Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec Chin    2010, Vol. 3 Issue (4) : 333-338     DOI: 10.1007/s12200-010-0117-6
RESEARCH ARTICLE |
Dispersion compensation optical fiber modules for 40 Gbps WDM communication systems
Wei CHEN1,2(), Shiyu LI2, Peixiang LU1, Dongxiang WANG2, Wenyong LUO2
1. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; 2. State Key Laboratory of Optical Communication Technologies and Networks, Fiberhome Telecommunication Technologies Co. Ltd., Wuhan 430074, China
Download: PDF(149 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Dispersion compensation was originally proposed to equalize pulse distortion. With the development of wavelength division multiplexing (WDM) techniques for large capacity optical communication systems, dispersion compensation technologies have been applied into the field. Fiber-based dispersion compensation is an attractive technology for upgrading WDM communication systems because of its dispersion characteristics and good compatibility with transmission optical fibers. Dispersion compensation fibers and the modules are promising technologies, so they have been receiving more and more attention in recent years.

In this work, high performance dispersion compensation fiber modules (DCFMs) were developed and applied for the 40 Giga bit-rate systems. First, the design optimization of the dispersion optical fibers was carried out. In theory, the better the refractive index profile is, the larger the negative dispersion we could obtain and the higher the figure of merit (FOM) for the dispersion optical fiber is. Then we manufactured the fiber by using the plasma chemical vapor deposition (PCVD) process of independent intellectual property rights, and a high performance dispersion optical fiber was fabricated. Dispersion compensation fiber modules are made with the dispersion compensating fibers (DCFs) and pigtail fibers at both ends of the DCFs to connect with the transmission fibers. The DCFMs present the following superior characteristics: low insertion loss (IL), low polarization mode dispersion, good matched dispersion for transmission fibers, low nonlinearity, and good stability for environmental variation.

The DCFMs have the functions of dispersion compensation and slope compensation in the wavelength range of 1525 to 1625 nm. The experiments showed that the dispersion compensation modules (DCMs) met the requirements of the GR-1221-CORE, GR-2854-CORE, and GR-63-CORE standards. The residual dispersions of the G.652 transmission lines compensated for by the DCM in the C-band are less than 3.0 ps/nm, and the dispersion slopes are also compensated for by 100%. With the DCFMs, the 8×80 km unidirectional transmission experiments in the 48-channel 40 Gbps WDM communication system was successfully made, and the results showed that the channel cost was smaller than 1.20 dB, without any bit error.

Keywords dispersion compensation module (DCM)      fiber communication      optical fiber      wavelength division multiplexing (WDM)     
Corresponding Authors: CHEN Wei,Email:chenwei@fiberhome.com.cn   
Issue Date: 05 December 2010
 Cite this article:   
Wei CHEN,Shiyu LI,Peixiang LU, et al. Dispersion compensation optical fiber modules for 40 Gbps WDM communication systems[J]. Front Optoelec Chin, 2010, 3(4): 333-338.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-010-0117-6
http://journal.hep.com.cn/foe/EN/Y2010/V3/I4/333
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei CHEN
Shiyu LI
Peixiang LU
Dongxiang WANG
Wenyong LUO
Fig.1  Refractive index profile of DCF
Fig.2  Dispersion and slope curves of DCF
Fig.3  Relation curve between macro-bending loss and core index difference (bending loss: 10 nm; turns: 1)
itemunitvalue
PMDps·km-1/20.06
dispersion1525 nmps/(nm·km)-129
