Please wait a minute...

Frontiers of Mechanical Engineering

Front. Mech. Eng.    2018, Vol. 13 Issue (3) : 368-375     https://doi.org/10.1007/s11465-018-0519-5
RESEARCH ARTICLE |
Fast forward kinematics algorithm for real-time and high-precision control of the 3-RPS parallel mechanism
Yue WANG1, Jingjun YU1(), Xu PEI2
1. Robotics Institute, Beihang University, Beijing 100191, China
2. Department of Mechanical Design, Beihang University, Beijing 100191, China
Download: PDF(214 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A new forward kinematics algorithm for the mechanism of 3-RPS (R: Revolute; P: Prismatic; S: Spherical) parallel manipulators is proposed in this study. This algorithm is primarily based on the special geometric conditions of the 3-RPS parallel mechanism, and it eliminates the errors produced by parasitic motions to improve and ensure accuracy. Specifically, the errors can be less than 10−6. In this method, only the group of solutions that is consistent with the actual situation of the platform is obtained rapidly. This algorithm substantially improves calculation efficiency because the selected initial values are reasonable, and all the formulas in the calculation are analytical. This novel forward kinematics algorithm is well suited for real-time and high-precision control of the 3-RPS parallel mechanism.

Keywords 3-RPS parallel mechanism      forward kinematics      numerical algorithm      parasitic motion     
Corresponding Authors: Jingjun YU   
Just Accepted Date: 10 May 2018   Online First Date: 01 June 2018    Issue Date: 11 June 2018
 Cite this article:   
Yue WANG,Jingjun YU,Xu PEI. Fast forward kinematics algorithm for real-time and high-precision control of the 3-RPS parallel mechanism[J]. Front. Mech. Eng., 2018, 13(3): 368-375.
 URL:  
http://journal.hep.com.cn/fme/EN/10.1007/s11465-018-0519-5
http://journal.hep.com.cn/fme/EN/Y2018/V13/I3/368
Fig.1  3-RPS parallel mechanism
Fig.2  Quadrilateral formed by branch Aa
Fig.3  Flow diagram of the proposed forward kinematics algorithm
Group a/(° ) b/(° ) Z/mm Length of Aa/mm Length of Bb/mm Length of Cc/mm
1 16.400 9.100 106.540 91.897081 123.295676 138.546005
2 100.250 3.480 129.478 140.061386 123.614806 146.892508
3 235.486 7.256 146.210 167.611093 164.189018 131.095900
4 324.900 4.800 175.364 168.815269 196.694571 180.289988
5 90.000 5.000 190.000 195.876527 181.573991 210.812560
6 37.400 8.400 210.895 194.137285 212.397102 243.187208
7 164.250 4.480 234.560 254.326640 228.536706 235.607788
8 252.394 6.295 250.000 261.013313 269.189400 233.921769
9 335.900 1.200 264.358 264.928866 272.025620 269.100274
10 180.000 6.000 286.186 311.078411 279.879924 279.879924
11 82.400 8.700 304.320 303.963635 284.729504 336.147716
12 137.610 2.840 333.310 344.014466 327.450265 338.838962
13 294.351 5.281 360.250 355.893204 381.759734 352.822726
14 351.900 9.500 379.420 350.618093 402.745397 394.588460
15 270.000 4.000 395.000 397.876456 409.959639 385.975476
Tab.1  Selected input parameters and results of inverse kinematics
Group Calculated a/(° ) Calculated b/(° ) Calculated Z/mm Errors of a/(° ) Errors of b/(° ) Errors of Z/mm
1 16.399999990319 9.100000015514 106.539999824347 9.68100 × 109 1.5514 × 108 1.75653 × 107
2 100.250000123126 3.480000012915 129.477999826060 1.23126 × 107 1.2915 × 108 1.73940 × 107
3 235.485999591757 7.256000014810 146.209999826362 4.08243 × 107 1.4810 × 108 1.73638 × 107
4 324.899999626901 4.800000013587 175.363999826754 3.73099 × 107 1.3587 × 108 1.73246 × 107
5 90.000000034505 5.000000017007 189.999999826339 3.4505 0× 108 1.7007 × 108 1.73661 × 107
6 37.399999884469 8.400000034160 210.894999823250 1.15531 × 107 3.4160 × 108 1.76750 × 107
7 164.249999997588 4.480000017985 234.559999826719 2.41200 × 109 1.7985 × 108 1.73281 × 107
8 252.393999580079 6.295000030069 249.999999825171 4.19921 × 107 3.0069 × 108 1.74829 × 107
9 335.899999589428 1.200000005785 264.357999827608 4.10572 × 109 5.7850 × 109 1.72392 × 107
10 180.000000205680 6.000000024986 286.185999826681 2.05680 × 107 2.4986 × 108 1.73319 × 107
11 82.400000007047 8.700000046823 304.319999823693 7.04700 × 109 4.6832 × 108 1.76307 × 107
12 137.609999996813 2.840000018076 333.309999827179 3.18700 × 109 1.8076 × 108 1.72821 × 107
13 294.350999585253 5.281000033633 360.249999826221 4.14747 × 107 3.3633 × 108 1.73779 × 107
14 351.899999593787 9.500000066769 379.419999822330 4.06213 × 107 6.6769 × 107 1.77670 × 107
15 269.999999583588 4.000000029386 394.999999826735 4.16412 × 107 2.9386 × 109 1.73265 × 107
Tab.2  Results calculated by the proposed forward kinematics algorithm and its errors
Group Time/µs
1 81.918557
3 62.942773
6 46.681530
10 32.225315
13 35.839369
Tab.3  Calculation time
1 Hunt K H. Structural kinematics of in-parallel-actuated robot-arms. Journal of Mechanisms, Transmissions, and Automation in Design, 1983, 105(4): 705–712
https://doi.org/10.1115/1.3258540
2 Hu P, Li S. Kinematic solution of 3-PSS parallel mechanism and its application in parallel CMM. Optics and Precision Engineering, 2012, 20(4): 782–788
https://doi.org/10.3788/OPE.20122004.0782
3 Huang Z, Fang Y. Kinematic characteristics analysis of 3DOF in-parallel actuated pyramid mechanism. Mechanism and Machine Theory, 1996, 31(8): 1009–1018
https://doi.org/10.1016/0094-114X(96)84594-0
4 Huang Z, Wang J. Identification of principal screws of 3-DOF parallel manipulators by quadric degeneration. Mechanism and Machine Theory, 2001, 36(8): 893–911
https://doi.org/10.1016/S0094-114X(01)00036-2
5 Huang Z, Wang J, Fang Y. Analysis of instantaneous motions of deficient rank 3-RPS parallel manipulators. Mechanism and Machine Theory, 2002, 37(2): 229–240
https://doi.org/10.1016/S0094-114X(01)00075-1
6 Tsai L W. Robot Analysis. Hoboken: John Wiley & Sons, 1999
7 Nanua P, Waldron K J, Murthy V. Direct kinematic solution of a Stewart platform. IEEE Transactions on Robotics and Automation, 1990, 6(4): 438–444
https://doi.org/10.1109/70.59354
8 Chablat D, Jha R, Rouillier F, et al. Workspace and joint space analysis of the 3RPS parallel robot. In: Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information. Buffalo, 2014, 5A: 1–10
9 Nurahmi L, Schadlbauer J, Caro S, et al. Kinematic analysis of the 3-RPS cube parallel manipulator. Journal of Mechanisms and Robotics, 2015, 7(1): 011008
https://doi.org/10.1115/1.4029305
10 Husty M, Schadlbauer J, Caro S, et al. Non-singular assembly mode change of 3RPS manipulators. In: Proceedings of International Workshop on Computational Kinematics. Barcelone, 2013
11 Kim J, Park F C. Direct kinematics analysis of 3-RPS parallel mechanisms. Mechanism and Machine Theory, 2001, 36(10): 1121–1134
https://doi.org/10.1016/S0094-114X(01)00042-8
12 Zhou W, Chen W. General forward kinematic algorism for three-chain parallel manipulator. Journal of Beihang University of Aeronautics and Astronautics, 2014, 40(4): 461–466 (in Chinese)
13 Ye J, Liu H, Yuan D. Research on approach of forward positional analysis of parallel mechanism. Xi’an University of Technology Newspaper, 2010, 26(3): 277–281 (in Chinese)
14 Pfreundschun G H, Khmer V, Thomas G S. Design and control of a 3 DOF in-parallel actuated manipulator. In: Proceedings of IEEE International Conference on Robotics and Automation. Sacramento: IEEE, 1991, 1659–1664
https://doi.org/10.1109/ROBOT.1991.131857
15 Han F. A new algorithm of kinematics forward solution for parallel robot and its working space Ontology. Dissertation for the Doctoral Degree. Jilin: Jilin University, 2011 (in Chinese)
16 Lee K, Shah K D. Kinematic analysis of a three degrees of freedom in-parallel actuated manipulator. IEEE Journal on Robotics and Automation, 1988, 4(3): 354–360
https://doi.org/10.1109/56.796
17 Waldron K J, Raghavan M, Roth B. Kinematics of a hybrid series-parallel manipulation system. Journal of Dynamic Systems, Measurement, and Control, 1989, 111(2): 211–221
https://doi.org/10.1115/1.3153039
18 Minoru H, Yuichi I. Kinematic analysis and design of a 3 DOF parallel mechanism for a passive compliant wrist of manipulators. Transactions of the Japan Society of Mechanical Engineers, 1998, 64(622): 2116–2123 (in Japanese)
https://doi.org/10.1299/kikaic.64.2116
19 Zhang J, Yuan F, Liu D, et al. Solution for forward kinematics of 3-DOF-parallel-robot based on neural network. Computer Simulation, 2004, 21(10): 133–135 (in Chinese)
20 Xie Z Liang H, Song D. Forward kinematics of 3-RPS parallel mechanism based on a continuous ant colony algorithm. China Mechanical Engineering, 2015, 26(6): 799–803 (in Chinese)
21 Li S, Wang Y, Wang X. Forward position analysis of 3-RPS in-parallel manipulator using self-modified successive approximation method. Journal of Northeastern University (Nature and Science), 2001, 22(3): 285–287 (in Chinese)
22 Chen Z, Ding H, Cao W, et al. Axodes analysis of the multi DOF parallel mechanisms and parasitic motion. In: Proceedings of ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Portland: ASME, 2013, DETC2013-12838
https://doi.org/10.1115/DETC2013-12838
23 Han F, Zhao D, Li T. A fast forward algorithm for 3-RPS parallel mechanism. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(4): 229–233 (in Chinese)
Related articles from Frontiers Journals
[1] Haibo QU, Yuefa FANG, Sheng GUO. Parasitic rotation evaluation and avoidance of 3-UPU parallel mechanism[J]. Front Mech Eng, 2012, 7(2): 210-218.
Viewed
Full text


Abstract

Cited

  Shared   0
  Discussed