals signed chromatic dispersion monitoring using asynchronous delay-tap sampling. Journal of Lightwave Technology, 2009, 27(23): 5295–5301
doi: 10.1109/JLT.2009.2031610
7 Kozicki B, Maruta A, Kitayama K I. Experimental demonstration of optical performance monitoring for RZ-DPSK signals using delay-tap sampling method. Optics Express, 2008, 16(6): 3566–3576
doi: 10.1364/OE.16.003566 pmid: 18542449
8 Vo T D, Corcoran B, Schr?der J, Pelusi M D, Xu D X, Densmore A, Ma R, Janz S, Moss D J, Eggleton B J. Silicon-chip-based real-time dispersion monitoring for 640 Gbit/s DPSK signals. Journal of Lightwave Technology, 2011, 29(12): 1790–1796
doi: 10.1109/JLT.2011.2141974
9 Yang J Y, Zhang L, Wu X, Yilmaz O F, Zhang B, Willner A E. All-optical chromatic dispersion monitoring for phase-modulated signals utilizing cross-phase modulation in a highly nonlinear fiber. Photonics Technology Letters, IEEE, 2008, 20(19): 1642–1644
doi: 10.1109/LPT.2008.2002740
10 Vorreau P, Kilper D C, Leuthold J. Optical noise and dispersion monitoring with SOA-based optical 2R regenerator. Photonics Technology Letters, IEEE, 2005, 17(1): 244–246
doi: 10.1109/LPT.2004.838622
11 Yang J, Yu C Y, Yang Y F, Cheng L H, Li Z H, Lu C, Lau A P T, Tam H, Wai P K A. PMD-insensitive CD monitoring based on RF clock power ratio measurement with optical notch filter. Photonics Technology Letters, IEEE, 2011, 23(21): 1576–1578
doi: 10.1109/LPT.2011.2164519
12 Zhao J, Lau A P T, Qureshi K K, Li Z H, Lu C, Tam H Y. Chromatic dispersion monitoring for DPSK systems using RF power spectrum. Journal of Lightwave Technology, 2009, 27(24): 5704–5709
doi: 10.1109/JLT.2009.2034540
13 Lize Y K, Christen L, Yang J Y, Saghari P, Nuccio S, Willner A E, Kashyap R. Independent and simultaneous monitoring of chromatic and polarization-mode dispersion in OOK and DPSK transmission. Photonics Technology Letters, IEEE, 2007, 19(1): 3–5
doi: 10.1109/LPT.2006.888039
14 Tsai K T, Way W I. Chromatic-dispersion monitoring using an optical delay-and-add filter. Journal of Lightwave Technology, 2005, 23(11): 3737–3747
doi: 10.1109/JLT.2005.856230
15 Shen T S R, Lau A P T, Yu C Y. Simultaneous and independent multi-parameter monitoring with fault localization for DSP-based coherent communication systems. Optical Express, 2010, 18(23): 23608–23619
doi: 10.1364/OE.18.023608 pmid: 21164705
16 Faruk M S, Mori Y, Zhang C, Igarashi K, Kikuchi K. Multi-impairment monitoring from adaptive finite-impulse-response filters in a digital coherent receiver. Optics Express, 2010, 18(26): 26929–26936
doi: 10.1364/OE.18.026929 pmid: 21196969
17 Qi S, Lau A P T, Lu C. Fast and robust chromatic dispersion estimation using auto-correlation of signal power waveform for DSP based-coherent systems. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2012
18 Joergensen C, Danielsen S L, Stubkjaer K E, Schilling M, Daub K, Doussiere P, Pommerau F, Hansen P B, Poulsen H N, Kloch A, Vaa M, Mikkelsen B, Lach E, Laube G, Idler W, Wunstel K. All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers. IEEE Journal on Selected Topics in Quantum Electronics, 1997, 3(5): 1168–1180
doi: 10.1109/2944.658592
19 Durhuus T, Mikkelsen B, Joergensen C, Lykke Danielsen S, Stubkjaer K E. All-optical wavelength conversion by semiconductor optical amplifiers. Journal of Lightwave Technology, 1996, 14(6): 942–954
doi: 10.1109/50.511594
20 Dorrer C, Maywar D N. RF spectrum analysis of optical signals using nonlinear optics. Journal of Lightwave Technology, 2004, 22(1): 266–274
doi: 10.1109/JLT.2004.823358
21 Pelusi M, Luan F, Vo T D, Lamont M R E, Madden S J, Bulla D A, Choi D Y, Luther-Davies B, Eggleton B J. Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth. Nature Photonics, 2009, 3(3): 139–143
doi: 10.1038/nphoton.2009.1
22 Nezam S M R M, Song Y W, Yu C, McGeehan J E, Sahin A B, Willner A E. First-order PMD monitoring for NRZ data using RF clock regeneration techniques. Journal of Lightwave Technology, 2004, 22(4): 1086–1093
doi: 10.1109/JLT.2004.825358
23 Park K J, Lee J H, Youn C J, Chung Y C. A simultaneous monitoring technique for polarization-mode dispersion and group-velocity dispersion. In: Proceedings of Optical Fiber Communication Conference. Anaheim, CA: IEEE, 2002, 199–200
Related articles from Frontiers Journals
[1] Yingqin PENG,Yuli CHEN,Qi SUI,Dawei WANG,Dongyu GENG,Freddy FU,Zhaohui LI. In-band OSNR monitoring based on low-bandwidth coherent receiver and tunable laser[J]. Front. Optoelectron., 2016, 9(3): 526-530.
[2] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[3] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[4] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[5] Li HUO, Qiang WANG, Yanfei XING, Caiyun LOU. Signal generation and processing at 100 Gb/s based on optical time division multiplexing[J]. Front Optoelec, 2013, 6(1): 57-66.
[6] Ehsan MOHADESRAD, Kambiz ABEDI. Proposal for modeling of tapered quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 457-464.
[7] Hussein TALEB, Kambiz ABEDI. Homogeneous and inhomogeneous broadening effects on static and dynamic responses of quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 445-456.
[8] Tan SHU, Yonglin YU, Hui LV, Dexiu Huang, Kai SHI, Liam BARRY. Influence of facet reflection of SOA on SOA-integrated SGDBR laser[J]. Front Optoelec, 2012, 5(4): 390-394.
[9] Yin ZHANG, Jianji DONG, Lei LEI, Hao HE, Xinliang ZHANG. 40-Gbit/s 3-input all-optical priority encoder based on cross-gain modulation in two parallel semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(2): 195-199.
[10] Jing HUANG, Deming LIU. WDM PON using 10-Gb/s DPSK downstream and re-modulated 10-Gb/s OOK upstream based on SOA[J]. Front Optoelec Chin, 2010, 3(4): 339-342.
[11] Zigang DUAN, Wei SHI, Yan LI, Guangyue CHAI. Gain properties and optical-feedback suppression of asymmetrical curved active waveguides[J]. Front Optoelec Chin, 2009, 2(4): 379-383.
[12] Yin ZHANG, Xinliang ZHANG, Xi HUANG, Cheng CHENG. Experimental investigation on slow light via four-wave mixing in semiconductor optical amplifier[J]. Front Optoelec Chin, 2009, 2(3): 259-263.
Full text