Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2010, Vol. 3 Issue (2) : 125-138     DOI: 10.1007/s12200-010-0001-4
Research articles |
One-dimensional nanostructures for electronic and optoelectronic devices
Guozhen SHEN,Di CHEN,
Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
Download: PDF(739 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract One-dimensional (1-D) nanostructures have been the focus of current researches due to their unique physical properties and potential applications in nanoscale electronics and optoelectronics. They address and overcome the physical and economic limits of current microelectronic industry and will lead to reduced power consumption and largely increased device speed in next generation electronics and optoelectronics. This paper reviews the recent development on the device applications of 1-D nanostructures in electronics and optoelectronics. First, typical 1-D nanostructure forms, including nanorods, nanowires, nanotubes, nanobelts, and hetero-nanowires, synthesized from different methods are briefly discussed. Then, some nanoscale electronic and optoelectronic devices built on 1-D nanostructures are presented, including field-effect transistors (FETs), p-n diodes, ultraviolet (UV) detectors, light-emitting diodes (LEDs), nanolasers, integrated nanodevices, single nanowire solar cells, chemical sensors, biosensors, and nanogenerators. We then finalize the paper with some perspectives and outlook towards the fast-growing topics.
Issue Date: 05 June 2010
 Cite this article:   
Guozhen SHEN,Di CHEN. One-dimensional nanostructures for electronic and optoelectronic devices[J]. Front. Optoelectron., 2010, 3(2): 125-138.
E-mail this article
E-mail Alert
Articles by authors
Guozhen SHEN
Wang Z L. Nanowires and Nanobelts: Materials, Properties and Devices. Netherlands: Kluwer Academic Publishers, 2003
Li Y, Qian F, Xiang J, Lieber C M. Nanowire electronic and optoelectronic devices. Materials Today, 2006, 9(10): 18–27

doi: 10.1016/S1369-7021(06)71650-9
Meindl J D, Chen Q, Davis J A. Limits on silicon nanoelectronics forterascale integration. Science, 2001, 293(5537): 2044–2049

doi: 10.1126/science.293.5537.2044
Shen G Z, Chen D, Chen P C, Zhou C. Vapor-solid growth of one-dimensional layer-structured gallium sulfide nanostructures. ACS Nano, 2009, 3(5): 1115–1120

doi: 10.1021/nn900133f
Chen P C, Shen G Z, Zhou C. Chemical sensors and electronic nosesbased on 1-D metal oxide nanostructures. IEEE Transactions on Nanotechnology, 2008, 7(6): 668–682

doi: 10.1109/TNANO.2008.2006273
Zhang J, Chen P C, Shen G Z, He J B, Kumbhar A, Zhou C, Fang J. P-type field-effect transistors of single-crystal zinc telluride nanobelts. Angewandte Chemie—International Edition, 2008, 47(49): 9469–9471

doi: 10.1002/anie.200804073
Shen G Z, Chen D. Self-coiling of Ag2V4O11 nanobelts into perfect nanorings and microloops. Journal of the American Chemical Society, 2006, 128(36): 11762–11763

doi: 10.1021/ja064123g
Duan X, Huang Y, Cui Y, Wang J, Lieber C M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 2001, 409(6816): 66–69

doi: 10.1038/35051047
Huang Y, Duan X, Wei Q, Lieber C M. Directed assembly of one-dimensional nanostructures into functionalnetworks. Science, 2001, 291(5504): 630–633

doi: 10.1126/science.291.5504.630
Shen G Z, Chen D, Zhou C. One-step thermo-chemical synthetic methodfor nanoscale one-dimensional heterostructures. Chemistry of Materials, 2008, 20(12): 3788–3790

doi: 10.1021/cm8008557
Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291(5510): 1947–1949

doi: 10.1126/science.1058120
Dai Z R, Pan Z W, Wang Z L. Gallium oxide nanoribbons and nanosheets. Journal of Physical Chemistry B, 2002, 106(5): 902–904

doi: 10.1021/jp013228x
Comini E, Faglia G, Sberveglieri G, Pan Z W, Wang Z L. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Applied Physics Letters, 2002, 81(10): 1869–1871

doi: 10.1063/1.1504867
Shen G Z, Chen D, Lee C J. Hierarchical saw-like ZnO nanobelt/ZnSnanowire heterostructures induced by polar surfaces. Journal of Physical Chemistry B, 2006, 110(32): 15689–15693

doi: 10.1021/jp0630119
Shen G Z, Bando Y, Chen D, Liu B D, Zhi C Y, Golberg D. Morphology-controlled growth of ZnO nanostructures bya round-to-round metal vapor deposition method. Journal of Physical Chemistry B, 2006, 110(9): 3973–3978

doi: 10.1021/jp056783y
Cui Y, Wei Q, Park H, Lieber C M. Nanowire nanosensors for highly sensitive and selective detectionof biological and chemical species. Science, 2001, 293(5533): 1289–1292

doi: 10.1126/science.1062711
Huang Y, Duan X, Cui Y, Lauhon L J, Kim K, Lieber C M. Logic gates and computation from assembled nanowire buildingblocks. Science, 2001, 294(5545): 1313–1317

doi: 10.1126/science.1066192
Shen G Z, Bando Y, Hu J Q, Golberg D. High-symmetry ZnS hepta- and tetrapods composed of assembled ZnS nanowire arrays. Applied Physics Letters, 2007, 90(12): 123101

doi: 10.1063/1.2716242
Law M, Kind H, Messer B, Kim F, Yang P. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angewandte Chemie—International Edition, 2002, 41(13): 2405–2408

doi: 10.1002/1521-3773(20020703)41:13<2405::AID-ANIE2405>3.0.CO;2-3
Kolmakov A. Chemical sensing and catalysis by one-dimensional nanostructures. International Journal of Nanotechnology, 2008, 5(4―5): 450–474

doi: 10.1504/IJNT.2008.017447
Shen G Z, Bando Y, Golberg D. Self-assembled hierarchical single-crystalline β-SiC nanoarchitectures. Crystal Growth & Design, 2007, 7(1): 35–38

doi: 10.1021/cg060224e
Dai Z R, Pan Z W, Wang Z L. Novel nanostructures of functional oxidessynthesized by thermal evaporation. Advanced Functional Materials, 2003, 13(1): 9–24

doi: 10.1002/adfm.200390013
Arnold M S, Avouris P, Pan Z W, Wang Z L. Field-effect transistors based on single semiconductingoxide nanobelts. Journal of Physical ChemistryB, 2003, 107(3): 659–663

doi: 10.1021/jp0271054
Wang Z L. Functional oxide nanobelts: materials, properties andpotential applications in nanosystems and biotechnology. Annual Review of Physical Chemistry, 2004, 55: 159–196

doi: 10.1146/annurev.physchem.55.091602.094416
Shen G Z, Bando Y, Ye C H, Yuan X L, Sekiguchi T, Golberg D. Single-crystal nanotubes of II3-V2 semiconductors. Angewandte Chemie—International Edition, 2006, 45(45): 7568–7572

doi: 10.1002/anie.200602636
Duan X, Huang Y, Agarwal R, Lieber C M. Single-nanowire electrically driven lasers. Nature, 2003, 421(6920): 241–245

doi: 10.1038/nature01353
Zhong Z, Qian F, Wang D, Lieber C M. Synthesis of p-type gallium nitride nanowires for electronic andphotonic nanodevices. Nano Letters, 2003, 3(3): 343–346

doi: 10.1021/nl034003w
Zhong Z, Wang D, Cui Y, Bockrath M W, Lieber C M. Nanowire crossbar arraysas address decoders for integrated nanosystems. Science, 2003, 302(5649): 1377–1379

doi: 10.1126/science.1090899
Shen G Z, Bando Y, Liu B D, Tang C C, Golberg D. Unconventional zigzag indiumphosphide single-crystalline and twinned nanowires. Journal of Physical Chemistry B, 2006, 110(41): 20129–20132

doi: 10.1021/jp057312e
Wang Z L, Kong X Y, Ding Y, Gao P X, Hughes W L, Yang R S, Zhang Y. Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Advanced Functional Materials, 2004, 14(10): 943–956

doi: 10.1002/adfm.200400180
Huang M, Choudrey A, Yang P. Ag nanowire formation withinmesoporous silica. Chemical Communications, 2002, 12: 1063–1064
Shen G Z, Bando Y, Liu B D, Tang C C, Huang Q, Golberg D. Systematic investigation of the formation of 1D α-Si3N4 nanostructures by using a thermal-decompsition/nitridation process. Chemistry—A European Journal, 2006, 12(11): 2987–2993

doi: 10.1002/chem.200500937
Shen G Z, Bando Y, Golberg D. Self-assembled three-dimensional structuresof single-crystalline ZnS submicrotubes formed by coalescence of ZnSnanowires. Applied Physics Letters, 2006, 88(12): 123107

doi: 10.1063/1.2186980
Gudiksen M S, Lauhon L J, Wang J, Smith D, Lieber C M. Growth of nanowire superlattice structures for nanoscale photonicsand electronics. Nature, 2002, 415(6872): 617–620

doi: 10.1038/415617a
Duan X, Huang Y, Cui Y, Lieber C M. Nonvolatile memory and programmable logic from molecule-gated nanowires. Nano Letters, 2002, 2(5): 487–490

doi: 10.1021/nl025532n
Shen G Z, Chen D, Bando Y, Golberg D. One-dimensional (1-D) nanoscale heterostructures. Journal of Materials Science & Technology, 2008, 24(4): 541–549
Qiu X F, Lou Y B, Samia A C S, Devadoss A, Burgess J D, Dayal S, Burda C. PbTe nanorods by sonoelectronchemistry. Angewandte Chemie—InternationalEdition, 2005, 44(36): 5855–5857

doi: 10.1002/anie.200501282
Shen G Z, Bando Y, Tang C C, Golberg D. Self-organized hierarchical ZnS/SiO2 nanowire heterostructures. Journal of Physical Chemistry B, 2006, 110(14): 7199–7202

doi: 10.1021/jp060006w
Wang D, Qian F, Yang C, Zhong Z, Lieber C M. Rational growth of branchedand hyperbranched nanowire structures. Nano Letters, 2004, 4(5): 871–874

doi: 10.1021/nl049728u
Jin S, Whang D, McAlpine M C, Friedman R S, Wu Y, Lieber C M. Scalable interconnection and integration of nanowire devices without registration. Nano Letters, 2004, 4(5): 915–919

doi: 10.1021/nl049659j
Lauhon L J, Gudiksen M S, Lieber C M. Semiconductor nanowire heterostructures. Philosophical Transactions of the Royal Societyof London A, 2004, 362: 1247–1260

doi: 10.1098/rsta.2004.1377
Shen G Z, Chen D. One-dimensional nanostructures and devices of II-V group semiconductors. Nanoscale Research Letters, 2009, 4(8): 779–788

doi: 10.1007/s11671-009-9338-2
Yu G, Li X, Lieber C M, Cao A. Nanomaterial-incorporated blown bubble films for large-area, aligned nanostructures. Journal of Materials Chemistry, 2008, 18(7): 728–734

doi: 10.1039/b713697h
Lu W, Lieber C M. Nanoelectronics from the bottom up. Nature Materials, 2007, 6(11): 841–850

doi: 10.1038/nmat2028
Hu Y, Churchill H O H, Reilly D J, Xiang J, Lieber C M, Marcus C M. A Ge/Si heterostructure nanowire-baseddouble quantum dot with intetrated charge sensor. Nature Nanotechnology, 2007, 2(10): 622–625

doi: 10.1038/nnano.2007.302
Patolsky F, Timko B P, Zheng G, Lieber C M. Nanowire-based nanoelectronic devices in the life science. MRS Bulletin, 2007, 32(22): 142–149
Shen G Z, Chen P C, Ryu K, Zhou C. Devices and chemical sensing applications of metal oxide nanowires. Journal of Materials Chemistry, 2009, 19(7): 828–839

doi: 10.1039/b816543b
Li C, Zhang D, Han S, Liu X, Tang T, Zhou C. Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronicproperties. Advanced Materials, 2003, 15(2): 143–146

doi: 10.1002/adma.200390029
Ju S, Li J, Liu J, Chen P C, Ha Y, Ishikawa F N, Chang H K, Zhou C, Facchetti A, Janes D B, Marks T J. Transparent active matrix organic light-emitting diodedisplays driven by nanowire transistor circuitry. Nano Letters, 2008, 8(4): 997–1004

doi: 10.1021/nl072538+
Melosh N A, Boukai A, Diana F, Gerardot B, Badolato A, Petroff P M, Heath J R. Ultrahigh-density nanowire lattices and circuits. Science, 2003, 300(5616): 112–115

doi: 10.1126/science.1081940
Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292(5523): 1897–1899

doi: 10.1126/science.1060367
Cao G Z, Liu D W. Template-based synthesis of nanorod, nanowire, and nanotube arrays. Advanced Colloid Interface Science, 2008, 136(1―2): 45–64

doi: 10.1016/j.cis.2007.07.003
Rao C N R, Deepak F L, Gundiah G, Govindaraja A. Inorganic nanowires. Progress in Solid State Chemistry, 2003, 31(1―2): 5–147

doi: 10.1016/j.progsolidstchem.2003.08.001
Ming T, Kou X S, Chen H J, Wang T, Tam H L, Cheah K W, Chen J Y, Wang J F. Angewandte Chemie—InternationalEdition, 2008, 47(50): 9685–9690

doi: 10.1002/anie.200803642
Kim S, Kim S K, Park S. Bimetallic gold-silver nanorods producemultiple surface plasmon bands. Journal of the American Chemical Society, 2009, 131(24): 8380–8381

doi: 10.1021/ja903093t
Khanal B P, Zubarev E R. Purification of high aspect ratio gold nanorods: complete removalof platelets. Journal of the American ChemicalSociety, 2008, 130(38): 12634–12635

doi: 10.1021/ja806043p
Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58

doi: 10.1038/354056a0
Shen G Z, Bando Y, Golberg D. Recent developments in single-crystalinorganic nanotubes synthesized from removable templates. International Journal of Nanotechnology, 2007, 4(6): 730–749
Shen G Z, Bando Y, Golberg D. Size-tunable synthesis of SiO2 nanotubes via a simple in situ templatelike process. Journal of Physical Chemistry B, 2006, 110(46): 23170–23174

doi: 10.1021/jp064537w
Shen G Z, Bando Y, Zhi C Y, Golberg D. Tubular carbon nano/microstructures synthesized from graphite powders by an in situ template process. Journal of Physical Chemistry B, 2006, 110(22): 10714–10719

doi: 10.1021/jp0618274
Gautam U K, Vivekchand S R C, Govindaraj A, Kulkarni G U, Selvi N R, Rao C N R. Generation of onions and nanotubes ofGaS and GaSe through laser and thermally induced exfoliation. Journal of the American Chemical Society, 2005, 127(1111): 3658–3659

doi: 10.1021/ja042294k
Goldberger J, He R R, Zhang Y F, Lee S W, Yan H, Choi H J, Yang P. Single-crystal gallium nitride nanotubes. Nature, 2003, 422(6932): 599–602

doi: 10.1038/nature01551
Fan H J, Yang Y, Zacharias M. ZnO-based ternary compound nanotubesand nanowires. Journal of Materials Chemistry, 2009, 19(7): 885–900

doi: 10.1039/b812619d
Yu Q J, Fu W, Yu C, Yang H, Wei R, Li M, Liu S, Sui Y, Liu Z, Yuan M, Zou G, Wang G, Shao C, Liu Y. Fabrication and optical properties of large-scale ZnO nanotube bundles via a simplesolution route. Journal of Physical ChemistryC, 2007, 111(47): 17521–17526

doi: 10.1021/jp076159g
Fan H J, Gosele U, Zacharias M. Formation of nanotubes andhollow nanoparticles based on Kirkendall and diffusion processes:a review. Small, 2007, 3(10): 1660–1671

doi: 10.1002/smll.200700382
Shen G Z, Bando Y, Golberg D. Synthesis and structures of high-qualitysingle-crystalline II3-V2 semiconductor nanobelts. Journal of Physical Chemistry C, 2007, 111(13): 5044–5049

doi: 10.1021/jp068792s
Shen G Z, Cho J H, Yoo J K, Yi G C, Lee C J. Synthesis of single-crystalCdS microbelts using a modified thermal evaporation method and theirphotoluminescence. Journal of PhysicalChemistry B, 2005, 109(19): 9294–9298

doi: 10.1021/jp044888f
Choi J R, Oh S J, Ju H, Cheon J. Massive fabricationof free-standing one-dimensional Co/Pt nanostructures and modulationof ferromagnetism via a programmable barcode layer effect. Nano Letters, 2005, 5(11): 2179–2183

doi: 10.1021/nl051190k
Huang Y, Duan X F, Lieber C M. Semiconductor Nanowires: Nanoscale Electronicsand Optoelectronics. London: Taylor & Francis, 2005
Xiang J, Lu W, Hu Y, Wu Y, Yan H, Lieber C M. Ge/Si nanowire heterostructures as high-performance field-effecttransistors. Nature, 2006, 441(7092): 489–493

doi: 10.1038/nature04796
Chen P C, Shen G Z, Chen H, Ha Y G, Wu C, Sukcharoenchoke S, Fu Y, Liu J, Facchetti A, Marks T J, Thompson M E, Zhou C. High-performance single-crystalline arsenic-doped indiumoxide nanowires for transparent thin-film transistors and active matrixorganic light-emitting diode displays. ACS Nano, 2009, 3(11): 3383–3390

doi: 10.1021/nn900704c
Hayden O, Agarwal R, Lieber C M. Nanoscale avalanche photodiodesfor highly sensitive and spatially resolved photon detection. Nature Materials, 2006, 5(5): 352–356

doi: 10.1038/nmat1635
Yang R, Chueh Y L, Morber J R, Snyder R, Chou L J, Wang Z L. Single-crystalline branched zinc phosphide nanostructures:synthesis, properties, and optoelectronic devices. Nano Letters, 2007, 7(2): 269–275

doi: 10.1021/nl062228b
Wang J, Gudiksen M S, Duan X, Cui Y, Lieber C M. Highly polarized photoluminescence and photodetection from singleindium phosphide nanowires. Science, 2001, 293(5534): 1455–1457

doi: 10.1126/science.1062340
Qian F, Li Y, Gradecak S, Wang D, Barrelet C J, Lieber C M. Gallium nitride-based nanowire radial heterostructuresfor nanophotonics. Nano Letters, 2004, 4(10): 1975–1979

doi: 10.1021/nl0487774
Qian F, Gradecak S, Li Y, Wen C Y, Lieber C M. Core/multishell nanowire heterostructures as multicolor, high-efficiencylight-emitting diodes. Nano Letter, 2005, 5(11): 2287–2291

doi: 10.1021/nl051689e
Johnson J C, Yan H, Schaller R D, Haber L H, Saykally R J, Yang P. Single nanowire lasers. Journal of Physical Chemistry B, 2001, 105(46): 11387–11390

doi: 10.1021/jp012304t
Yan H, He R, Johnson J, Law M, Saykally R J, Yang P. Dendrite nanowire UV laser array. Journal of the American Chemical Society, 2003, 125(16): 4728–4729

doi: 10.1021/ja034327m
Yan H, Justin J, Law M, Saykally R, Yang P. Nanoribbon UV lasers. Advanced Materials, 2003, 15(6): 1907–1911

doi: 10.1002/adma.200305490
Zhang C, Zhang F, Xia T, Kumar N, Hahm J I, Liu J, Wang Z L, Xu J. Low-threshold two-photon pumped ZnO nanowire lasers. Optics Express, 2009, 17(10): 7894–7900

doi: 10.1364/OE.17.007893
Qian F, Li Y, Gradecak S, Park H G, Dong Y, Ding Y, Wang Z L, Lieber C M. Multi-quantum-well nanowire heterostructuresfor wavelength-controlled lasers. Nature Materials, 2008, 7(9): 701–706

doi: 10.1038/nmat2253
Law M, Greene L E, Johnson J C, Saykally R, Yang P. Nanowire dye-sensitized solar cells. Nature Materials, 2005, 4(6): 455–459

doi: 10.1038/nmat1387
Law M, Greene L E, Radenovic A, Kuykendall T, Liphardt J, Yang P. Core-shell nanowire dye-sensitizedsolar cells. Journal of Physical ChemistryB, 2006, 110(45): 22652–22663

doi: 10.1021/jp0648644
Greene L E, Law M, Yuhas B D, Yang P. ZnO-TiO2 core/shell nanorod/P3HT solar cells. Journal of Physical Chemistry C, 2007, 111(50): 18451–18456

doi: 10.1021/jp077593l
Garnett E C, Yang P. Silicon nanowire radial p-n junction solar cells. Journal of the American Chemical Society, 2008, 130(29): 9224–9225

doi: 10.1021/ja8032907
Yuhas B, Yang P. Nanowire-based all-oxide solar cell. Journal of the American Chemical Society, 2009, 131(12): 3756–3757

doi: 10.1021/ja8095575
Tian B, Zheng X, Kempa T J, Fang Y, Yu N, Yu G, Huang J, Lieber C M. Coaxial silicon nanowires as solar cellsand nanoelectronic power sources. Nature, 2007, 449(7164): 885–889

doi: 10.1038/nature06181
Dong Y, Tian B, Kempa T, Lieber C M. Coaxial group III-nitride nanowire photovoltaics. Nano Letters, 2009, 9(5): 2183–2187

doi: 10.1021/nl900858v
Kempa T J, Tian B, Kim D R, Hu J, Zheng X, Lieber C M. Single and tandem axial p-i-n nanowire photovoltaic devices. Nano letters, 2008, 8(10): 3456–3460

doi: 10.1021/nl8023438
Li C, Zhang D, Liu X, Han S, Tang T, Han J, Zhou C. In2O3 nanowires as chemical sensors. Applied Physics Letters, 2003, 82(10): 1613–1615

doi: 10.1063/1.1559438
Zhang D, Liu Z, Li C, Tang T, Liu X, Han S, Lei B, Zhou C. Detection of NO2 down to ppb levelsusing individual and multiple In2O3 nanowire devices. Nano Letters, 2004, 4(10): 1919–1923

doi: 10.1021/nl0489283
Curreli M, Li C, Sun Y, Lei B, Gundersen M A, Thompson M E, Zhou C. Selective functionalizationof In2O3 nanowire matdevices for biosensing application. Journal of the American Chemical Society, 2005, 127(19): 6922–6923

doi: 10.1021/ja0503478
Ishikawa F N, Chang H, Curreli M, Liao H, Olson C, Chen P, Zhang R, Roberts R, Sun R, Cote R, Thompson M, Zhou C. Label-free, electrical detection of the SARS virus N-protein with nanowire biosensorsutilizing antibody mimics as capture probes. ACS Nano, 2009, 3(5): 1219–1225

doi: 10.1021/nn900086c
Chen P, Ishikawa F N, Chang H, Ryu K, Zhou C. Nano electronic nose: a hybrid nanowire/carbon nanotube sensor array with integratedmicromachined hotplates for sensitive gas discrimination. Nanotechnology, 2009, 20(12): 125503

doi: 10.1088/0957-4484/20/12/125503
Ryu K, Zhang D, Zhou C. High-performance metal oxide nanowirechemical sensors with integrated micromachined hotplates. Applied Physics Letters, 2008, 92(9): 93111–93113

doi: 10.1063/1.2841665
Yeh P H, Li Z, Wang Z L. Schottky-gated probe-free ZnO nanowirebiosensor. Advanced Materials, 2009, 21(48): 4975–4978

doi: 10.1002/adma.200902172
Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312(5771): 242–246

doi: 10.1126/science.1124005
Wang X D, Zhou J, Song J H, Liu J, Xu N S, Wang Z L. Piezoelectric field effect transistor and nanoforce sensorbased on a single ZnO nanowire. Nano Letters, 2006, 6(12): 2768–2772

doi: 10.1021/nl061802g
Gao P, Song J, Liu J, Wang Z L. Nanowire piezoelectric nanogenerators on plastic substrates as flexiblepower sources for nanodevices. Advanced Materials, 2007, 19(1): 67–72

doi: 10.1002/adma.200601162
He J H, Hsin C L, Liu J, Chen L J, Wang Z L. Piezoelectric gated diodeof a single ZnO nanowire. Advanced Materials, 2007, 19(6): 781–784

doi: 10.1002/adma.200601908
Wang X D, Liu J, Song J, Wang Z L. Integrated nanogenerators in biofluid. Nano Letters, 2007, 7(8): 2475–2479

doi: 10.1021/nl0712567
Lin Y F, Song J, Ding Y, Liu S, Wang Z L. Piezoelectric nanogenerator using CdS nanowires. Applied Physics Letters, 2008, 92(2): 022105

doi: 10.1063/1.2831901
Qin Y, Wang X, Wang Z L. Microfibre-nanowire hybrid structurefor energy scavenging. Nature, 2008, 451(7180): 809–813

doi: 10.1038/nature06601
Xu S, Wei Y, Liu J, Yang R, Wang Z L. Integrated multilayer nanogenerator fabricated using paired nanotip-to-nanowire brushes. Nano Letters, 2008, 8(11): 4027–4032

doi: 10.1021/nl8027813
Yang R, Qin Y, Dai L, Wang Z L. Power generation with laterally-packaged piezoelectric fine wires. Nature Nanotechnology, 2009, 4(1): 34–39

doi: 10.1038/nnano.2008.314
Wang Z L. Towards self-powered nanosystems: from nanogeneratorsto nanopiezotronics. Advanced FunctionalMaterials, 2008, 18(22): 3553–3567

doi: 10.1002/adfm.200800541
Full text