Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec    2013, Vol. 6 Issue (4) : 359-372     DOI: 10.1007/s12200-013-0346-6
Monolithic all-solid-state dye-sensitized solar cells
Yaoguang RONG1, Guanghui LIU1, Heng WANG1, Xiong LI1,2, Hongwei HAN1()
1. Michael Gr?tzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China; 2. College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Download: PDF(888 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

As a low-cost photovoltaic technology, dye-sensitized solar cell (DSSC) has attracted widespread attention in the past decade. During its development to commercial application, decreasing the production cost and increasing the device stability take the most importance. Compared with conventional sandwich structure liquid-state DSSCs, monolithic all-solid-state mesoscopic solar cells based on mesoscopic carbon counter electrodes and solid-state electrolytes present much lower production cost and provide a prospect of long-term stability. This review presents the recent progress of materials and achievement for all-solid-state DSSCs. In particular, representative examples are highlighted with the results of our monolithic all-solid-state mesoscopic solar cell devices and modules.

Keywords photovoltaic (PV) technology      monolithic      dye-sensitized solar cells (DSSCs)      all-solid-state      mesoscopic      carbon counter electrode     
Corresponding Authors: HAN Hongwei,   
Issue Date: 05 December 2013
 Cite this article:   
Yaoguang RONG,Guanghui LIU,Heng WANG, et al. Monolithic all-solid-state dye-sensitized solar cells[J]. Front Optoelec, 2013, 6(4): 359-372.
E-mail this article
E-mail Alert
Articles by authors
Yaoguang RONG
Guanghui LIU
Xiong LI
Hongwei HAN
Fig.1  DSSC schematic and operation
Fig.2  Structure of typical monolithic liquid-state DSSC
Fig.3  Structure of typical monolithic all-solid-state DSSC
Fig.4  Structure of typical monolithic all-solid-state DSSC based on mesoscopic carbon CE []
Fig.5  SEM images of mesoscopic carbon film modified with platinum (a) 0.5 wt. % and (b) 3wt. % []
Fig.6  CV data of carbon electrode containing different amount of platinum particles []
Fig.7  Calculations of diffusion-limited short circuit current in DSSC in standard cell con?guration, which is a photoelectrode consisting of 10 μm TiO active layer and 7 μm ZrO back-scattering layer and a platinized CE, as a function of the electrode distance. Noti?cation: “void” corresponds to the situation without ZrO layer. The circles indicate equal current density. The calculations for a low viscous electrolyte which is diluted with highly volatile acetonitrile are given as a reference. A cell temperature of 25C is assumed, the concentration of is 0.5 mol?L in the case of the PMII (propylmethylimidazolium) molten salt electrolyte and 0.05 mol?L for the reference electrolyte []
Fig.8  Left: WDS mapping of the cross section of monolithic DSSC in?ltrated with nanocomposite polymer electrolyte. Right: relative intensity of the Ti and C level across selected region of the device []
Fig.9  Electrochemical impedance spectra (EIS) of P3HT-based monolithic DSSCs with different CEs: graphite CE (circle), graphite and carbon black CE (square) []
Fig.10  Continuous process for fabrication of monolithic series connected DSSC modules []
Fig.11  (a) Monolithic DSSC module (30 cm × 30 cm) consisting 35 inter-series connected unit cells; (b) monolithic DSSC module consisting 4 parallel-connected unit cells (3.38 cm) []
Fig.12  (a) Monolithic all-solid-state DSSC module fabricated by experiment procedures that could drive an electric fan; (b) four panels consisting 80 monolithic all-solid-state DSSC modules fabricated by semi-auto process that could drive a LED display
Fig.13  Monolithic multicell with several individual cells []
1 O’Regan B, Gr?tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature , 1991, 353(6346): 737–740
