Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec Chin    2011, Vol. 4 Issue (3) : 343-347     DOI: 10.1007/s12200-011-0133-1
RESEARCH ARTICLE |
Mode overlap analyses of propagated waves in direct bonded PPMgLN ridge waveguide
Yujie ZHOU(), Liqun FENG, Qian HU, Junqiang SUN
Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Download: PDF(295 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Direct bonded periodically poled MgO doped lithium niobate (PPMgLN) ridge waveguide is a new wavelength converter with high conversion efficiency. The optical field distribution of the ridge waveguide is simulated by employing finite-difference method (FDM), the mode overlap of propagated waves in the ridge waveguide is calculated and the relationship between the overlap coefficient and the waveguide structure sizes is also investigated. The overlap coefficient to difference frequency generation (DFG) process conversion efficiency calculation is firstly introduced.

Keywords lithium niobate      nonlinear optics      waveguide device     
Corresponding Authors: ZHOU Yujie,Email:yujie.zhouhust@gmail.com   
Issue Date: 05 September 2011
 Cite this article:   
Junqiang SUN,Liqun FENG,Qian HU, et al. Mode overlap analyses of propagated waves in direct bonded PPMgLN ridge waveguide[J]. Front Optoelec Chin, 2011, 4(3): 343-347.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-011-0133-1
http://journal.hep.com.cn/foe/EN/Y2011/V4/I3/343
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Junqiang SUN
Liqun FENG
Qian HU
Yujie ZHOU
Fig.1  Ridge waveguide cross-section
Fig.2  Optical intensity distribution of TM mode for PPMgLN ridge waveguide. (a) Fundamental wave; (b) second harmonic wave
Fig.3  Normalized optical intensity along width (a) and height (b) direction
Fig.4  Power overlap coefficient curve along with core width
Fig.5  Power overlap coefficient curve along with core height
Fig.6  Power overlap coefficient plots with ridge width and ridge height
Fig.7  PPMgLN ridge waveguide
Fig.8  DFG conversion efficiency for a 50mm-long waveguide
1 Lee Y L, Suche H, Min Y H, Lee J H, Grundkotter W, Quiring V, Sohler W. Wavelength- and time-selective all-optical, channel dropping in periodically poled Ti:LiNbO3 channel waveguides. IEEE Photonics Technology Letters , 2003, 15(7): 978–980
doi: 10.1109/LPT.2003.813394
2 Bortz M L, Fejer M M. Annealed proton-exchanged LiNbO3 waveguides. Optics Letters , 1991, 16(23): 1844–1846
doi: 10.1364/OL.16.001844 pmid:19784157
3 Gawith C B E, Shepherd D P, Abernethy J A, Hanna D C, Ross G W, Smith P G R. Second-harmonic generation in a direct-bonded periodically poled LiNbO3 buried waveguide. Optics Letters , 1999, 24(7): 481–483
doi: 10.1364/OL.24.000481 pmid:18071546
4 Umeki T, Asobe M, Nishida Y, Tadanaga O, Magari K, Yanagawa T, Suzuki H. Highly efficient+5-dB parametric gain conversion using direct-bonded PPZnLN ridge waveguide. IEEE Photonics Technology Letters , 2008, 20(1): 15–17
doi: 10.1109/LPT.2007.911008
5 Umeki T, Tadanaga O, Asobe M. Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide. IEEE Journal of Quantum Electronics , 2010, 46(8): 1206–1213
doi: 10.1109/JQE.2010.2045475
6 Asobe M, Miyazawa H, Tadanaga O, Nishida Y, Suzuki H. A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter. IEEE Journal of Quantum Electronics , 2003, 39(10): 1327–1333
doi: 10.1109/JQE.2003.817243
7 Knox R M, Toulios P P. Integrated circuits for the millimeter through optical frequency range. In: Proceedings of MRI Symposium on Submillimeter Waves. Polytechnic Press, 1970, 497
8 Zelmon D E, Small D L, Jundt D. Infrared corrected sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobate. Optical Society of America B, 1997, 14(12): 3319–3322
9 Abedin K S, Ito H. Temperature-dependent dispersioon relation of ferroelectric lithium tantalate. Journal of Applied Physics , 1996, 80(11): 6561–6563
10 Katsunari O. Fundamentals of Optical Waveguides. 2nded. Japan: Elsevier, 2005
11 Kawano K, Kitoh T. Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schr?dinger Equation. Japan: John Wiley and Sons Inc., 2001
12 Suhara T, Nishihara H. Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings. IEEE Journal of Quantum Electronics , 1990, 26(7): 1265–1276
doi: 10.1109/3.59667
Related articles from Frontiers Journals
[1] Yi YU,Evarist PALUSHANI,Mikkel HEUCK,Leif Katsuo OXENLØWE,Kresten YVIND,Jesper MØRK. Switching dynamics in InP photonic-crystal nanocavity[J]. Front. Optoelectron., 2016, 9(3): 395-398.
[2] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[3] Jian LI, Aiying YANG, Lin ZUO, Junsen LAI, Yunan SUN. Optical sampling system using periodically-poled lithium niobate waveguide and nonlinear polarization rotation mode-locked fiber laser[J]. Front Optoelec, 2012, 5(2): 208-213.
[4] Xian ZHU, Xinben ZHANG, Jinggang PENG, Xiang CHEN, Jinyan LI. Photonic crystal fibers for supercontinuumβgeneration[J]. Front Optoelec Chin, 2011, 4(4): 415-419.
[5] Ren Tiexiong, Yu Jian, Sang Mei, Fu Weijia, Ni Wenjun, Kang Yuzhuo, Li Shichen, Hu Yonglan, Shi Ruize. Real-time monitoring in fabrication of PPKTP crystals utilizing electro-optical effect[J]. Front. Optoelectron., 2008, 1(1-2): 151-155.
[6] WANG Jian, SUN Junqiang, SUN Qizhen, ZHANG Weiwei, HU Zhefeng, ZHANG Xinliang, HUANG Dexiu. Experimental realization of 40 Gbit/s single-to-single and single-to-dual channel wavelength conversions in LiNbO waveguides with two-pump configuration[J]. Front. Optoelectron., 2008, 1(1-2): 3-13.
[7] LIU Bo, ZHANG Ruobing, LIU Huagang, MA Jing, ZHU Chen, WANG Qingyue. Investigation of spectral bandwidth of BBO-I phase matching non-collinear optical parametric amplification from visible to near-infrared[J]. Front. Optoelectron., 2008, 1(1-2): 101-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed