Please wait a minute...

Frontiers of Mechanical Engineering

Front Mech Eng    2012, Vol. 7 Issue (2) : 100-108     https://doi.org/10.1007/s11465-012-0318-3
RESEARCH ARTICLE |
Planar jumping with stable landing through foot orientation design and ankle joint control
Qilong YUAN, I-Ming CHEN()
School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
Download: PDF(345 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper introduces a method to generate the planar jumping motion for biped robot. In this work, through determining the upper body posture trajectory in the flight phase, the foot landing posture is made to be flat while landing. Together with properly designing the trajectory for local center of gravity and the foot landing velocity, the soft landing trajectory is generated. A controller on the ankle joint is added to avoid significant impact with the ground and stabilize the robot after landing. Jumping motion with stable landing is achieved in a dynamic simulation environment based on this method.

Keywords biped jumping      stable landing control      jumping motion generation     
Corresponding Authors: CHEN I-Ming,Email:michen@ntu.edu.sg   
Issue Date: 05 June 2012
 Cite this article:   
Qilong YUAN,I-Ming CHEN. Planar jumping with stable landing through foot orientation design and ankle joint control[J]. Front Mech Eng, 2012, 7(2): 100-108.
 URL:  
http://journal.hep.com.cn/fme/EN/10.1007/s11465-012-0318-3
http://journal.hep.com.cn/fme/EN/Y2012/V7/I2/100
Fig.1  Jumping robot model
ItemsT0TPTFTLTRTE
YCG(VY)y0(0)yPyF(vyF,ayF)yL(vyL,ayL)yRy0(0)
XCG(VX)0(0)xPxF(vxF, axF)xL(vxL,axL)xR0(0)
Θu(ω)0(0)ΘPΘF(ωF)-ΘR0(0)
Tab.1  Jumping parameters
Fig.2  Vertical acceleration
Fig.3  Vertical trajectory of CG
Fig.4  Upper body orientation trajectory
Fig.5  Spring-damping system
Fig.6  Effect of the Spring-damping system
Fig.7  System diagram
Fig.8  Ankle joint control diagram
SegmentsMass/kgInertia/(kg·m2)Length/mlCG/m
Foot0.2×20.001×20.030.015
Shank0.5×20.002×20.1020.05
Thigh0.5×20.002×20.100.05
Trunk2.50.0040.30.04
Tab.2  Physical parameters of the robot
Fig.9  Joint angular trajectories
Fig.10  Simulation results
Fig.11  Foot orientation
Fig.12  Effect of controller in ankle joints
1 Sakagami Y, Watanabe R, Aoyama C, Matsunaga S, Higaki N, Fujimura K. The intelligent ASIMO: system overview and integration. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems , 2002, 3: 2478-2483
2 Hirai K, Hirose M, Haikawa Y, Takenaka T. The development of Honda humanoid robot. In: Proceedings of IEEE/ International Conference on Robotics and Automation , 1998, 2: 1321-1326
3 Kaneko K, Kanehiro F, Hirukawa H,OTA S, Akachi K, Isozumi T. Humanoid robot HRP-2. Nippon Robotto Gakkai Gakujutsu Koenkai Yokoshu (CD-ROM) , 2003, 21:3A32
4 Kaneko K, Kanehiro F, Kajita S, Yokoyama K, Akachi K, Kawasaki T, Ota S, Isozumi T. Design of prototype humanoid robotics platform for HRP. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems , 2002, 3:2431-2436
5 Ogura Y, Aikawa H, Lim H O, Takanishi A. Development of a human-like walking robot having two 7-DOF legs and a 2-DOF waist. In: Proceedings of IEEE International Conference on Robotics and Automation , 2004, 1: 134-139
6 Ogura Y, Aikawa H, Shimomura K, Morishima A, Hun-ok L, Takanishi A. Development of a new humanoid robot WABIAN-2. In: Proceedings of IEEE International Conference on Robotics and Automation , 2006, 76-81
7 Ogura Y, Shimomura K, Kondo A, Morishima A, Okubo T, Momoki S, Hun-ok L, Takanishi A. Human-like walking with knee stretched, heel-contact and toe-off motion by a humanoid robot. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems , 2006, 3976-3981
8 Nishiwaki K, Kuffner J, Kagami S, Inaba M, Inoue H. The experimental humanoid robot H7: a research platform for autonomous behavior. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences , 2007, 365(1850): 79-107
9 Arikawa K, Mita T. Design of multi-DOF jumping robot. In: Proceedings of IEEE International Conference on Robotics and Automation , 2002, 4: 3992-3997
10 Sobotka M, Buss M. Locomotion studies for a 5DOF gymnastic robot. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems , 2005, 3275-3280
11 Nunez V, Nadjar-Gauthier N. Control strategy for vertical jump of humanoid robots. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems , 2005, 2253-2258
12 Goswami D, Vadakkepat P. Planar bipedal jumping gaits with stable landing. Robotics, IEEE Transactions , 2009, 25(5): 1030-1046
13 Sakka S, Yokoi K. Humanoid vertical jumping based on force feedback and inertial forces optimization. In: Proceedings of IEEE International Conference on Robotics and Automation , 2005, 3752-3757
14 Babic J, Lenarcic J. Optimization of biarticular gastrocnemius muscle in humanoid jumping robot simulation. International Journal of Humanoid Robotics , 2006, 3(2): 219-234
15 Bokman L, Babic J, Park F C. Optimal jumps for biarticular legged robots. In: Proceedings of IEEE International Conference on Robotics and Automation , 2008, 226-231
16 Sakagami Y, Watanabe R, Aoyama C, Matsunaga S, Higaki N, Fujimura K. The intelligent ASIMO: system overview and integration. In: Proceedings of IEEE International Conference on Intelligent Robotics and Automation , 2002, 3: 2478-2483
17 Yuan Q L, Chen I M. Simultaneous localization and capture with velocity information. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, California , 2011, 2935-2940
Viewed
Full text


Abstract

Cited

  Shared   0
  Discussed