doi: 10.1038/353737a0
2 Gr?tzel M. Photoelectrochemical cells. Nature , 2001, 414(6861): 338–344
doi: 10.1038/35104607 pmid:11713540
3 Hagfeldt A, Boschloo G, Sun L C, Kloo L, Pettersson H. Dye-sensitized solar cells. Chemical Reviews , 2010, 110(11): 6595–6663
doi: 10.1021/cr900356p pmid:20831177
4 Chiba Y, Islam A, Komiya R, Koide N, Han L Y. Conversion efficiency of 10.8% by a dye-sensitized solar cell using a TiO2 electrode with high haze. Applied Physics Letters , 2006, 88(22): 223505-1–223505-3
doi: 10.1063/1.2208920
5 Han L Y, Islam A, Chen H, Malapaka C, Chiranjeevi B, Zhang S F, Yang X D, Yanagida M. High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energy & Environmental Sciences , 2012, 5(3): 6057–6060
doi: 10.1039/c2ee03418b
6 Yella A, Lee H W, Tsao H N, Yi C Y, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M, Gr?tzel M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science , 2011, 334(6056): 629–634
doi: 10.1126/science.1209688 pmid:22053043
7 Hardin B E, Snaith H J, McGehee M D. The renaissance of dye-sensitized solar cells. Nature Photonics , 2012, 6(3): 162–169
doi: 10.1038/nphoton.2012.22
8 Kroon J M, Bakker N J, Smit H J P, Liska P, Thampi K R, Wang P, Zakeeruddin S M, Gr?tzel M, Hinsch A, Hore S, Wurfel U, Sastrawan R, Durrant J R, Palomares E, Pettersson H, Gruszecki T, Walter J, Skupien K, Tulloch G E. Nanocrystalline dye-sensitized solar cells having maximum performance. Progress in Photovoltaics: Research and Applications , 2007, 15(1): 1–18
doi: 10.1002/pip.707
9 Zhang Q F, Dandeneau C S, Zhou X Y, Cao G Z. ZnO nanostructures for dye-sensitized solar cells. Advanced Materials , 2009, 21(41): 4087–4108
doi: 10.1002/adma.200803827
10 Kay A, Gr?tzel M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells , 1996, 44(1): 99–117
doi: 10.1016/0927-0248(96)00063-3
11 Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Spreitzer H, Gr?tzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature , 1998, 395(6702): 583–585
doi: 10.1038/26936
12 Melas-Kyriazi J, Ding I K, Marchioro A, Punzi A, Hardin B E, Burkhard G F, Tetreault N, Gr?tzel M, Moser J E, McGehee M D. The effect of hole transport material pore filling on photovoltaic performance in solid-state dye-sensitized solar cells. Advanced Energy Materials , 2011, 1(3): 407–414
13 Snaith H J, Moule A J, Klein C, Meerholz K, Friend R H, Gr?tzel M. Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture. Nano Letters , 2007, 7(11): 3372–3376
doi: 10.1021/nl071656u pmid:17918905
14 Wang H, Liu G H, Li X, Xiang P, Ku Z L, Rong Y G, Xu M, Liu L F, Hu M, Yang Y, Han H W. Highly efficient poly(3-hexylthiophene) based monolithic dye-sensitized solar cells with carbon CE. Energy & Environmental Sciences , 2011, 4(6): 2025–2029
doi: 10.1039/C0EE00821D
15 Han H W, Liu W, Zhang J, Zhao X Z. A hybrid poly(ethylene oxide)/poly(vinylidene fluoride)/TiO2 nanoparticle solid-state redox electrolyte for dye-sensitized nanocrystalline solar cells. Advanced Functional Materials , 2005, 15(12): 1940–1944
doi: 10.1002/adfm.200500159
16 Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science , 2012, 338(6107): 643–647
doi: 10.1126/science.1228604 pmid:23042296
17 Chung I, Lee B, He J Q, Chang R P H, Kanatzidis M G. All-solid-state dye-sensitized solar cells with high efficiency. Nature , 2012, 485(7399): 486–489
doi: 10.1038/nature11067 pmid:22622574
18 Noh J H, Im S H, Heo J H, Mandal T N, Seok S I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Letters , 2013, 13(4): 1764–1769
doi: 10.1021/nl400349b pmid:23517331
19 Han H W, Bach U, Cheng Y B, Caruso R A, MacRae C. A design for monolithic all-solid-state dye-sensitized solar cells with a platinized carbon counterelectrode. Applied Physics Letters , 2009, 94(10): 103102-1–103102-3
doi: 10.1063/1.3086895
20 Skupien K, Putyra P, Walter J, Koz?owski R H, Khelashvili G. Catalytic materials manufactured by the polyol process for monolithic dye-sensitized solar cells. Progress in Photovoltaics: Research and Applications , 2009, 17(1): 67–73
21 Liu G H, Wang H, Li X, Rong Y G, Ku Z L, Xu M, Liu L F, Hu M, Yang Y, Xiang P, Shu T, Han H W. A mesoscopic platinized graphite/carbon black counter electrode for a highly efficient monolithic dye-sensitized solar cell. Electrochimica Acta , 2012, 69: 334–339
doi: 10.1016/j.electacta.2012.03.012
22 Hinsch A, Behrens S, Berginc M, B?nnemann H, Brandt H, Drewitz A, Einsele F, Fa?ler D, Gerhard D, Gores H, Haag R, Herzig T, Himmler S, Khelashvili G, Koch D, Nazmutdinova G, Opara-Krasovec U, Putyra P, Rau U, Sastrawan R, Schauer T, Schreiner C, Sensfuss S, Siegers C, Skupien K, Wachter P, Walter J, Wasserscheid P, Würfel U, Zistler M. Material development for dye solar modules: Results from an integrated approach. Progress in Photovoltaics: Research and Applications , 2008, 16(6): 489–501
doi: 10.1002/pip.832
23 Krüger J, Plass R, Cevey L, Piccirelli M, Gr?tzel M, Bach U. High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Applied Physics Letters , 2001, 79(13): 2085–2087
doi: 10.1063/1.1406148
24 Krüger J, Plass R, Gr?tzel M, Matthieu H J. Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4′-dicarboxy- 2,2′bipyridine)-bis(isothiocyanato) ruthenium(II). Applied Physics Letters , 2002, 81(2): 367–369
doi: 10.1063/1.1490394
25 Schmidt-Mende L, Zakeeruddin S M, Gr?tzel M. Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic ruthenium-dye. Applied Physics Letters , 2005, 86(1): 013504-1–013504-3
doi: 10.1063/1.1844032
26 Schmidt-Mende L, Bach U, Humphry-Baker R, Horiuchi T, Miura H, Ito S, Uchida S, Gr?tzel M. Organic dye for highly efficient solid-state dye-sensitized solar cells. Advanced Materials , 2005, 17(7): 813–815
doi: 10.1002/adma.200401410
27 Cai N, Moon S J, Cevey-Ha L, Moehl T, Humphry-Baker R, Wang P, Zakeeruddin S M, Gr?tzel M. An organic D-π-A dye for record efficiency solid-state sensitized heterojunction solar cells. Nano Letters , 2011, 11(4): 1452–1456
doi: 10.1021/nl104034e pmid:21375265
28 Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha N L, Yi C Y, Nazeeruddin M K, Gr?tzel M. Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. Journal of the American Chemical Society , 2011, 133(45): 18042–18045
doi: 10.1021/ja207367t pmid:21972850
29 Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gr?tzel M, Park N G. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports , 2012, 2: 591
doi: 10.1038/srep00591
30 Chang J A, Rhee J H, Im S H, Lee Y H, Kim H J, Seok S I, Nazeeruddin M K, Gr?tzel M. High-performance nanostructured inorganic-organic heterojunction solar cells. Nano Letters , 2010, 10(7): 2609–2612
doi: 10.1021/nl101322h pmid:20509686
31 Zhu R, Jiang C Y, Liu B, Ramakrishna S. Highly efficient nanoporous TiO2-polythiophene hybrid solar cells based on interfacial modification using a metal-free organic dye. Advanced Materials , 2009, 21(9): 994–1000
doi: 10.1002/adma.200802388
32 Mor G K, Kim S, Paulose M, Varghese O K, Shankar K, Basham J, Grimes C A. Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells. Nano Letters , 2009, 9(12): 4250–4257
doi: 10.1021/nl9024853 pmid:19775127
33 Moon S J, Baranoff E, Zakeeruddin S M, Yeh C Y, Diau E W G, Gr?tzel M, Sivula K. Enhanced light harvesting in mesoporous TiO2/P3HT hybrid solar cells using a porphyrin dye. Chemical Communications (Cambridge) , 2011, 47: 8244–8246
34 Zhang W, Zhu R, Li F, Wang Q, Liu B. High-performance solid-state organic dye sensitized solar cells with P3HT as hole transporter. Journal of Physical Chemistry C , 2011, 115(14): 7038–7043
doi: 10.1021/jp1118597
35 Rong Y G, Li X, Ku Z L, Liu G H, Wang H, Xu M, Liu L F, Hu M, Xiang P, Zhou Z M, Shu T, Han H W. Monolithic all-solid-state dye-sensitized solar module based on mesoscopic carbon counter electrodes. Solar Energy Materials and Solar Cells , 2012, 105: 148–152
doi: 10.1016/j.solmat.2012.06.004
36 Xu M, Liu G H, Li X, Wang H, Rong Y G, Ku Z L, Hu M, Yang Y, Liu L F, Liu T F, Chen J Z, Han H W. Efficient monolithic solid-state dye-sensitized solar cell with a low-cost mesoscopic carbon based screen printable counter electrode. Organic Electronics , 2013, 14(2): 628–634
doi: 10.1016/j.orgel.2012.12.015
37 Dai S Y, Wang K J, Weng J, Sui Y F, Huang Y, Xiao S F, Chen S H, Hu L H, Kong F T, Pan X, Shi C W, Guo L. Design of DSC panel with efficiency more than 6%. Solar Energy Materials and Solar Cells , 2005, 85(3): 447–455
doi: 10.1016/j.solmat.2004.10.001
38 Han L T, Fukui A, Chiba Y, Islam A, Komiya R, Fuke N, Koide N, Yamanaka R, Shimizu M. Integrated dye-sensitized solar cell module with conversion efficiency of 8.2%. Applied Physics Letters , 2009, 94(1): 013305-1–013305-3
doi: 10.1063/1.3054160
39 Meyer T, Martineau D, Azarn A, Meyer A. All screen printed dye solar cell. Organic Photovoltaics VIII , 2007, 6656: 65608-1–65608-11
40 Meyer T, Scott M, Azam A, Martineau D, Oswald F, Narbey S, Laporte G, Cisneros R, Tregnano G, Meyer A. CleanTechDay 3rd Generation Photovoltaics, CSEM , Basel, 18 August 2009
41 Pettersson H, Gruszecki T. Long-term stability of low-power dye-sensitised solar cells prepared by industrial methods. Solar Energy Materials and Solar Cells , 2001, 70(2): 203–212
doi: 10.1016/S0927-0248(01)00025-3
42 Pettersson H, Gruszecki T, Johansson L H, Johander P. Manufacturing method for monolithic dye-sensitised solar cells permitting long-term stable low-power modules. Solar Energy Materials and Solar Cells , 2003, 77(4): 405–413
doi: 10.1016/S0927-0248(02)00368-9
43 Pettersson H, Gruszecki T, Schnetz C, Streit M, Xu Y H, Sun L C, Gorlov M, Kloo L, Boschloo G, Haggman L, Hagfeldt A. Parallel-connected monolithic dye-sensitised solar modules. Progress in Photovoltaics: Research and Applications , 2010, 18(5): 340–345
doi: 10.1002/pip.971
44 Pettersson H, Gruszecki T, Bernhard R, Haggman L, Gorlov M, Boschloo G, Edvinsson T, Kloo L, Hagfeldt A. The monolithic multicell: a tool for testing material components in dye-sensitized solar cells. Progress in Photovoltaics: Research and Applications , 2007, 15(2): 113–121
doi: 10.1002/pip.713
45 Rong Y G, Han H W. Monolithic quasi-solid-state dye-sensitized solar cells based on graphene modified mesoscopic carbon-counter electrodes. Journal of Nanophotonics , 2013, 7(1): 073090
doi: 10.1117/1.JNP.7.073090
46 Hinsch A, Kroon J M, Kern R, Uhlendorf I, Holzbock J, Meyer A, Ferber J. Long-term stability of dye-sensitised solar cells. Progress in Photovoltaics: Research and Applications , 2001, 9(6): 425–438
doi: 10.1002/pip.397
Related articles from Frontiers Journals
[1] Jie SHI,Zhaofei CHAI,Runli TANG,Huiyang LI,Hongwei HAN,Tianyou PENG,Qianqian LI,Zhen LI. Effect of electron-withdrawing groups in conjugated bridges: molecular engineering of organic sensitizers for dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 60-70.
[2] Xiaoli ZHENG,Haining CHEN,Zhanhua WEI,Yinglong YANG,He LIN,Shihe YANG. High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes[J]. Front. Optoelectron., 2016, 9(1): 71-80.
[3] Xiaoyu ZHANG,Michael Grätzel,Jianli HUA. Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 3-37.
[4] Yue QIAN,Rong LIU,Xiujuan JIN,Bin LIU,Xianfu WANG,Jin XU,Zhuoran WANG,Gui CHEN,Junfeng CHAO. Optimised synthesis of close packed ZnO cloth and its applications in Li-ion batteries and dye-sensitized solar cells[J]. Front. Optoelectron., 2015, 8(2): 220-228.
[5] Dehua XIONG, Wei CHEN. Recent progress on tandem structured dye-sensitized solar cells[J]. Front Optoelec, 2012, 5(4): 371-389.
[6] Qingqing MIAO, Mingxing WU, Wei GUO, Tingli MA. Studies of high-efficient and low-cost dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 103-107.
Full text