Please wait a minute...

Frontiers of Mechanical Engineering

Front. Mech. Eng.    2017, Vol. 12 Issue (2) : 158-180
Review on the progress of ultra-precision machining technologies
Julong YUAN(), Binghai LYU, Wei HANG, Qianfa DENG
Ultra-precision Machining Center, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of E&M, Zhejiang University of Technology (Ministry of Education and Zhejiang Province), Hangzhou 310014, China
Download: PDF(832 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Ultra-precision machining technologies are the essential methods, to obtain the highest form accuracy and surface quality. As more research findings are published, such technologies now involve complicated systems engineering and been widely used in the production of components in various aerospace, national defense, optics, mechanics, electronics, and other high-tech applications. The conception, applications and history of ultra-precision machining are introduced in this article, and the developments of ultra-precision machining technologies, especially ultra-precision grinding, ultra-precision cutting and polishing are also reviewed. The current state and problems of this field in China are analyzed. Finally, the development trends of this field and the coping strategies employed in China to keep up with the trends are discussed.

Keywords ultra-precision grinding      ultra-precision cutting      ultra-precision polishing      research status in China      development tendency     
Corresponding Authors: Julong YUAN   
Just Accepted Date: 16 May 2017   Online First Date: 07 June 2017    Issue Date: 19 June 2017
 Cite this article:   
Julong YUAN,Binghai LYU,Wei HANG, et al. Review on the progress of ultra-precision machining technologies[J]. Front. Mech. Eng., 2017, 12(2): 158-180.
Fig.1  The machining accuracy of ultra-precision methods
Fig.2  Deformation and failure factors in different machining units [2]
Fig.3  The model of range of deformation
Machine producerMax. workpiece diameter/mmAccuracySurface roughness, Ra/nmType
Union Carbide, USA: Type 1380Profile accuracy:±0.63 μm25Aspherical turning
LLNL, USA: DTM-32100Roundness: 12.5 nm (P-V)
Flatness: 12.5 nm (P-V)
Profile accuracy: 27.9 nm
LLL, USA: LODTM1625Precision of spindle rotating and linear feeding (in the X and Z directions):≤50 nm?Turning
Cranfield Company, England: OAGM 25002500Profile accuracy: 1 μm?Grinding
Toyoda, Japan: ANN 10100Profile accuracy: 50 nm25Turning and grinding
Toyoda, Japan: AHN60-3D600Profile accuracy of the cross-section: 0.35 μm16Axisymmetric and non- axisymmetric turning and grinding
Moore, USA: Nanotech 500 FG250Profile accuracy: 0.3 μm/Ø75 mm105 axis free form grinding
Precitech, USA: Nanoform700700Profile accuracy: 0.1 μm405 axis free form milling and grinding
Rank Pneumo, England: Nanoform600600Profile accuracy: 0.1 μm10Aspherical grinding
Tab.1  Performance of typical ultra-precision machines
Fig.4  Schematic of the fast tool servo
Fig.5  Schematic of the slow slide servo
Fig.6  Schematic of the tool for normal forming technology
Fig.7  The lens with curved wave structure
Fig.8  Micro sinusoidal grid surface (Tohoku University)
Layer typeBond typeBond materialPoreBond strengthTruing
Multilayer can be dressingResin bond grinding wheelResinNoneNot highDifficult, need dressing
Ceramic bond grinding wheelCeramicHaveHighEasy
Metal bond grinding wheelMetalNoneHighDifficult, need dressing
Single layerElectroplating grinding wheel(Metal)?Not highNone necessary
Brazing grinding wheelMetal?HighNone necessary
Tab.2  The specifications of super abrasive grinding wheel [21]
Fig.9  Schematic illustration of the ELID device
Fig.10  CMG grinding wheel
Fig.11  Silicon wafer after CMG
Fig.12  LT wafer (a) before and (b) after grinding
Fig.13  The compound machining method with physical and chemical effect
Polishing methodAbrasive
Chemical mechanical polishing polishing methodChemical solution and abrasive particle
Mechanical chemical polishingSoft abrasive (solid phase reaction with the workpiece)
Hydration polishingSuper-heated steam
Non-pollution polishingPure water or ice
Hydroplane polishingChemical solution
Suspension polishingSoft abrasive
Elastic emission machineSoft abrasive
Magnetic fluid polishingMagnetic fluid
Electrophoresis polishingElectric control of abrasive
Magnetic levitation polishingMagnetic fluid
Magnetic abrasive finishingMagnetic abrasive
Tab.3  Ultra-precision polishing methods employing new concepts
Fig.14  Classifications of processing principles for different polishing methods [3,42]
Fig.15  Schematic diagram of CMP
Fig.16  Curved surface mold of robot processing technology
Fig.17  Large size elastic optical plate after stress plate polishing
Fig.18  Schematic diagram of bonnet tool polishing
Fig.19  Schematic diagram of MRF [45]
Fig.20  FJP instrument developed by Delft University of Technology [58]
Fig.21  Principle of magnetic jet polishing [60]
Fig.22  Comparison of the stability of the jet beam and the magnetic jet beam [61]
Fig.23  IBF equipment (KDIFS-500) developed at the National University of Defense Technology
Fig.24  Processing result for the Ø200 mm f/1.6 aspherical mirror IBF (KDIFS-500). (a) Before processing (RMS 48.6 nm); (b) after processing (RMS 6.1 nm)
Fig.25  Ultra-precision ball lapper Olymball-E600
Fig.26  Ultra-precision ball lapper Olymball-D600
Corresponding techniquesDevelopment trendTechnical forecasts
Machine tool bedHigher rigidity and more stable accuracyNew materials, new technology and new structure
Spindle and drive systemHigher accuracy, rigidity, and speedNew principle, new material and new structure
Numerical control systemProcess intelligent controlIntelligent numerical control, expert process database and on-line detection
Online detection and error compensationHigher accuracy and speedNew detection principle/algorithm and new control/executive mechanism
Processing environment control technologyHigher stability and lower maintenance costProcess or station area control
Vibration isolation systemHigher stability and lower costMagnetic suspension, etc.
Machine tool transmission systemMore concise mechanism, higher accuracy and speedMotor direct drive
Diamond tool manufacturingSpecial grinding deviceIntelligent processing detection
Super hard abrasive grinding wheel dressingSpecial dressing systemIntegration of online detection and dressing
Non-damage grinding wheel and polishing padBetter surface quality and higher efficiencyAbrasive tool with chemical mechanical properties
Environment of grinding and polishingGreen and no pollutant emissionNew processing principle and new material tools
High efficiency and no damage machiningAutomation, batch process, process integrationNew processing principle and new material tools
High precision detection devices used in production workshopsNon-contact, high precision, high speed, and popularizationSimplified function
Ultra-small workpiece machiningComplex micro mechanismNano structured material cutting tool
Ultra-thin substrate processingTens of microns in thicknessNew processing principle grinding tool
Tab.4  Development trends and technical forecasts of ultra-precision machining technologies in the future
1 Yuan Z, Wang X. The Technology of Precision Machining and Ultra-Precision Machining. 3rd ed. Beijing: China Machine Press, 2016 (in Chinese)
2 Editing Committee of Microfabrication Technology. Microfabrication Technology. Beijing: Science Press, 1983 (in Chinese)
3 Komanduri R, Lucca D A, Tani Y. Technological advances in fine abrasive processes. CIRP Annals—Manufacturing Technology, 1997, 46(2): 545–596
4 Ikawa N, Shimada S. Accuracy problems in ultra-precision metal cutting. Journal of the Japan Society of Precision Engineering, 1986, 52(12): 2000–2004 (in Japanese)
5 Shimada S, Ikawa N, Tanaka H, et al. Feasibility study on ultimate accuracy in micro-cutting using molecular dynamics simulations. CIRP Annals—Manufacturing Technology, 1993, 42(1): 91–94
6 Byrne G, Dornfeld D, Denkena B. Advancing cutting technology. CIRP Annals—Manufacturing Technology, 2003, 52(2): 483–507
7 Edward P, David S, Scott C. MOLDED OPTICS: Molded glass aspheric optics hit the target for precision and cost. Laser Focus World, 2007, 43(12): 71–74
8 Kim H S, Lee K I, Lee K M, et al. Fabrication of free-form surfaces using a long-stroke fast tool servo and corrective figuring with on-machine measurement. International Journal of Machine Tools and Manufacture, 2009, 49(12–13): 991–997
9 Rakuff S, Cuttino J F. Design and testing of a long-range, precision fast tool servo system for diamond turning. Precision Engineering, 2009, 33(1): 18–25
10 Tohme Y E, Lowe J A. Machining of freeform optical surfaces by slow slide servo method. In: Proceedings of the American Society for Precision Engineering Annual Meeting. 2003
11 Wei H. Ultra-precision machining & manufacturing of optical devices [EB/OL]. 2011. Retrieved from  (in Chinese)
12 Weck M, Klocke F. Manufacturing and applications of non-rotationally symmetric optics. SPIE Proceedings, Optical Fabrication and Testing, 1999, 3739: 94–107
13 Gao W. Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder. Precision Engineering, 2003, 27(3): 289–298
14 Ohmori H, Nakagawa T. Mirror surface grinding of silicon wafers with electrolytic in-process dressing. CIRP Annals—Manufacturing Technology, 1990, 39(1): 329–332
15 Matsumura T, Hiramatsu T, Shirakashi T, et al. A study on cutting force in the milling process of glass. Journal of Manufacturing Processes, 2005, 7(2): 102–108
16 Matsumura T, Ono T. Cutting process of glass with inclined ball end mill. Journal of Materials Processing Technology, 2008, 200(1–3): 356–363
17 Ono T, Matsumura T. Influence of tool inclination on brittle fracture in glass cutting with ball end mills. Journal of Materials Processing Technology, 2008, 202(1–3): 61–69
18 Foy K, Wei Z, Matsumura T, et al.Effect of tilt angle on cutting regime transition in glass micromilling. International Journal of Machine Tools and Manufacture, 2009, 49(3–4): 315–324
19 Suzuki H, Moriwaki T, Yamamoto Y, et al. Precision cutting of aspherical ceramic molds with micro PCD milling tool. CIRP Annals—Manufacturing Technology, 2007, 56(1): 131–134
20 Scheiding S, Eberhardt R, Gebhardt A, et al.Micro lens array milling on large wafers. Optik & Photonik, 2009, 4(4): 41–45
21 Malkin S, Guo C. Grinding Technology. 2nd ed. South Norwalk: Industrial Press Inc., 2007
22 Su H, Xu H, Fu Y. Reviewthe current questions and strategies about multilayer sintering super abrasive tools and conceive the development of future tools. Chinese Journal of Mechanical Engineering, 2005, 42(3): 12–17
23 Webster J, Tricard M. Innovations in abrasive products for precision grinding. CIRP Annals—Manufacturing Technology, 2004, 53(2): 597–617
24 Tannaka T. New development of metal bonded diamond wheel with pore by the growth of bonding bridge. International Journal of the Japan Society for Precision Engineering, 1992, 26(1): 27–32
25 Chattopadhya A K, Chollet L, Hintermann H E. Induction brazing of diamond with diamond Ni-Cr hadfacing alloy under argon atmosphere. Surface and Coatings Technology, 1991, 45(1–3): 293–298
26 Ikeno J, Tani Y, Sato H. Nanometer grinding using ultrafine abrasive pellets—Manufacture of pellets applying electrophoretic deposition. CIRP Annals—Manufacturing Technology, 1990, 39(1): 341–344
27 Ohmori H, Nakagawa T. Mirror surface grinding of silicon wafers with electrolytic in-process dressing. CIRP Annals—Manufacturing Technology, 1990, 39(1): 329–332
28 Kramer D, Rehsteiner F, Schumacher B. ECD (electrochemical in-process controlled dressing), a new method for grinding of modern high-performance cutting materials to highest quality. CIRP Annals—Manufacturing Technology, 1999, 48(1): 265–268
29 Wang Y, Zhou X, Hu D. An experimental investigation of dry-electrical discharge assisted truing and dressing of metal bonded diamond wheel. International Journal of Machine Tools and Manufacture, 2006, 46(3–4): 333–342
30 Suzuki K, Uematsu T, Yanase T, et al. Development of a simplified electrochemical dressing method with twin electrodes. CIRP Annals—Manufacturing Technology, 1991, 40(1): 363–366
31 Bhattacharyya B, Doloi B N, Sorkhel S K. Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials. Journal of Materials Processing Technology, 1999, 95(1–3): 145–154
32 Zhang C, Shin Y C. A novel laser-assisted truing and dressing technique for vitrified CBN wheels. International Journal of Machine Tools and Manufacture, 2002, 42(7): 825–835
33 Hirao M, Izawa M. Water-jet in-process dressing (1st report): Dressing property and jet pressure. Journal of the Japan Society of Precision Engineering, 1998, 64(9): 1335–1339 (in Japanese) 
34 Ikuse Y, Nonokawa T, Kawabatan N, et al. Development of new ultrasonic dressing equipment. Journal of the Japan Society of Precision Engineering, 1995, 61(7): 986–990 (in Japanese)
35 Ohmori H, Nakagawa T. Analysis of mirror surface generation of hard and brittle materials by ELID (electrolytic in-process dressing) grinding with superfine grain metallic bond wheels. CIRP Annals —Manufacturing Technology, 1995, 44(1): 287–290
36 Lambropoulos J C, Gillman B E, Zhou Y, et al. Glass-ceramics: Deterministic microgrinding, lapping and polishing. SPIE Proceedings, Optical Manufacturing and Testing II, 1997, 3134: 178–189
37 Jeff R, Ed F, Dennis V G,et al. Contour grinding results on the NanotechTM 150AG. Convergence, 1999, 7(3): 1–8
38 Zhou L, Eda H, Shimizu J, et al. Defect-free fabrication for single crystal silicon substrate by chemo-mechanical grinding. CIRP Annals—Manufacturing Technology, 2006, 55(1): 313–316
39 Hang W, Zhou L, Zhang K, et al. Study on grinding of LiTaO3 wafer using effective cooling and electrolyte solution. Precision Engineering, 2016, 44: 62–69
40 Kasai T, Doy T. Grinding, lapping and polishing technologies under nanometer scale working conditions. Journal of the Japan Society of Precision Engineering, 1993, 59(4): 559–562 (in Japanese)
41 Wang J, Wang T, Pan G, et al. Effect of photocatalytic oxidation technology on GaN CMP.  Applied Surface Science,  2016,  361: 18–24
42 Yuan J. Ultraprecision Machining of Functional Ceramics. Harbin: Press of Harbin Institute of Technology, 2000 (in Chinese)
43 Mori Y, Ikawa N, Okuda T, et al. Numerically controlled elastic emission machine. Journal of the Japan Society of Precision Engineering, 1980, 46(12): 1537–1544
44 Uzawa S. Canon’s development status of EUVL technologies. In: Proceedings of the 4th EUVL Symposium. 2005
45 Watanabe J, Suzuki J, Kobayashi A. High precision polishing of semiconductor materials using hydrodynamic principle. CIRP Annals—Manufacturing Technology, 1981, 30(1): 91–95
46 Namba Y, Tsuwa H. Ultra-fine finishing of sapphire single crystal. CIRP Annals—Manufacturing Technology, 1977, 26(1): 325–329
47 Yasunaga N, Obara A, Tarumi N. Study of mechanochemical effect on wear and its application to surface finishing. Journal of the Japan Society for Precision Engineering, 1977, 776: 50–134
48 Steigerwald J M, Murarka S P, Gutmann R J. Chemical Mechanical Planarization of Microelectronic Materials. New York: John Wiley & Sons Inc., 1996
49 Pirayesh H, Cadien K. Chemical mechanical polishing in the dry lubrication regime: Application to conductive polysilicon. Journal of Materials Processing Technology, 2015, 220: 257–263
50 Fox M, Agrawal K, Shinmura T, et al. Magnetic abrasive finishing of rollers. CIRP Annals—Manufacturing Technology, 1994, 43(1): 181–184
51 Tani Y, Kawata K, Nakayama K. Development of high-efficient fine finishing process using magnetic fluid. CIRP Annals—Manufacturing Technology, 1984, 33(1): 217–220
52 Suzuki K, Ide A, Uematsu T, et al. Electrophoresis-polishing with a partial electrode tool. In: Proceedings of the International Symposium on Advances in Abrasive Technology. 1997, 48–52
53 Martin H M, Allen R G, Burge J H F,et al. Fabrication of mirrors for the Magellan telescopes and large binocular telescope. SPIE Proceedings, Large Ground-based Telescopes, 2003, 4837: 1–10
54 Kim D W, Burge J H. Rigid conformal polishing tool using non-linear visco-elastic effect. Optics Express, 2010, 18(3): 2242–2257
55 Walker D D, Brooks D, King A, et al. The “precessions” tooling for polishing and figuring flat, spherical and aspheric surfaces. Optical Express, 2003, 11(8): 958–964
56 Walker D D, Beaucamp A T H, Binghama R G, et al. Precessions aspheric polishing: New results from the development program. SPIE Proceedings, Optical Manufacturing and Testing V, 2003, 5180: 15–28
57 Jacobs S, Arrasmith S, Kozhinova I. An overview of magnetorheological finishing (MRF) for precision optics manufacturing. Ceramic Transactions, 1999, 102: 185–199
58 Booij S M. Fluid jet polishing—Possibilities and limitations of a new fabrication technique. Dissertation for the Doctoral Degree. Delft: Delft University of Technology, 2003
59 Beaucamp A, Freeman R, Morton R, et al. Removal of diamond-turning signatures on x-ray mandrels and metal optics by fluid-jet polishing. SPIE Proceedings, Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation, 2008, 7018: 701835
60 Shorey A, Kordonski W, Tricard M. Deterministic precision finishing of domes and conformal optics. SPIE Proceedings, Window and Dome Technologies and Materials IX, 2005, 5786: 310–318
61 Tricard M, Kordonski W I, Shorey A B,et al. Magnetorheological jet finishing of conformal, freeform and steep concave optics. CIRP Annals—Manufacturing Technology, 2006, 55(1): 309–312
62 Cheng Y, Fang F, Zhang X. Ultra-precision turning of aspheric mirrors using error-decreasing amendment method. Optical Technique, 2010, 36(1): 51–55 (in Chinese)
63 Fang F, Liu X, Lee L. Micro-machining of optical glasses—A review of diamond-cutting glasses. Sadhana, 2003, 28(5): 945–955
64 Guan C, Tie G, Yin Z. Fabrication of array lens optical component by using of slow tool servo diamond turning. Journal of National University of Defense Technology, 2009, 31(4): 31–47 (in Chinese)
65 Li L, Yi A Y, Huang C, et al. Fabrication of diffractive optics by use of slow tool servo diamond turning process. Optical Engineering, 2006, 45(11): 113401
66 Lee W B, Cheung C F, To S, et al. Integrated manufacturing technology for design, machining and measurement of freeform optics. Journal of Mechanical Engineering, 2010, 46(11): 137–148
67 Zhou P, Xu S, Wang Z, et al. A load identification method for the grinding damage induced stress (GDIS) distribution in silicon wafers. International Journal of Machine Tools and Manufacture, 2016, 107(8): 1–7
68 Huang Y, Huang Z. Modern Abrasive Belt Grinding Technology and Engineering Application. Chongqing: Chongqing University Press, 2009 (in Chinese)
69 Zhang F. Fabrication and testing of precise off-axis convex aspheric mirror. Optics and Precision Engineering, 2010, 18(12): 2557–2563
70 Dai Y, Shang W, Zhou X. Effect of the material of a small tool to removal function in computer control optical polishing. Journal of National University of Defense Technology, 2006, 28(2): 97–101 (in Chinese)
71 Shun X, Zhang F, Dong S.Research on remove model and algorithm of resident time for magnetorheological finishing. New Technology & New Process, 2006, (2): 73–75 (in Chinese)
72 Liao W, Dai Y, Zhou L, et al. Optical surface roughness in ion beam process. Journal of Applied Optics, 2010, 31(6): 1041–1045 (in Chinese)
73 Guo P, Fang H, Yu J. Research on material removal mechanism of fluid jet polishing. Laser Journal, 2008, 29(1): 25–27 (in Chinese)
74 Zhang X, Dai Y, Li S. Study on magnetorheological jet polishing technology. Machinery Design & Manufacture, 2007, (12): 114–116 (in Chinese)
75 Zhang J, Wang B, Dong S. Application of atmospheric pressure plasma polishing method in machining of silicon ultra smooth surface. Optics and Precision Engineering, 2007, 15(11): 1749–1755 (in Chinese)
76 Zhang Y, Feng Z, Wang Y. Study of magnetorheological brush finishing (MRBF) for concave surface of conformal optics. In: Proceedings of the 8th China-Japan International Conference on Ultra-Precision Machining. Hangzhou, 2011
77 Hong T. Research on the machining mechanics of EMR effect-based tiny-grinding wheel. Dissertation for the Doctoral Degree. Guang-zhou: Guangdong University of Technology, 2008
78 Li M, Lyu B H, Yuan J, et al. Shear-thickening polishing method. International Journal of Machine Tools and Manufacture, 2015, 94: 88–99
79 Zhao T, Deng Q, Yuan J, et al. An experimental investigation of flat polishing with dielectrophoretic (DEP) effect of slurry. International Journal of Advanced Manufacturing Technology, 2016, 84(5–8): 1737–1746
80 Yuan J, Wang Z, Hong T, et al. A semi-fixed abrasive machining technique. Journal of Micromechanics and Microengineering, 2009, 19(5): 054006
81 Qi J, Luo J, Wang K, et al. Mechanical and tribological properties of diamond-like carbon films deposited by electron cyclotron resonance microwave plasma chemical vapor deposition. Tribology Letters, 2003, 14(2): 105–109
82 Su J, Guo D, Kang R, et al. Modeling and analyzing on nonuniformity of material removal in chemical mechanical polishing of silicon wafer. Materials Science Forum, 2004, 471–472: 26–31
83 Yuan J, Chen L, Zhao P, et al. Study on sphere shaping mechanism of ceramic ball for lapping process. Key Engineering Materials, 2004, 259–260: 195–200
84 Zhou F, Yuan J, Lyu B H, et al. Kinematics and trajectory in processing precision balls with eccentric plate and variable-radius V-groove. International Journal of Advanced Manufacturing Technology, 2016, 84(9–12): 2167–2178
Related articles from Frontiers Journals
[1] HUO Fengwei, JIN Zhuji, KANG Renke, GUO Dongming, YANG Chun. Recognition of diamond grains on surface of fine diamond grinding wheel[J]. Front. Mech. Eng., 2008, 3(3): 325-331.
[2] LIU Jinguo, WANG Yuechao, LI Bin, MA Shugen. Current research, key performances and future development of search and rescue robots[J]. Front. Mech. Eng., 2007, 2(4): 404-416.
Full text



  Shared   0