1545 nmps/(nm·km)-141
1550 nmps/(nm·km)-144
1565 nmps/(nm·km)-152
slope1525 nmps/(nm2·km)-0.63
1545 nmps/(nm2·km)-0.60
1550 nmps/(nm2·km)-0.58
1565 nmps/(nm2·km)-0.46
attenuation 1550 nmdB/km0.42
MFD1550 nmμm5.40
L-cutoffnm1160-1460
figure of merit (FOM)ps/(nm·dB)343
macro-bending loss at 1550 nm (bending radius: 10 mm×1 turn)dB0.05
Tab.1  Specifications of DCF for CSMF (PMD: polarization mode dispersion; MFD: mode field diameter)
parametersunitminmax
SBS thresholddBm4-
nonlinear coefficient W-1-1.40×10-9
effective areaμm220-
Tab.2  Nonlinear parameters of DCF (SBS: stimulated Brillouin scattering)
parametersunitDCM-20DCM-40DCM-60DCM-80DCM-100DCM-120
compensated distancekm20406080100120
dispersion at1545 nmps/nm-340±10-670±20-1000±30-1340±40-1680±50-2010±60
Kappanm280×(1±10%)
max IL (C-band)dB3.04.76.48.09.511.0
typical IL (C-band)dB2.64.15.26.58.19.0
WDL (C-band)dB0.5, type 0.3
max PMDps0.500.60.70.80.951.1
typical PMDps0.350.460.560.720.800.90
PDLdB0.100.100.100.100.100.10
TDLdB0.250.250.250.250.250.25
Tab.3  Specifications of DCMs for CSMF (WDL: wavelength dependence loss; PDL: polarization dependence loss; TDL: temperature dependence loss)
No.itemΔIL/dBΔPMD/psΔdispersion at 1545 nm/%
1mechanical shock test±0.15±0.10±0.32
2viable frequency vibration test±0.19±0.12±0.35
3high temperature storage test (dry heat)±0.11±0.10±0.34
4high temperature storage test (damp heat)±0.16±0.11±0.36
5low temperature storage±0.15±0.10±0.32
6temperature cycling test±0.19±0.14±0.43
7cycling moisture resistance test±0.18±0.13±0.32
8packaged drop test±0.19±0.12±0.31
9unpackaged drop test±0.22±0.15±0.39
10operation environmental vibration test±0.23±0.09±0.09
11transportation vibration test±0.17±0.05±0.08
12operation environmental temperature test±0.28±0.22±0.16
Tab.4  Reliable testing data of DCMs for CSMF
Fig.4  48×40 Gbps dispersion compensation setup (OMT: optical multiplexing terminal; OA: optical amplifier; OTU: optical transmission unit)
Fig.5  Residual dispersion and slope after compensation for 80 km link
1 Kim S, Bae J, Lee K, Kim S H, Jeong J M, Lee S B. Tunable dispersion slope compensator using two uniform fiber Bragg gratings mounted on S-shape plate. Optics Express , 2009, 17(6): 4336-4341
doi: 10.1364/OE.17.004336
2 Dabarsyah B, Goh C S, Khijwania S K, Set S Y, Katoh K, Kikuchi K. Adjustable group velocity dispersion and dispersion slope compensation devices with wavelength tunability based on enhanced thermal chirping of fiber Bragg gratings. Journal of Lightwave Technology , 2007, 25(9): 2711-2718
doi: 10.1109/JLT.2007.902111
3 Shu X, Turitsyna E, Sugden K, Bennion I. Novel complex gratings with third-order group-delay variations for tunable pure dispersion slope compensation. Optics Express , 2008, 16(16): 12090-12095
doi: 10.1364/OE.16.012090
4 Chen W, Li S Y, Lei D Y, Luo W Y, Jiang Z W, Peng J G, Li H Q. Development of wide-band dispersion compensation modules. Study on Optical Communications , 2008, 5(2): 39-41 (in Chinese)
5 Van Den Borne D, Veljanovski V, De Man E, Gaubatz U, Zuccaro C, Paquet C, Painchaud Y, Jansen S L, Gottwald E, Khoe G D, de Waardt H. Cost-effective 10.7-Gbit/s long-haul transmission using fiber Bragg gratings for in-line dispersion compensation. In: Proceedings of Optical Fiber Communications Conference . 2007, OThS5
6 Jansen S L, Morita I, Schenk T C W, van den Borne D, Tanaka H. OFDM-A candidate for future long-haul optical transmission systems. In: Proceedings of Optical Fiber Communications Conference . 2008, OMU3
7 Kwon J, Kim S, Roh S, Lee B. Tunable dispersion slope compensator using a chirped fiber Bragg grating tuned by a fan-shaped thin metallic heat channel. IEEE Photonics Technology Letters , 2006, 18(1): 118-120
doi: 10.1109/LPT.2005.860058
8 Pei L, Ning T, Yan F, Dong X, Tan Z, Liu Y, Jian S. Dispersion compensation of fiber Bragg gratings in 3100 km high speed optical fiber transmission system. Frontiers of Optoelectronics in China , 2009, 2(2): 163-169
doi: 10.1007/s12200-009-0037-5
9 Kato T, Hirano M, Tada A, Fukuada K, Fujii T, Ooishi T, Yokoyama Y, Yoshida M, Onishi M. Dispersion flattened transmission line consisting of wide-band non-zero dispersion shifted fiber and dispersion compensating fiber module. Optical Fiber Technology , 2002, 8(3): 231-239
doi: 10.1016/S1068-5200(02)00007-X
10 Ania-Casta?ón J D, Turitsyn S K. Noise and gain optimisation in bi-directionally pumped dispersion compensating amplifier modules. Optics Communications , 2003, 224(1-3): 107-111
doi: 10.1016/S0030-4018(03)01721-8
11 Palai P, Thyagarajan K, Pal B P. Erbium-doped dispersion-compensating fiber for simultaneous compensation of loss and dispersion. Optical Fiber Technology , 1997, 3(2): 149-153
doi: 10.1006/ofte.1997.0207
12 Xia L, Li X, Chen X, Xie S. A novel dispersion compensating fiber grating with a large chirp parameter and period sampled distribution. Optics Communications , 2003, 227(4-6): 311-315
doi: 10.1016/j.optcom.2003.09.058
13 Grüner-Nielsen L, Knudsen S N, Edvold B, Veng T, Magnussen D, Larsen C C, Damsgaard H. Dispersion compensating fibers. Optical Fiber Technology , 2000, 6(2): 164-180
doi: 10.1006/ofte.1999.0324
14 Lingle R Jr, Peckham D W, Chang K H, McCurdy A. Single-Mode Fibers for Communications. Specialty Optical Fibers Handbook, Chapter 5 , 2007
15 Palai P, Varshney R K, Thyagarajan K. A dispersion flattening dispersion compensating fiber design for broadband dispersion compensation. Fiber and Integrated Optics , 2001, 20(1): 21-27
16 Chen W, Li S Y, Lu P X. Dispersion-flattened Bragg photonic crystal fiber for large capacity optical communication system. Frontiers of Optoelectronics in China , 2009, 2(3): 289-292
doi: 10.1007/s12200-009-0015-y
Related articles from Frontiers Journals
[1] Qi MO,Cheng DU,Wei CHEN,Yili KE,Tao ZHANG,Rushan CHEN. Review on developments of novel specialty fibers: performance, application and process[J]. Front. Optoelectron., 2014, 7(3): 338-347.
[2] Wei JIN, Jian JU, Hoi Lut HO, Yeuk Lai HOO, Ailing ZHANG. Photonic crystal fibers, devices, and applications[J]. Front Optoelec, 2013, 6(1): 3-24.
[3] Dagong JIA, Haiwei ZHANG, Zhe JI, Neng BAI, Guifang LI. Optical fiber amplifiers for space-division multiplexing[J]. Front Optoelec, 2012, 5(4): 351-357.
[4] Xinwan LI, Zehua HONG, Xiaomeng SUN. Photonic nano-device for optical signal processing[J]. Front Optoelec Chin, 2011, 4(3): 254-263.
[5] Kang YANG, Minming ZHANG, Deming LIU, Lei DENG. Design and evaluation of scheduling algorithms for TDM/WDM PON based on RSOA[J]. Front Optoelec Chin, 2011, 4(2): 217-222.
[6] Jian LIU, Hao ZHANG, Bo LIU. Temperature measurement based on photonic crystal modal interferometer[J]. Front Optoelec Chin, 2010, 3(4): 418-422.
[7] Yan LIU, Bo LIU, Hao ZHANG, Yinping MIAO. Mach-Zehnder interferometer based on core-cladding mode coupling in single mode fibers[J]. Front Optoelec Chin, 2010, 3(4): 364-369.
[8] Xinlong CHANG, Ming LI, Xuanzi HAN. Recent development and applications of polymer optical fiber sensors for strain measurement[J]. Front Optoelec Chin, 2009, 2(4): 362-367.
[9] Ziheng XU, Deming LIU, Hairong LIU, Qizhen SUN, Zhifeng SUN, Xu ZHANG, Wengang WANG. Design of distributed Raman temperature sensing system based on single-mode optical fiber[J]. Front Optoelec Chin, 2009, 2(2): 215-218.
[10] Min YAN, Niels Asger MORTENSEN, Min QIU. Engineering modes in optical fibers with metamaterial[J]. Front Optoelec Chin, 2009, 2(2): 153-158.
[11] Guoli CAI, Wei JIAN. Temperature sensing capacity of fiber Bragg grating at liquid nitrogen temperature[J]. Front Optoelec Chin, 2008, 1(3-4): 223-225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed