Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec Chin    2011, Vol. 4 Issue (2) : 130-136     DOI: 10.1007/s12200-011-0168-3
RESEARCH ARTICLE |
Substrate effect on morphology and photoluminescence from ZnO monopods and bipods
Pijus Kanti SAMANTA1(), Partha Roy CHAUDHURI2
1. Department of Physics, Rabindra Satabarsiki Mahavidyalaya, Ghatal-721212, West Bengal, India; 2. Department of Physics & Meteorology, Indian Institute of Technology Kharagpur, West Bengal, India
Download: PDF(427 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A simple wet chemical bath deposition has been successfully deployed to fabricate zinc oxide (ZnO) nanostructures. For substrate free growth, the nanostructure is spindle like monopods. But when the nanostructures grow on the glass and quartz substrates, they are bipods (two monopods joined together base to base). Variation in the size of the spindles of the monopods and bipods and the particle size was observed due to the strain exists in the thin film due to lattice mismatch at the interface of the thin film and the substrates. The X-ray diffraction (XRD) and selected area diffraction results confirmed the hexagonal unit cell structures of the monopods and bipods. Also the growth rates of various planes are different and the growth is anisotropic. The substrate free grown monopods show visible photoluminescence (PL) at 421 nm. But the emission gets shifted by 3 and 6 nm for ZnO thin film deposited on quartz and glass substrates respectively due to interfacial strain. In case of ZnO on quartz substrate a strong ultra-violet (UV) peak was observed at 386 nm due to band edge transition. These emissions are also accompanied by few weaker emission peaks due to various defect related transition.

Keywords monopods      bipods      particle-size      strain      photoluminescence (PL)      recombination     
Corresponding Authors: SAMANTA Pijus Kanti,Email:pijush.samanta@gmail.com   
Issue Date: 05 June 2011
 Cite this article:   
Pijus Kanti SAMANTA,Partha Roy CHAUDHURI. Substrate effect on morphology and photoluminescence from ZnO monopods and bipods[J]. Front Optoelec Chin, 2011, 4(2): 130-136.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-011-0168-3
http://journal.hep.com.cn/foe/EN/Y2011/V4/I2/130
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Pijus Kanti SAMANTA
Partha Roy CHAUDHURI
Fig.1  XRD pattern of ZnO monopods grown without any substrate
Fig.1  XRD pattern of ZnO monopods grown without any substrate
Fig.2  XRD pattern of ZnO bipods grown on glass
Fig.2  XRD pattern of ZnO bipods grown on glass
Fig.3  XRD pattern of ZnO monopods grown on quartz
Fig.3  XRD pattern of ZnO monopods grown on quartz
Fig.4  Variation of strain with particle size
Fig.4  Variation of strain with particle size
substratesFWHM2θ/(°)particle size/nmstrain
no substrate0.2169536.31380.1654
glass0.2320236.23350.1773
quartz0.2460536.25330.1868
Tab.1  Data for particle size and strain for different substrates
Fig.5  FESEM images of prism-like monopods grown without any substrate taken in two different positions
Fig.5  FESEM images of prism-like monopods grown without any substrate taken in two different positions
Fig.6  FESEM images of bipods grown on (a) glass and (b) quartz substrate
Fig.6  FESEM images of bipods grown on (a) glass and (b) quartz substrate
Fig.7  Hexagonal crystal structure of ZnO
Fig.7  Hexagonal crystal structure of ZnO
Fig.8  Schematic of growth of monopods and bipods
Fig.8  Schematic of growth of monopods and bipods
Fig.9  (a) and (b) TEM images of bipods grown on glass substrate; (c) selected area election diffraction SAED pattern of bipods
Fig.9  (a) and (b) TEM images of bipods grown on glass substrate; (c) selected area election diffraction SAED pattern of bipods
Fig.10  Room temperature photoluminescence of ZnO monopods and bipods grown on glass and quartz
Fig.10  Room temperature photoluminescence of ZnO monopods and bipods grown on glass and quartz
Fig.11  Eenergy levels of various defect states of ZnO []
Fig.11  Eenergy levels of various defect states of ZnO []
no substrateglassquartzorigin of emission
PL emission peaks----386band edge emission
421415418recombination bet Zni and hole in VB
486484486zinc vacancy (VZn+)
530530530singly ionised oxygen vacancy
Tab.2  Various PL emission peaks and their origins
1 Wong E M, Searson P C. ZnO quantum particle thin films fabricated by electrophoretic deposition. Applied Physics Letters , 1999, 74(20): 2939-2941
doi: 10.1063/1.123972
2 Vanheusden K, Seager C H, Warren W L, Tallant D R, Voigt J A. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Applied Physics Letters , 1996, 68(3): 403-405
doi: 10.1063/1.116699
3 Wang H Q, Wang G Z, Jia L C, Tang C J, Li G H. Polychromatic visible photoluminescence in porous ZnO nanotubes. Phys J. D. Applied Physics (Berlin) , 2007, 40: 6549-6553
doi: 10.1088/0022-3727/40/21/014
4 Samanta P K, Patra S K, Roy C P. Violet emission from flower-like bundle of ZnO nanosheets. Physica E, Low-Dimensional Systems and Nanostructures , 2009, 41(4): 664-667
doi: 10.1016/j.physe.2008.11.015
5 Ma Jina, Ji Fenga, Zhang De-hengb, Ma Hong-leia, Li Shu-ying. Optical and electronic properties of transparent conducting ZnO and ZnO:Al lms prepared by evaporating method. Thin Solid Films , 1999, 357: 98-101
doi: 10.1016/S0040-6090(99)00357-0
6 Baxter J B, Schmuttenmaer C A. Conductivity of ZnO Nanowires, Nanoparticles, and Thin Films Using Time-Resolved Terahertz Spectroscopy?. Journal of Physical Chemistry B , 2006, 110(50): 25229-25239
doi: 10.1021/jp064399a
7 Kong X Y, Wang Z L. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Letters , 2003, 3(12): 1625-1631
doi: 10.1021/nl034463p
8 Yasuhide Nakamura. Solution-growth of Zinc oxide nanowires for dye-sensitized solar cells. MATERIALS ? NNIN REU, Research Accomplishments , 2006, 74
9 Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P. Room-temperature ultraviolet nanowire nanolasers. Science , 2001, 292(5523): 1897-1899
doi: 10.1126/science.1060367
10 Bixia Lin and Zhuxi Fua, Yunbo Jia. Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Applied Physics Letters , 2001, 79: 943-945
doi: 10.1063/1.1394173
11 Lee M K, Tu H F. Ultraviolet emission blueshift of ZnO related to Zn. Journal of Applied Physics , 2007, 101(12): 126103
doi: 10.1063/1.2737962
12 Liu M, Kitai A H, Mascher P. Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese. Journal of Luminescence , 1992, 54(1): 35-42
doi: 10.1016/0022-2313(92)90047-D
13 Teng X M, Fan H T, Pan S S, Ye C, Li G H.. Photoluminescence of ZnO thin films on Si substrate with and without ITO buffer layer. Phys J. D. Applied Physics (Berlin) , 2006, 39: 471
doi: 10.1088/0022-3727/39/3/008
14 Wu J J, Liu S C. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Advanced Materials (Deerfield Beach, Fla.) , 2002, 14(3): 215-218
15 Hu H, Huang X, Deng C, Chen X, Qian Y. Hydrothermal synthesis of ZnO nanowires and nanobelts on a large scale. Materials Chemistry and Physics , 2007, 106(1): 58-62
doi: 10.1016/j.matchemphys.2007.05.016
16 Zhu Y W, Zhang H Z, Sun X C, Feng S Q, Xu J, Zhao Q, Xiang B, Wang R M, Yu D P. Efficient field emission from ZnO nanoneedle arrays. Applied Physics Letters , 2003, 83(1): 144
doi: 10.1063/1.1589166
17 Samanta P K, Basak S, Roy C P. Electrochemical growth of ZnO microspheres and nanosheets. Adv. Sci. Lett . (in press)
18 Fouchet A, Prellier W, Mercey B, Méchin L, Kulkarni V N, Venkatesan T. Investigation of laser-ablated ZnO thin films grown with Zn metal target: A structural study. Journal of Applied Physics , 2004, 96(6): 3228
doi: 10.1063/1.1772891
19 Mondal S P, Das K, Dhar A, Ray S K. Characteristics of CdS nanowires grown in a porous alumina template using a two-cell method. Nanotechnology , 2007, 18(9): 095606
doi: 10.1088/0957-4484/18/9/095606
20 Samanta P K, Patra S K, Chaudhuri P R. Visible emission from ZnO nanorods synthesized by a simple wet chemical method. International Journal of Nanoscience and Nanotechnology , 2009, 1(1-2): 81-90
21 Sugunan A, Warad H C, Boman M, Dutta J. Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine. J Sol-Gel Sci Techn . 2006, 39(1): 49-56
doi: 10.1007/s10971-006-6969-y
22 Hu X L, Zhu Y J, Wang S W. Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods. Materials Chemistry and Physics , 2004, 88(2-3): 421-426
doi: 10.1016/j.matchemphys.2004.08.010
23 Zeng H, Li Z, Cai W, Liu P. Strong localization effect in temperature dependence of violet-blue emission from ZnO nanoshells. Journal of Applied Physics , 2007, 102(10): 104307
doi: 10.1016/S0168-583X(02)01425-8
25 Xu P S, Sun Y M, Shi C S, Xu F Q, Pan H B. The electronic structure and spec-tral properties of ZnO and its defects. Nucl. Instrum. Methods Phys. Res. Sect. B. , 2003, 199: 286
doi: 10.1063/1.2803712
Related articles from Frontiers Journals
[1] Yanxiong E,Zhibiao HAO,Jiadong YU,Chao WU,Lai WANG,Bing XIONG,Jian WANG,Yanjun HAN,Changzheng SUN,Yi LUO. Size-dependent optical properties of InGaN quantum dots in GaN nanowires grown by MBE[J]. Front. Optoelectron., 2016, 9(2): 318-322.
[2] Kambiz ABEDI. Strain effects on performance of electroabsorption optical modulators[J]. Front Optoelec, 2013, 6(3): 282-289.
[3] Jinrui MI, Luda ZHANG, Longlian ZHAO, Junhui LI. Particle size regression correction for NIR spectrum based on the relationship between absorbance and particle size[J]. Front Optoelec, 2013, 6(2): 216-223.
[4] Yuewen HAN, Cheng CHENG. An optimized distributed fiber Bragg grating sensing system based on optical frequency domain reflectometry[J]. Front Optoelec, 2012, 5(3): 345-350.
[5] E. KASPER, M. OEHME, J. WERNER, T. AGUIROV, M. KITTLER. Direct band gap luminescence from Ge on Si pin diodes[J]. Front Optoelec, 2012, 5(3): 256-260.
[6] Yijie HUO, Hai LIN, Robert CHEN, Yiwen RONG, Theodore I. KAMINS, James S. HARRIS. MBE growth of tensile-strained Ge quantum wells and quantum dots[J]. Front Optoelec, 2012, 5(1): 112-116.
[7] Guodong WANG, Yunjian WANG, Na LI. Axial strain sensitivity analysis of long period fiber grating by new transfer matrix method[J]. Front Optoelec Chin, 2011, 4(4): 430-433.
[8] Zhongwei SHI, Lirong HUANG, Yi YU, Peng TIAN, Hanchao WANG. Influence of V/III ratio on QD size distribution[J]. Front Optoelec Chin, 2011, 4(4): 364-368.
[9] Caixia SONG, Yuwei SUN, Yaohua XU, Debao WANG. Synthesis and optical property of ZnO nano-/micro-rods[J]. Front Optoelec Chin, 2011, 4(2): 156-160.
[10] Zigang DUAN, Wei SHI, Yan LI, Guangyue CHAI. Gain properties and optical-feedback suppression of asymmetrical curved active waveguides[J]. Front Optoelec Chin, 2009, 2(4): 379-383.
[11] Xinlong CHANG, Ming LI, Xuanzi HAN. Recent development and applications of polymer optical fiber sensors for strain measurement[J]. Front Optoelec Chin, 2009, 2(4): 362-367.
[12] Jieying KONG, Bin LIU, Rong ZHANG, Zili XIE, Yong ZHANG, Xiangqian XIU, Youdou ZHENG. Optical properties of InN films grown by MOCVD[J]. Front Optoelec Chin, 2008, 1(3-4): 341-344.
[13] JIA Guozhi, YAO Jianghong, SHU Yongchun, WANG Zhanguo. Optical properties and structure of InAs quantum dots in near-infrared band[J]. Front. Optoelectron., 2008, 1(1-2): 134-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed