Please wait a minute...

Frontiers of Medicine

Front Med    2013, Vol. 7 Issue (1) : 31-52     DOI: 10.1007/s11684-013-0251-9
Zinc homeostasis in the metabolic syndrome and diabetes
Xiao Miao1,3, Weixia Sun2,3, Yaowen Fu2, Lining Miao1, Lu Cai3,4,5()
1. The Second Hospital of Jilin University, Changchun 130021, China; 2. The Organ Transplantation Center, the First Hospital of Jilin University, Changchun 130021, China; 3. KCHRI at the Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA; 4. Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, Wenzhou 325035, China; 5. Departments of Radiation Oncology and Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
Download: PDF(423 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Zinc (Zn) is an essential mineral that is required for various cellular functions. Zn dyshomeostasis always is related to certain disorders such as metabolic syndrome, diabetes and diabetic complications. The associations of Zn with metabolic syndrome, diabetes and diabetic complications, thus, stem from the multiple roles of Zn: (1) a constructive component of many important enzymes or proteins, (2) a requirement for insulin storage and secretion, (3) a direct or indirect antioxidant action, and (4) an insulin-like action. However, whether there is a clear cause-and-effect relationship of Zn with metabolic syndrome, diabetes, or diabetic complications remains unclear. In fact, it is known that Zn deficiency is a common phenomenon in diabetic patients. Chronic low intake of Zn was associated with the increased risk of diabetes and diabetes also impairs Zn metabolism. Theoretically Zn supplementation should prevent the metabolic syndrome, diabetes, and diabetic complications; however, limited available data are not always supportive of the above notion. Therefore, this review has tried to summarize these pieces of available information, possible mechanisms by which Zn prevents the metabolic syndrome, diabetes, and diabetic complications. In the final part, what are the current issues for Zn supplementation were also discussed.

Keywords zinc      zinc transporters      metallothionein      diabetes      diabetic complications      insulin resistance      antioxidant     
Corresponding Authors: Cai Lu,   
Issue Date: 05 March 2013
 Cite this article:   
Xiao Miao,Weixia Sun,Yaowen Fu, et al. Zinc homeostasis in the metabolic syndrome and diabetes[J]. Front Med, 2013, 7(1): 31-52.
E-mail this article
E-mail Alert
Articles by authors
Xiao Miao
Weixia Sun
Yaowen Fu
Lining Miao
Lu Cai
Fig.1  Subcellular localization of Zn transporters and MTs. Localization and potential functions of Zn transporters from the Slc39/ZIP (blue) and Slc30/ZnT (red) families, MT, and metal response element (MRE)-binding transcription factor 1 (MTF1) within the cell. Arrows show the predicted direction of Zn mobilization. ER, endoplasmic reticulum. The figure was made based on the previous report [].
Fig.1  Subcellular localization of Zn transporters and MTs. Localization and potential functions of Zn transporters from the Slc39/ZIP (blue) and Slc30/ZnT (red) families, MT, and metal response element (MRE)-binding transcription factor 1 (MTF1) within the cell. Arrows show the predicted direction of Zn mobilization. ER, endoplasmic reticulum. The figure was made based on the previous report [].
Injection, i.p. (10 mg/kg)MT inductionRats, STZ single dose (75 mg/kg)++Yang & Cherian[173]
Drinking (20 mmol/L), 8 weeksMT(ND)ob/ob mice++++Chen et al. [174]
Dietary (1000 ppm), 4 weeksMT(ND)Pro-diabetic BB Wister rats++++Tobia et al. [175]
Drinking (25 mmol/L), 1 weekMT inductionC57BL/6 & B6SJL/F1 mice++++Ohly et al. [80]
5 × 40 mg STZ/kg
Dietary (300 ppm), 6 weeksMT(ND)db/db mice++++Simon & Taylor [176]
Dietary (1000 ppm), 2 weeksMT inductionCD-1 mice, ALX (50 mg/kg)++++Ho et al. [177]
STZ (5× 40 mg/kg)++++Ho et al. [177]
Drinking (25 mmol/L), 1 (12) weeksMT(ND)C57BL/6, ALX (50 mg/kg)+++im Walde et al. [178]
Drinking (25 mmol/L), 1 weekInhibiting NF-κBC57BL/6 mice++++Schott-Ohly et al. [179]
&/or AP1NOD
Dietary (15 mg/kg), 2 weeksKK-Ay mice+++Yoshikawa et al. [180]
Injection, i.p. (1.5-3 mg/kg), 4 weeksKK-Ay mice+++Yoshikawa et al. [180]
Genetic enhancing MTZn-MTMT-TG mice, STZ (1 × 200 mg/kg)++++Chen et al. [181]
Tab.1  Evidence for the preventive effect of Zn supplementation on diabetes
Fig.2  Effects of Zn supplementation on insulin resistance and plasma glucose level in obese children. * <0.05 vs. before receiving either Zn or placebo. The figure was made based on published study [].
Fig.2  Effects of Zn supplementation on insulin resistance and plasma glucose level in obese children. * <0.05 vs. before receiving either Zn or placebo. The figure was made based on published study [].
Type of studiesZn pretreatmentsTarget tissuesReferences
Human studies
Elderly diabetic patientsSerum Zn level correctionKajanachumol et al. [139]
Enhancing CD4 lymphocytes
IDDM patients30 mg/d Zn gluconateSerum Zn level correctionFaure et al. [182]
× 3 monthsTBRAS decrease
Se-GPx increase in patients with retinopathy
DM patients/neuropathy660 mg/d ZnSO4Serum Zn correctionGupta et al. [183]
× 6 weeksImprovement of neuropathy severity
IDDM patients30 mg Zn × 3 monthsPrevented diabetic nephropathyParham et al. [184]
IDDM patients30 mg Zn × 3 monthsPrevented diabetic nephropathyHeidarian et al. [185]
Animal studies
STZ diabetic rats25 mg/kg ZnSO4No prevention of bone lossYamaguchi &amp; Uchiyama [186]
25 mg/kg Zn acexamatePrevention of bone loss
(oral, × 2 weeks)
STZ diabetic rats25, 50 or 100 mg/kg, oralUchiyama &amp; Yamaguchi [187]
ZnSO4No prevention of bone loss
Zn acexamatePrevention of bone loss
ALX diabetic rats5 mg/kg ZnCl2, oncePrevention of retinal &amp; hepatic GHSMoustafa [188]
Decreased retinal &amp; hepatic TBARS
STZ diabetic mice5 mg/kg ZnSO4, × 13 daysPrevented diabetic embryonic cardiotoxicityKumar et al. [189]
STZ diabetic rats100 mg/kg (drinking water)Prevented diabetic damage in the kidneyKaratug et al. [190]
Tab.2  Evidence for the preventive effect of Zn supplementation on diabetic complications
Fig.3  Effect of Zn supplementation on serum glucose and lipid levels in type 2 diabetic patients. The figures were made based on the recent meta-analysis of type 2 diabetic patients with and without Zn supplementation. The decreased effects (<0.05 or<0.01) of Zn supplementation (black bars) on the measurements were pooled from several studies and compared to placebo (level of zero). FBG: fasting blood glucose; HbA1c: glycated hemoglobin; TC: total cholesterol; LDLc: low density lipid cholesterol. The figures were made based on the meta-analysis [].
Fig.3  Effect of Zn supplementation on serum glucose and lipid levels in type 2 diabetic patients. The figures were made based on the recent meta-analysis of type 2 diabetic patients with and without Zn supplementation. The decreased effects (<0.05 or<0.01) of Zn supplementation (black bars) on the measurements were pooled from several studies and compared to placebo (level of zero). FBG: fasting blood glucose; HbA1c: glycated hemoglobin; TC: total cholesterol; LDLc: low density lipid cholesterol. The figures were made based on the meta-analysis [].
Fig.4  Effect of Zn on Nrf2/ARE pathway. In normal conditions, Keap1 sequesters Nrf2 in the cytosol and targets it for degradation. Small amount of ROS alter the interaction between Nrf2 and Keap1, leading to Nrf2 accumulation and degradation in the cytoplasm. Nrf2 translocates into the nucleus and binds to the antioxidant response element (ARE) to turn on the expression of protective genes. Prolonged oxidative stress activates GSK-3β to phosphorylate Fyn. The phosphorylated Fyn then translocates to the nucleus where Fyn phosphorylates Nrf2, leading to the exportation of Nrf2 to the cytoplasm. In the cytoplasm Nrf2 will be bound by Keap 1, leading to Nrf2 degradation. Zn is able to stimulate Akt phosphorylation to inhibit GSK-3β function to reduce Fyn phosphorylation, resulting in Nrf2 accumulation in nuclear to turn on its down-stream antioxidants.
Fig.4  Effect of Zn on Nrf2/ARE pathway. In normal conditions, Keap1 sequesters Nrf2 in the cytosol and targets it for degradation. Small amount of ROS alter the interaction between Nrf2 and Keap1, leading to Nrf2 accumulation and degradation in the cytoplasm. Nrf2 translocates into the nucleus and binds to the antioxidant response element (ARE) to turn on the expression of protective genes. Prolonged oxidative stress activates GSK-3β to phosphorylate Fyn. The phosphorylated Fyn then translocates to the nucleus where Fyn phosphorylates Nrf2, leading to the exportation of Nrf2 to the cytoplasm. In the cytoplasm Nrf2 will be bound by Keap 1, leading to Nrf2 degradation. Zn is able to stimulate Akt phosphorylation to inhibit GSK-3β function to reduce Fyn phosphorylation, resulting in Nrf2 accumulation in nuclear to turn on its down-stream antioxidants.
AbbreviatesFull namesOutcomeReferences
Zn(bet)2Zn(II)/βine+++Kojima et al. [191]
Zn(lac)2Zn(II)/L-lactic acid+++
Zn(qui)2Zn(II)/quinic acid++++
Zn/cZn(II)/cyclo(his-pro)++++Hwang et al. [192]
Song et al. [193]
Zn(car)2Cl2Zn(II)/carnitine++++Yoshikawa et al. [194]
ZPZn(II)/bi(picolinato)Yoshikawa et al. [158]
Zn(ma)2Zn(II)/bis(maltolato)++Adachi et al. [195]
Zn(tpps)See note *++++Saha et al. [196]
Tab.3  Zn complexes which have been explored for reducing hyperglycemia and acting insulin function
1 Cai L, Li XK, Song Y, Cherian MG. Essentiality, toxicology and chelation therapy of zinc and copper. Curr Med Chem 2005; 12(23): 2753-2763
doi: 10.2174/092986705774462950 pmid:16305470
2 Prasad AS. Zinc: an overview. Nutrition 1995; 11(1 Suppl): 93-99
3 Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988; 37(12): 1595-1607
doi: 10.2337/diabetes.37.12.1595 pmid:3056758
4 Sumner AD, Sardi GL, Reed JF 3rd. Components of the metabolic syndrome differ between young and old adults in the US population. J Clin Hypertens (Greenwich) 2012; 14(8): 502-506
doi: 10.1111/j.1751-7176.2012.00647.x pmid:22863157
5 Bardsley JK, Want LL. Overview of diabetes. Crit Care Nurs Q 2004; 27(2): 106-112
6 Jayawardena R, Ranasinghe P, Galappatthy P, Malkanthi R, Constantine G, Katulanda P.Effects of zinc supplementation on diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr 2012; 4(1): 13
doi: 10.1186/1758-5996-4-13 pmid:22515411
7 Gupta R, Garg VK, Mathur DK, Goyal RK. Oral zinc therapy in diabetic neuropathy. J Assoc Physicians India 1998; 46(11): 939-942
8 Tapiero H, Tew KD. Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 2003; 57(9): 399-411
doi: 10.1016/S0753-3322(03)00081-7 pmid:14652165
9 Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M. Overview of mammalian zinc transporters. Cell Mol Life Sci 2004; 61(1): 49-68
doi: 10.1007/s00018-003-3148-y pmid:14704853
10 Cai L, Satoh M, Tohyama C, Cherian MG. Metallothionein in radiation exposure: its induction and protective role. Toxicology 1999; 132(2-3): 85-98
doi: 10.1016/S0300-483X(98)00150-4 pmid:10433372
11 Cai L, Klein JB, Kang YJ. Metallothionein inhibits peroxynitrite-induced DNA and lipoprotein damage. J Biol Chem 2000; 275(50): 38957-38960
doi: 10.1074/jbc.C000593200 pmid:11042194
12 Cai L. Metallothionein and cardiomyopathy. In: Zatta P. Metallothioneins in Biochemistry and Pathology . New Jersey: World Scientific, 2008:227-269
13 Prasad AS. Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp Gerontol 2008; 43(5): 370-377
doi: 10.1016/j.exger.2007.10.013 pmid:18054190
14 Prasad AS. Discovery of human zinc deficiency: 50 years later. J Trace Elem Med Biol 2012; 26(2-3): 66-69
doi: 10.1016/j.jtemb.2012.04.004 pmid:22664333
15 Goldman J, Carpenter FH. Zinc binding, circular dichroism, and equilibrium sedimentation studies on insulin (bovine) and several of its derivatives. Biochemistry 1974; 13(22): 4566-4574
doi: 10.1021/bi00719a015 pmid:4473202
16 Bakaysa DL, Radziuk J, Havel HA, Brader ML, Li S, Dodd SW, Beals JM, Pekar AH, Brems DN. Physicochemical basis for the rapid time-action of LysB28ProB29-insulin: dissociation of a protein-ligand complex. Protein Sci 1996; 5(12): 2521-2531
doi: 10.1002/pro.5560051215 pmid:8976561
17 Wang X, Zhou B. Dietary zinc absorption: A play of Zips and ZnTs in the gut. IUBMB Life 2010; 62(3): 176-182
doi: 10.1002/iub.291 pmid:20120011
18 Fukada T, Kambe T. Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics 2011; 3(7): 662-674
doi: 10.1039/c1mt00011j pmid:21566827
19 Kambe T. An overview of a wide range of functions of ZnT and Zip zinc transporters in the secretory pathway. Biosci Biotechnol Biochem 2011; 75(6): 1036-1043
doi: 10.1271/bbb.110056 pmid:21670538
20 Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T. Zinc homeostasis and signaling in health and diseases: Zinc signaling. J Biol Inorg Chem 2011; 16(7): 1123-1134
doi: 10.1007/s00775-011-0797-4 pmid:21660546
21 Chimienti F, Devergnas S, Favier A, Seve M. Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 2004; 53(9): 2330-2337
doi: 10.2337/diabetes.53.9.2330 pmid:15331542
22 Scotto M, Afonso G, Larger E, Raverdy C, Lemonnier FA, Carel JC, Dubois-Laforgue D, Baz B, Levy D, Gautier JF, Launay O, Bruno G, Boitard C, Sechi LA, Hutton JC, Davidson HW, Mallone R. Zinc transporter (ZnT)8(186-194) is an immunodominant CD8+ T cell epitope in HLA-A2+ type 1 diabetic patients. Diabetologia 2012; 55(7): 2026-2031
doi: 10.1007/s00125-012-2543-z pmid:22526607
23 Kawasaki E. ZnT8 and type 1 diabetes. Endocr J 2012; 59(7): 531-537
doi: 10.1507/endocrj.EJ12-0069 pmid:22447136
24 Xu J, Wang J, Chen B. SLC30A8 (ZnT8) variations and type 2 diabetes in the Chinese Han population. Genet Mol Res 2012; 11(2): 1592-1598
doi: 10.4238/2012.May.24.1 pmid:22653633
25 Cai L. Metallothionein as an adaptive protein prevents diabetes and its toxicity. Nonlinearity Biol Toxicol Med 2004; 2(2): 89-103
doi: 10.1080/15401420490464367 pmid:19330125
26 Cai L. Diabetic cardiomyopathy and its prevention by metallothionein: experimental evidence, possible mechanisms and clinical implications. Curr Med Chem 2007; 14(20): 2193-2203
doi: 10.2174/092986707781389646 pmid:17691957
27 Park JH, Grandjean CJ, Hart MH, Erdman SH, Pour P, Vanderhoof JA. Effect of pure zinc deficiency on glucose tolerance and insulin and glucagon levels. Am J Physiol 1986; 251(3 Pt 1): E273-E278
28 Faure P, Roussel AM, Martinie M, Osman M, Favier A, Halimi S. Insulin sensitivity in zinc-depleted rats: assessment with the euglycaemic hyperinsulinic clamp technique. Diabete Metab 1991; 17(3): 325-331
29 Jou MY, Philipps AF, L?nnerdal B. Maternal zinc deficiency in rats affects growth and glucose metabolism in the offspring by inducing insulin resistance postnatally. J Nutr 2010; 140(9): 1621-1627
doi: 10.3945/jn.109.119677 pmid:20660286
30 Singh RB, Niaz MA, Rastogi SS, Bajaj S, Gaoli Z, Shoumin Z. Current zinc intake and risk of diabetes and coronary artery disease and factors associated with insulin resistance in rural and urban populations of North India. J Am Coll Nutr 1998; 17(6): 564-570
31 Himoto T, Yoneyama H, Kurokochi K, Inukai M, Masugata H, Goda F, Haba R, Watanabe S, Senda S, Masaki T. Contribution of zinc deficiency to insulin resistance in patients with primary biliary cirrhosis. Biol Trace Elem Res 2011; 144(1-3): 133-142
doi: 10.1007/s12011-011-9049-2 pmid:21476007
32 Chausmer AB. Zinc, insulin and diabetes. J Am Coll Nutr 1998; 17(2): 109-115
33 Haglund B, Ryckenberg K, Selinus O, Dahlquist G. Evidence of a relationship between childhood-onset type I diabetes and low groundwater concentration of zinc. Diabetes Care 1996; 19(8): 873-875
doi: 10.2337/diacare.19.8.873 pmid:8842606
34 Zhao HX, Mold MD, Stenhouse EA, Bird SC, Wright DE, Demaine AG, Millward BA. Drinking water composition and childhood-onset Type 1 diabetes mellitus in Devon and Cornwall, England. Diabet Med 2001; 18(9): 709-717
doi: 10.1046/j.1464-5491.2001.00554.x pmid:11606168
35 Benson VS, Vanleeuwen JA, Taylor J, Somers GS, McKinney PA, Van Til L. Type 1 diabetes mellitus and components in drinking water and diet: a population-based, case-control study in Prince Edward Island, Canada. J Am Coll Nutr 2010; 29(6): 612-624
36 Samuelsson U, Oikarinen S, Hy?ty H, Ludvigsson J. Low zinc in drinking water is associated with the risk of type 1 diabetes in children. Pediatr Diabetes 2011; 12(3 Pt 1): 156-164
doi: 10.1111/j.1399-5448.2010.00678.x pmid:20920146
37 Moltchanova E, Rytk?nen M, Kousa A, Taskinen O, Tuomilehto J, Karvonen M. Zinc and nitrate in the ground water and the incidence of Type 1 diabetes in Finland. Diabet Med 2004; 21(3): 256-261
doi: 10.1111/j.1464-5491.2004.01125.x pmid:15008836
38 Goldberg ED, Eshchenko VA, Bovt VD. The diabetogenic and acidotropic effects of chelators. Exp Pathol 1991; 42(1): 59-64
doi: 10.1016/S0232-1513(11)80038-1 pmid:1879512
39 Goldberg ED, Eshchenko VA, Bovt VD. Diabetogenic activity of chelators in some mammalian species. Endocrinologie 1990; 28(2): 51-55
40 Kechrid Z, Bouzerna N, Zio MS. Effect of low zinc diet on (65)Zn turnover in non-insulin dependent diabetic mice. Diabetes Metab 2001; 27(5 Pt 1): 580-583
41 Reiterer G, MacDonald R, Browning JD, Morrow J, Matveev SV, Daugherty A, Smart E, Toborek M, Hennig B. Zinc deficiency increases plasma lipids and atherosclerotic markers in LDL-receptor-deficient mice. J Nutr 2005; 135(9): 2114-2118
42 Shen H, MacDonald R, Bruemmer D, Stromberg A, Daugherty A, Li XA, Toborek M, Hennig B. Zinc deficiency alters lipid metabolism in LDL receptor deficient mice treated with rosiglitazone. J Nutr 2007; 137(11): 2339-2345
43 Tomat AL, Weisstaub AR, Jauregui A, Pi?eiro A, Balaszczuk AM, Costa MA, Arranz CT. Moderate zinc deficiency influences arterial blood pressure and vascular nitric oxide pathway in growing rats. Pediatr Res 2005; 58(4): 672-676
doi: 10.1203/01.PDR.0000180540.55990.EB pmid:16189192
44 Tomat AL, Costa MA, Girgulsky LC, Veiras L, Weisstaub AR, Inserra F, Balaszczuk AM, Arranz CT. Zinc deficiency during growth: influence on renal function and morphology. Life Sci 2007; 80(14): 1292-1302
doi: 10.1016/j.lfs.2006.12.035 pmid:17300809
45 Shen H, Oesterling E, Stromberg A, Toborek M, MacDonald R, Hennig B. Zinc deficiency induces vascular pro-inflammatory parameters associated with NF-kappaB and PPAR signaling. J Am Coll Nutr 2008; 27(5): 577-587
46 Zhao Y, Tan Y, Dai J, Li B, Guo L, Cui J, Wang G, Shi X, Zhang X, Mellen N, Li W, Cai L. Exacerbation of diabetes-induced testicular apoptosis by zinc deficiency is most likely associated with oxidative stress, p38 MAPK activation, and p53 activation in mice. Toxicol Lett 2011; 200(1-2): 100-106
doi: 10.1016/j.toxlet.2010.11.001 pmid:21078376
47 Zhao Y, Tan Y, Dai J, Wang B, Li B, Guo L, Cui J, Wang G, Li W, Cai L. Zinc deficiency exacerbates diabetic down-regulation of Akt expression and function in the testis: essential roles of PTEN, PTP1B and TRB3. J Nutr Biochem 2012; 23(8): 1018-1026
doi: 10.1016/j.jnutbio.2011.05.011 pmid:22000581
48 Zhang C, Lu X, Tan Y, Li B, Miao X, Jin L, Shi X, Zhang X, Miao L, Li X, Cai L. Diabetes-induced hepatic pathogenic damage, inflammation, oxidative stress, and insulin resistance was exacerbated in zinc deficient mouse model. PLoS ONE 2012; 7(12): e49257
doi: 10.1371/journal.pone.0049257 pmid:23251339
49 Soinio M, Marniemi J, Laakso M, Py?r?l? K, Lehto S, R?nnemaa T. Serum zinc level and coronary heart disease events in patients with type 2 diabetes. Diabetes Care 2007; 30(3): 523-528
doi: 10.2337/dc06-1682 pmid:17327315
50 Terrés-Martos C, Navarro-Alarcón M, Martín-Lagos F, López-G de la Serrana H, Pérez-Valero V, López-Martínez MC. Serum zinc and copper concentrations and Cu/Zn ratios in patients with hepatopathies or diabetes. J Trace Elem Med Biol 1998; 12(1): 44-49
doi: 10.1016/S0946-672X(98)80020-5 pmid:9638612
51 Anderson RA, Roussel AM, Zouari N, Mahjoub S, Matheau JM, Kerkeni A. Potential antioxidant effects of zinc and chromium supplementation in people with type 2 diabetes mellitus. J Am Coll Nutr 2001; 20(3): 212-218
52 Anetor JI, Senjobi A, Ajose OA, Agbedana EO. Decreased serum magnesium and zinc levels: atherogenic implications in type-2 diabetes mellitus in Nigerians. Nutr Health 2002; 16(4): 291-300
doi: 10.1177/026010600201600403 pmid:12617280
53 Roussel AM, Kerkeni A, Zouari N, Mahjoub S, Matheau JM, Anderson RA. Antioxidant effects of zinc supplementation in Tunisians with type 2 diabetes mellitus. J Am Coll Nutr 2003; 22(4): 316-321
54 Levine AS, McClain CJ, Handwerger BS, Brown DM, Morley JE. Tissue zinc status of genetically diabetic and streptozotocin-induced diabetic mice. Am J Clin Nutr 1983; 37(3): 382-386
55 Faure P, Roussel A, Coudray C, Richard MJ, Halimi S, Favier A. Zinc and insulin sensitivity. Biol Trace Elem Res 1992;32(1-3): 305-310
doi: 10.1007/BF02784615
56 el-Yazigi A, Hannan N, Raines DA. Effect of diabetic state and related disorders on the urinary excretion of magnesium and zinc in patients. Diabetes Res 1993; 22(2): 67-75
57 Golik A, Cohen N, Ramot Y, Maor J, Moses R, Weissgarten J, Leonov Y, Modai D. Type II diabetes mellitus, congestive heart failure, and zinc metabolism. Biol Trace Elem Res 1993; 39(2-3): 171-175
doi: 10.1007/BF02783187 pmid:7509174
58 Williams NR, Rajput-Williams J, West JA, Nigdikar SV, Foote JW, Howard AN. Plasma, granulocyte and mononuclear cell copper and zinc in patients with diabetes mellitus. Analyst (Lond) 1995; 120(3): 887-890
doi: 10.1039/an9952000887 pmid:7741248
59 Blostein-Fujii A, DiSilvestro RA, Frid D, Katz C, Malarkey W. Short-term zinc supplementation in women with non-insulin-dependent diabetes mellitus: effects on plasma 5′-nucleotidase activities, insulin-like growth factor I concentrations, and lipoprotein oxidation rates in vitro. Am J Clin Nutr 1997; 66(3): 639-642
60 Honnorat J, Accominotti M, Broussolle C, Fleuret AC, Vallon JJ, Orgiazzi J. Effects of diabetes type and treatment on zinc status in diabetes mellitus. Biol Trace Elem Res 1992;32(1-3):311-316
doi: 10.1007/BF02784616
61 Quilliot D, Dousset B, Guerci B, Dubois F, Drouin P, Ziegler O. Evidence that diabetes mellitus favors impaired metabolism of zinc, copper, and selenium in chronic pancreatitis. Pancreas 2001; 22(3): 299-306
doi: 10.1097/00006676-200104000-00012 pmid:11291933
62 Pathak A, Sharma V, Kumar S, Dhawan DK. Supplementation of zinc mitigates the altered uptake and turnover of 65Zn in liver and whole body of diabetic rats. Biometals 2011; 24(6): 1027-1034
doi: 10.1007/s10534-011-9461-2 pmid:21584710
63 Smidt K, Jessen N, Petersen AB, Larsen A, Magnusson N, Jeppesen JB, Stoltenberg M, Culvenor JG, Tsatsanis A, Brock B, Schmitz O, Wogensen L, Bush AI, Rungby J. SLC30A3 responds to glucose- and zinc variations in beta-cells and is critical for insulin production and in vivo glucose-metabolism during beta-cell stress. PLoS ONE 2009; 4(5): e5684
doi: 10.1371/journal.pone.0005684 pmid:19492079
64 Jansen J, Rosenkranz E, Overbeck S, Warmuth S, Mocchegiani E, Giacconi R, Weiskirchen R, Karges W, Rink L. Disturbed zinc homeostasis in diabetic patients by in vitro and in vivo analysis of insulinomimetic activity of zinc. J Nutr Biochem 2012; 23(11): 1458-1466
doi: 10.1016/j.jnutbio.2011.09.008 pmid:22402369
65 Liu BY, Jiang Y, Lu Z, Li S, Lu D, Chen B. Down-regulation of zinc transporter 8 in the pancreas of db/db mice is rescued by Exendin-4 administration. Mol Med Report 2011; 4(1): 47-52
66 Foster M, Karra M, Picone T, Chu A, Hancock DP, Petocz P, Samman S. Dietary fiber intake increases the risk of zinc deficiency in healthy and diabetic women. Biol Trace Elem Res 2012; 149(2): 135-142
doi: 10.1007/s12011-012-9408-7 pmid:22528778
67 Failla ML, Kiser RA. Altered tissue content and cytosol distribution of trace metals in experimental diabetes. J Nutr 1981; 111(11): 1900-1909
68 Failla ML, Kiser RA. Hepatic and renal metabolism of copper and zinc in the diabetic rat. Am J Physiol 1983; 244(2): E115-E121
69 Craft NE, Failla ML. Zinc, iron, and copper absorption in the streptozotocin-diabetic rat. Am J Physiol 1983; 244(2): E122-E128
70 Escobar O, Sandoval M, Vargas A, Hempe JM. Role of metallothionein and cysteine-rich intestinal protein in the regulation of zinc absorption by diabetic rats. Pediatr Res 1995; 37(3): 321-327
doi: 10.1203/00006450-199503000-00012 pmid:7784142
71 Chen ML, Failla ML. Metallothionein metabolism in the liver and kidney of the streptozotocin-diabetic rat. Comp Biochem Physiol B 1988; 90(2): 439-445
doi: 10.1016/0305-0491(88)90101-0 pmid:3409670
72 Jin T, Nordberg G, Sehlin J, Vesterberg O. Protection against cadmium-metallothionein nephrotoxicity in streptozotocin-induced diabetic rats: role of increased metallothionein synthesis induced by streptozotocin. Toxicology 1996; 106(1-3): 55-63
doi: 10.1016/0300-483X(95)03164-B pmid:8571402
73 Kennedy ML, Failla ML. Zinc metabolism in genetically obese (ob/ob) mice. J Nutr 1987; 117(5): 886-893
74 Failla ML, Gardell CY. Influence of spontaneous diabetes on tissue status of zinc, copper, and manganese in the BB Wistar rat. Proc Soc Exp Biol Med 1985; 180(2): 317-322
75 Cai L, Chen S, Evans T, Cherian MG, Chakrabarti S. Endothelin-1-mediated alteration of metallothionein and trace metals in the liver and kidneys of chronically diabetic rats. Int J Exp Diabetes Res 2002; 3(3): 193-198
doi: 10.1080/15604280214281 pmid:12458661
76 Ayaz M, Turan B. Selenium prevents diabetes-induced alterations in [Zn2+]i and metallothionein level of rat heart via restoration of cell redox cycle. Am J Physiol Heart Circ Physiol 2006; 290(3): H1071-H1080
doi: 10.1152/ajpheart.00754.2005 pmid:16214842
77 Tadros WM, Awadallah R, Doss H, Khalifa K. Protective effect of trace elements (Zn, Mn, Cr, Co) on alloxan-induced diabetes. Indian J Exp Biol 1982; 20(1): 93-94
78 Yang J, Cherian MG. Protective effects of metallothionein on streptozotocin-induced diabetes in rats. Life Sci 1994; 55(1): 43-51
doi: 10.1016/0024-3205(94)90080-9 pmid:8015348
79 Ho E, Quan N, Tsai YH, Lai W, Bray TM. Dietary zinc supplementation inhibits NFkappaB activation and protects against chemically induced diabetes in CD1 mice. Exp Biol Med (Maywood) 2001; 226(2): 103-111
80 Ohly P, Dohle C, Abel J, Seissler J, Gleichmann H. Zinc sulphate induces metallothionein in pancreatic islets of mice and protects against diabetes induced by multiple low doses of streptozotocin. Diabetologia 2000; 43(8): 1020-1030
doi: 10.1007/s001250050009 pmid:10990080
81 Sitasawad S, Deshpande M, Katdare M, Tirth S, Parab P. Beneficial effect of supplementation with copper sulfate on STZ-diabetic mice (IDDM). Diabetes Res Clin Pract 2001; 52(2): 77-84
doi: 10.1016/S0168-8227(00)00249-7 pmid:11311961
82 Marreiro DN, Geloneze B, Tambascia MA, Lerário AC, Halpern A, Cozzolino SM. Effect of zinc supplementation on serum leptin levels and insulin resistance of obese women. Biol Trace Elem Res 2006; 112(2): 109-118
doi: 10.1385/BTER:112:2:109 pmid:17028377
83 Hashemipour M, Kelishadi R, Shapouri J, Sarrafzadegan N, Amini M, Tavakoli N, Movahedian-Attar A, Mirmoghtadaee P, Poursafa P. Effect of zinc supplementation on insulin resistance and components of the metabolic syndrome in prepubertal obese children. Hormones (Athens) 2009; 8(4): 279-285
84 Kim J, Lee S. Effect of zinc supplementation on insulin resistance and metabolic risk factors in obese Korean women. Nurs Res Pract 2012; 6(3): 221-225
doi: 10.4162/nrp.2012.6.3.221 pmid:22808346
85 Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414(6865): 813-820
doi: 10.1038/414813a pmid:11742414
86 Cai L, Kang YJ. Oxidative stress and diabetic cardiomyopathy: a brief review. Cardiovasc Toxicol 2001; 1(3): 181-193
doi: 10.1385/CT:1:3:181 pmid:12213971
87 Srinivasan S, Hatley ME, Bolick DT, Palmer LA, Edelstein D, Brownlee M, Hedrick CC. Hyperglycaemia-induced superoxide production decreases eNOS expression via AP-1 activation in aortic endothelial cells. Diabetologia 2004; 47(10): 1727-1734
doi: 10.1007/s00125-004-1525-1 pmid:15490108
88 Zou MH, Shi C, Cohen RA. Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J Clin Invest 2002; 109(6): 817-826
89 Mooradian AD, Morley JE, Scarpace PJ. The role of zinc status in altered cardiac adenylate cyclase activity in diabetic rats. Acta Endocrinol (Copenh) 1988; 119(2): 174-180
90 Noh SK, Koo SI. Feeding of a low-zinc diet lowers the tissue concentrations of alpha-tocopherol in adult rats. Biol Trace Elem Res 2001; 81(2): 153-168
doi: 10.1385/BTER:81:2:153 pmid:11554396
91 Chvapil M, Owen JA. Effect of zinc on acute and chronic isoproterenol induced heart injury. J Mol Cell Cardiol 1977; 9(2): 151-159
doi: 10.1016/0022-2828(77)90046-3 pmid:839549
92 Singal PK, Dhillon KS, Beamish RE, Dhalla NS. Protective effect of zinc against catecholamine-induced myocardial changes electrocardiographic and ultrastructural studies. Lab Invest 1981; 44(5): 426-433
93 Satoh M, Naganuma A, Imura N. Modulation of adriamycin toxicity by tissue-specific induction of metallothionein synthesis in mice. Life Sci 2000; 67(6): 627-634
doi: 10.1016/S0024-3205(00)00667-6 pmid:12659168
94 Fushimi H, Inoue T, Yamada Y, Horie H, Kameyama M, Inoue K, Minami T, Okazaki Y. Zinc deficiency exaggerates diabetic osteoporosis. Diabetes Res Clin Pract 1993; 20(3): 191-196
doi: 10.1016/0168-8227(93)90077-I pmid:8404452
95 Faure P, Benhamou PY, Perard A, Halimi S, Roussel AM. Lipid peroxidation in insulin-dependent diabetic patients with early retina degenerative lesions: effects of an oral zinc supplementation. Eur J Clin Nutr 1995; 49(4): 282-288
96 Kajanachumpol S, Srisurapanon S, Supanit I, Roongpisuthipong C, Apibal S. Effect of zinc supplementation on zinc status, copper status and cellular immunity in elderly patients with diabetes mellitus. J Med Assoc Thai 1995; 78(7): 344-349
97 de Sena KC, Arrais RF, das Gra?as Almeida M, de Araújo DM, dos Santos MM, de Lima VT, de F?tima Campos Pedrosa L. Effects of zinc supplementation in patients with type 1 diabetes. Biol Trace Elem Res 2005; 105(1-3): 1-9
doi: 10.1385/BTER:105:1-3:001 pmid:16034148
98 Seet RC, Lee CY, Lim EC, Quek AM, Huang H, Huang SH, Looi WF, Long LH, Halliwell B. Oral zinc supplementation does not improve oxidative stress or vascular function in patients with type 2 diabetes with normal zinc levels. Atherosclerosis 2011; 219(1): 231-239
doi: 10.1016/j.atherosclerosis.2011.07.097 pmid:21840002
99 Evans SA, Overton JM, Alshingiti A, Levenson CW. Regulation of metabolic rate and substrate utilization by zinc deficiency. Metabolism 2004; 53(6): 727-732
doi: 10.1016/j.metabol.2004.01.009 pmid:15164319
100 Simon SF, Taylor CG. Dietary zinc supplementation attenuates hyperglycemia in db/db mice. Exp Biol Med (Maywood) 2001; 226(1): 43-51
101 Mantzoros CS, Prasad AS, Beck FW, Grabowski S, Kaplan J, Adair C, Brewer GJ. Zinc may regulate serum leptin concentrations in humans. J Am Coll Nutr 1998; 17(3): 270-275
102 Chen MD, Song YM, Lin PY. Zinc effects on hyperglycemia and hypoleptinemia in streptozotocin-induced diabetic mice. Horm Metab Res 2000; 32(3): 107-109
doi: 10.1055/s-2007-978600 pmid:10786929
103 Chen MD, Song YM, Lin PY. Zinc may be a mediator of leptin production in humans. Life Sci 2000; 66(22): 2143-2149
doi: 10.1016/S0024-3205(00)00541-5 pmid:10834298
104 Canesi L, Betti M, Ciacci C, Gallo G. Insulin-like effect of zinc in mytilus digestive gland cells: modulation of tyrosine kinase-mediated cell signaling. Gen Comp Endocrinol 2001; 122(1): 60-66
doi: 10.1006/gcen.2001.7612 pmid:11352554
105 Tang X, Shay NF. Zinc has an insulin-like effect on glucose transport mediated by phosphoinositol-3-kinase and Akt in 3T3-L1 fibroblasts and adipocytes. J Nutr 2001; 131(5): 1414-1420
106 Haase H, Maret W. Intracellular zinc fluctuations modulate protein tyrosine phosphatase activity in insulin/insulin-like growth factor-1 signaling. Exp Cell Res 2003; 291(2): 289-298
doi: 10.1016/S0014-4827(03)00406-3 pmid:14644152
107 Miranda ER, Dey CS. Effect of chromium and zinc on insulin signaling in skeletal muscle cells. Biol Trace Elem Res 2004; 101(1): 19-36
doi: 10.1385/BTER:101:1:19 pmid:15516700
108 May JM, Contoreggi CS. The mechanism of the insulin-like effects of ionic zinc. J Biol Chem 1982; 257(8): 4362-4368
109 Chen MD, Liou SJ, Lin PY, Yang VC, Alexander PS, Lin WH. Effects of zinc supplementation on the plasma glucose level and insulin activity in genetically obese (ob/ob) mice. Biol Trace Elem Res 1998; 61(3): 303-311
doi: 10.1007/BF02789090 pmid:9533568
110 Kolaczynski JW, Caro JF. Insulin-like growth factor-1 therapy in diabetes: physiologic basis, clinical benefits, and risks. Ann Intern Med 1994; 120(1): 47-55
111 McCusker RH, Mateski RL, Novakofski J. Zinc alters the kinetics of IGF-II binding to cell surface receptors and binding proteins. Endocrine 2003; 21(3): 279-288
doi: 10.1385/ENDO:21:3:279 pmid:14515014
112 McCusker RH, Novakofski J. Zinc partitions IGFs from soluble IGF binding proteins (IGFBP)-5, but not soluble IGFBP-4, to myoblast IGF type 1 receptors. J Endocrinol 2004; 180(2): 227-246
doi: 10.1677/joe.0.1800227 pmid:14765975
113 Ilouz R, Kaidanovich O, Gurwitz D, Eldar-Finkelman H. Inhibition of glycogen synthase kinase-3beta by bivalent zinc ions: insight into the insulin-mimetic action of zinc. Biochem Biophys Res Commun 2002; 295(1): 102-106
doi: 10.1016/S0006-291X(02)00636-8 pmid:12083774
114 Chanoit G, Lee S, Xi J, Zhu M, McIntosh RA, Mueller RA, Norfleet EA, Xu Z. Exogenous zinc protects cardiac cells from reperfusion injury by targeting mitochondrial permeability transition pore through inactivation of glycogen synthase kinase-3beta. Am J Physiol Heart Circ Physiol 2008; 295(3): H1227-H1233
doi: 10.1152/ajpheart.00610.2008 pmid:18660440
115 Lee S, Chanoit G, McIntosh R, Zvara DA, Xu Z. Molecular mechanism underlying Akt activation in zinc-induced cardioprotection. Am J Physiol Heart Circ Physiol 2009; 297(2): H569-H575
doi: 10.1152/ajpheart.00293.2009 pmid:19525380
116 Haase H, Maret W. Protein tyrosine phosphatases as targets of the combined insulinomimetic effects of zinc and oxidants. Biometals 2005; 18(4): 333-338
doi: 10.1007/s10534-005-3707-9 pmid:16158225
117 Haase H, Maret W. Fluctuations of cellular, available zinc modulate insulin signaling via inhibition of protein tyrosine phosphatases. J Trace Elem Med Biol 2005; 19(1): 37-42
doi: 10.1016/j.jtemb.2005.02.004 pmid:16240670
118 Wu W, Wang X, Zhang W, Reed W, Samet JM, Whang YE, Ghio AJ. Zinc-induced PTEN protein degradation through the proteasome pathway in human airway epithelial cells. J Biol Chem 2003; 278(30): 28258-28263
doi: 10.1074/jbc.M303318200 pmid:12743124
119 Cameron AR, Anil S, Sutherland E, Harthill J, Rena G. Zinc-dependent effects of small molecules on the insulin-sensitive transcription factor FOXO1a and gluconeogenic genes. Metallomics 2010; 2(3): 195-203
doi: 10.1039/b914984h pmid:21069157
120 Prasad AS, Bao B, Beck FW, Kucuk O, Sarkar FH. Antioxidant effect of zinc in humans. Free Radic Biol Med 2004; 37(8): 1182-1190
doi: 10.1016/j.freeradbiomed.2004.07.007 pmid:15451058
121 Kakkar R, Mantha SV, Radhi J, Prasad K, Kalra J. Increased oxidative stress in rat liver and pancreas during progression of streptozotocin-induced diabetes. Clin Sci (Lond) 1998; 94(6): 623-632
122 Collet JF, D’Souza JC, Jakob U, Bardwell JC. Thioredoxin 2, an oxidative stress-induced protein, contains a high affinity zinc binding site. J Biol Chem 2003; 278(46): 45325-45332
doi: 10.1074/jbc.M307818200 pmid:12952960
123 Hagay ZJ, Weiss Y, Zusman I, Peled-Kamar M, Reece EA, Eriksson UJ, Groner Y. Prevention of diabetes-associated embryopathy by overexpression of the free radical scavenger copper zinc superoxide dismutase in transgenic mouse embryos. Am J Obstet Gynecol 1995; 173(4): 1036-1041
doi: 10.1016/0002-9378(95)91323-8 pmid:7485290
124 Bray TM, Bettger WJ. The physiological role of zinc as an antioxidant. Free Radic Biol Med 1990; 8(3): 281-291
doi: 10.1016/0891-5849(90)90076-U pmid:2187766
127 Moi P, Chan K, Asunis I, Cao A, Kan YW. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci USA 1994; 91(21): 9926-9930
doi: 10.1073/pnas.91.21.9926 pmid:7937919
128 Li B, Liu S, Miao L, Cai L. Prevention of diabetic complications by activation of Nrf2: diabetic cardiomyopathy and nephropathy. Exp Diabetes Res 2012; 2012: 216512
doi: 10.1155/2012/216512 pmid:22645602
129 Mehta AJ, Joshi PC, Fan X, Brown LA, Ritzenthaler JD, Roman J, Guidot DM. Zinc supplementation restores PU.1 and Nrf2 nuclear binding in alveolar macrophages and improves redox balance and bacterial clearance in the lungs of alcohol-fed rats. Alcohol Clin Exp Res 2011; 35(8): 1519-1528
130 Cortese MM, Suschek CV, Wetzel W, Kr?ncke KD, Kolb-Bachofen V. Zinc protects endothelial cells from hydrogen peroxide via Nrf2-dependent stimulation of glutathione biosynthesis. Free Radic Biol Med 2008; 44(12): 2002-2012
doi: 10.1016/j.freeradbiomed.2008.02.013 pmid:18355458
131 Ha KN, Chen Y, Cai J, Sternberg P Jr. Increased glutathione synthesis through an ARE-Nrf2-dependent pathway by zinc in the RPE: implication for protection against oxidative stress. Invest Ophthalmol Vis Sci 2006; 47(6): 2709-2715
doi: 10.1167/iovs.05-1322 pmid:16723490
132 Aguilar MV, Laborda JM, Martínez-Para MC, González MJ, Meseguer I, Bernao A, Mateos CJ. Effect of diabetes on the tissular Zn/Cu ratio. J Trace Elem Med Biol 1998; 12(3): 155-158
doi: 10.1016/S0946-672X(98)80004-7 pmid:9857328
133 Zargar AH, Shah NA, Masoodi SR, Laway BA, Dar FA, Khan AR, Sofi FA, Wani AI. Copper, zinc, and magnesium levels in non-insulin dependent diabetes mellitus. Postgrad Med J 1998; 74(877): 665-668
doi: 10.1136/pgmj.74.877.665 pmid:10197198
134 Ripa S, Ripa R, Giustiniani S. Are failured cardiomyopathies a zinc-deficit related disease? A study on Zn and Cu in patients with chronic failured dilated and hypertrophic cardiomyopathies. Minerva Med 1998; 89(11-12): 397-403
135 Canatan H, Bakan I, Akbulut M, Halifeoglu I, Cikim G, Baydas G, Kilic N. Relationship among levels of leptin and zinc, copper, and zinc/copper ratio in plasma of patients with essential hypertension and healthy normotensive subjects. Biol Trace Elem Res 2004; 100(2): 117-123
doi: 10.1385/BTER:100:2:117 pmid:15326361
136 Maldonado Martín A, Gil Extremera B, Fernández Soto M, Ruiz Martínez M, González Jiménez A, Guijarro Morales A, de Dios Luna del Castillo J. Zinc levels after intravenous administration of zinc sulphate in insulin-dependent diabetes mellitus patients. Klin Wochenschr 1991; 69(14): 640-644
doi: 10.1007/BF01649424 pmid:1749202
137 Niewoehner CB, Allen JI, Boosalis M, Levine AS, Morley JE. Role of zinc supplementation in type II diabetes mellitus. Am J Med 1986; 81(1): 63-68
doi: 10.1016/0002-9343(86)90183-X pmid:3728555
138 Mocchegiani E, Boemi M, Fumelli P, Fabris N. Zinc-dependent low thymic hormone level in type I diabetes. Diabetes 1989; 38(7): 932-937
doi: 10.2337/diabetes.38.7.932 pmid:2737365
140 Kang YJ. The antioxidant function of metallothionein in the heart. Proceedings of the Society for Experimental Biology and Medicine. Soci Exp Biol Med . 1999; 222(3): 263-273 .
141 Cai L, Cherian MG. Adaptive response to ionizing radiation-induced chromosome aberrations in rabbit lymphocytes: effect of pre-exposure to zinc, and copper salts. Mutat Res 1996; 369(3-4): 233-241
doi: 10.1016/S0165-1218(96)90028-2 pmid:8792841
142 Cai L, Cherian MG, Iskander S, Leblanc M, Hammond RR. Metallothionein induction in human CNS in vitro: neuroprotection from ionizing radiation. Int J Radiat Biol 2000; 76(7): 1009-1017
doi: 10.1080/09553000050051025 pmid:10923625
143 Cai L, Iskander S, Cherian MG, Hammond RR. Zinc- or cadmium-pre-induced metallothionein protects human central nervous system cells and astrocytes from radiation-induced apoptosis. Toxicol Lett 2004; 146(3): 217-226
doi: 10.1016/j.toxlet.2003.09.013 pmid:14687759
144 Satoh M, Naganuma A, Imura N. Modulation of adriamycin toxicity by tissue-specific induction of metallothionein synthesis in mice. Life Sci 2000; 67(6): 627-634
doi: 10.1016/S0024-3205(00)00667-6 pmid:12659168
145 Ali MM, Frei E, Straub J, Breuer A, Wiessler M. Induction of metallothionein by zinc protects from daunorubicin toxicity in rats. Toxicology 2002; 179(1-2): 85-93
doi: 10.1016/S0300-483X(02)00322-0 pmid:12204545
146 Song Y, Wang J, Li Y, Du Y, Arteel GE, Saari JT, Kang YJ, Cai L. Cardiac metallothionein synthesis in streptozotocin-induced diabetic mice, and its protection against diabetes-induced cardiac injury. Am J Pathol 2005; 167(1): 17-26
doi: 10.1016/S0002-9440(10)62949-5 pmid:15972948
147 Wang Y, Feng W, Xue W, Tan Y, Hein DW, Li XK, Cai L. Inactivation of GSK-3beta by metallothionein prevents diabetes-related changes in cardiac energy metabolism, inflammation, nitrosative damage, and remodeling. Diabetes 2009; 58(6): 1391-1402
doi: 10.2337/db08-1697 pmid:19324938
148 Xu J, Wang G, Wang Y, Liu Q, Xu W, Tan Y, Cai L. Diabetes- and angiotensin II-induced cardiac endoplasmic reticulum stress and cell death: metallothionein protection. J Cell Mol Med 2009; 13(8a 8A): 1499-1512
doi: 10.1111/j.1582-4934.2009.00833.x pmid:19583814
149 Liang Q, Carlson EC, Donthi RV, Kralik PM, Shen X, Epstein PN. Overexpression of metallothionein reduces diabetic cardiomyopathy. Diabetes 2002; 51(1): 174-181
doi: 10.2337/diabetes.51.1.174 pmid:11756338
150 Ye G, Metreveli NS, Ren J, Epstein PN. Metallothionein prevents diabetes-induced deficits in cardiomyocytes by inhibiting reactive oxygen species production. Diabetes 2003; 52(3): 777-783
doi: 10.2337/diabetes.52.3.777 pmid:12606520
151 Cai L. Suppression of nitrative damage by metallothionein in diabetic heart contributes to the prevention of cardiomyopathy. Free Radic Biol Med 2006; 41(6): 851-861
doi: 10.1016/j.freeradbiomed.2006.06.007 pmid:16934665
152 Cai L, Wang Y, Zhou G, Chen T, Song Y, Li X, Kang YJ. Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. J Am Coll Cardiol 2006; 48(8): 1688-1697
doi: 10.1016/j.jacc.2006.07.022 pmid:17045908
153 Wang J, Song Y, Elsherif L, Song Z, Zhou G, Prabhu SD, Saari JT, Cai L. Cardiac metallothionein induction plays the major role in the prevention of diabetic cardiomyopathy by zinc supplementation. Circulation 2006; 113(4): 544-554
doi: 10.1161/CIRCULATIONAHA.105.537894 pmid:16432057
154 Tang Y, Yang Q, Lu J, Zhang X, Suen D, Tan Y, Jin L, Xiao J, Xie R, Rane M, Li X, Cai L. Zinc supplementation partially prevents renal pathological changes in diabetic rats. J Nutr Biochem 2010; 21(3): 237-246
doi: 10.1016/j.jnutbio.2008.12.010 pmid:19369054
155 ?zcelik D, Naz?roglu M, Tun?demir M, Celik O, Oztürk M, Flores-Arce MF. Zinc supplementation attenuates metallothionein and oxidative stress changes in kidney of streptozotocin-induced diabetic rats. Biol Trace Elem Res 2012; 150(1-3): 342-349
doi: 10.1007/s12011-012-9508-4 pmid:23054862
156 Salgueiro MJ, Krebs N, Zubillaga MB, Weill R, Postaire E, Lysionek AE, Caro RA, De Paoli T, Hager A, Boccio J. Zinc and diabetes mellitus: is there a need of zinc supplementation in diabetes mellitus patients? Biol Trace Elem Res 2001; 81(3): 215-228
doi: 10.1385/BTER:81:3:215 pmid:11575679
157 Foster M, Samman S. Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid Redox Signal 2010;13, 1549-1573
doi: 10.1089/ars.2010.3111 pmid:20568953
158 Yoshikawa Y, Ueda E, Kojima Y, Sakurai H. The action mechanism of zinc(II) complexes with insulinomimetic activity in rat adipocytes. Life Sci 2004; 75(6): 741-751
doi: 10.1016/j.lfs.2004.02.006 pmid:15172182
160 Bonham M, O’Connor JM, McAnena LB, Walsh PM, Downes CS, Hannigan BM, Strain JJ. Zinc supplementation has no effect on lipoprotein metabolism, hemostasis, and putative indices of copper status in healthy men. Biol Trace Elem Res 2003; 93(1-3): 75-86
doi: 10.1385/BTER:93:1-3:75 pmid:12835492
161 Bonham M, O’Connor JM, Alexander HD, Coulter J, Walsh PM, McAnena LB, Downes CS, Hannigan BM, Strain JJ. Zinc supplementation has no effect on circulating levels of peripheral blood leucocytes and lymphocyte subsets in healthy adult men. Br J Nutr 2003; 89(5): 695-703
doi: 10.1079/BJN2003826 pmid:12720590
162 Alissa EM, Bahijri SM, Lamb DJ, Ferns GA. The effects of coadministration of dietary copper and zinc supplements on atherosclerosis, antioxidant enzymes and indices of lipid peroxidation in the cholesterol-fed rabbit. Int J Exp Pathol 2004; 85(5): 265-275
doi: 10.1111/j.0959-9673.2004.00392.x pmid:15379959
164 Baydas B, Karagoz S, Meral I. Effects of oral zinc and magnesium supplementation on serum thyroid hormone and lipid levels in experimentally induced diabetic rats. Biol Trace Elem Res 2002; 88(3): 247-253
doi: 10.1385/BTER:88:3:247 pmid:12350134
165 Disilvestro RA. Zinc in relation to diabetes and oxidative disease. J Nutrition 2000;130(5S Suppl):1509S-1511S
166 Coulston L, Dandona P. Insulin-like effect of zinc on adipocytes. Diabetes 1980; 29(8): 665-667
doi: 10.2337/diabetes.29.8.665 pmid:7002679
167 Moniz T, Amorim MJ, Ferreira R, Nunes A, Silva A, Queirós C, Leite A, Gameiro P, Sarmento B, Remi?o F, Yoshikawa Y, Sakurai H, Rangel M. Investigation of the insulin-like properties of zinc(II) complexes of 3-hydroxy-4-pyridinones: identification of a compound with glucose lowering effect in STZ-induced type I diabetic animals. J Inorg Biochem 2011; 105(12): 1675-1682
doi: 10.1016/j.jinorgbio.2011.09.005 pmid:22088976
168 McClain CJ, McClain M, Barve S, Boosalis MG. Trace metals and the elderly. Clin Geriatr Med 2002; 18(4): 801-818, vii-viii (vii-viii.)
doi: 10.1016/S0749-0690(02)00040-X pmid:12608504
169 Sbarbati A, Mocchegiani E, Marzola P, Tibaldi A, Mannucci R, Nicolato E, Osculati F. Effect of dietary supplementation with zinc sulphate on the aging process: a study using high field intensity MRI and chemical shift imaging. Biomed Pharmacother 1998; 52(10): 454-458
doi: 10.1016/S0753-3322(99)80024-9 pmid:9921415
170 Cunningham JJ, Fu A, Mearkle PL, Brown RG. Hyperzincuria in individuals with insulin-dependent diabetes mellitus: concurrent zinc status and the effect of high-dose zinc supplementation. Metabolism 1994; 43(12): 1558-1562
doi: 10.1016/0026-0495(94)90016-7 pmid:7990711
171 Velázquez-Pérez L, Rodríguez-Chanfrau J, García-Rodríguez JC, Sánchez-Cruz G, Aguilera-Rodríguez R, Rodríguez-Labrada R, Rodríguez-Díaz JC, Canales-Ochoa N, Gotay DA, Almaguer Mederos LE, Laffita Mesa JM, Porto-Verdecia M, Triana CG, Pupo NR, Batista IH, López-Hernandez OD, Polanco ID, Novas AJ. Oral zinc sulphate supplementation for six months in SCA2 patients: a randomized, double-blind, placebo-controlled trial. Neurochem Res 2011; 36(10): 1793-1800
doi: 10.1007/s11064-011-0496-0 pmid:21562746
172 Somi MH, Rezaeifar P, Ostad Rahimi A, Moshrefi B. Effects of low dose zinc supplementation on biochemical markers in non-alcoholic cirrhosis: a randomized clinical trial. Arch Iran Med 2012; 15(8): 472-476
173 Yang J, Cherian MG. Protective effects of metallothionein on streptozotocin-induced diabetes in rats. Life Sci 1994; 55(1): 43-51
doi: 10.1016/0024-3205(94)90080-9 pmid:8015348
174 Chen MD, Lin PY, Cheng V, Lin WH. Zinc supplementation aggravates body fat accumulation in genetically obese mice and dietary-obese mice. Biol Trace Elem Res 1996; 52(2): 125-132
doi: 10.1007/BF02789454 pmid:8773753
175 Tobia MH, Zdanowicz MM, Wingertzahn MA, McHeffey-Atkinson B, Slonim AE, Wapnir RA. The role of dietary zinc in modifying the onset and severity of spontaneous diabetes in the BB Wistar rat. Mol Genet Metab 1998; 63(3): 205-213
doi: 10.1006/mgme.1997.2672 pmid:9608543
178 im Walde SS, Dohle C, Schott-Ohly P, Gleichmann H. Molecular target structures in alloxan-induced diabetes in mice. Life Sci 2002; 71(14): 1681-1694
doi: 10.1016/S0024-3205(02)01918-5 pmid:12137914
179 Schott-Ohly P, Lgssiar A, Partke HJ, Hassan M, Friesen N, Gleichmann H. Prevention of spontaneous and experimentally induced diabetes in mice with zinc sulfate-enriched drinking water is associated with activation and reduction of NF-kappa B and AP-1 in islets, respectively. Exp Biol Med (Maywood) 2004; 229(11): 1177-1185
180 Yoshikawa Y, Adachi Y, Yasui H, Hattori M, Sakurai H. Oral administration of Bis(aspirinato)zinc(II) complex ameliorates hyperglycemia and metabolic syndrome-like disorders in spontaneously diabetic KK-A(y) mice: structure-activity relationship on zinc-salicylate complexes. Chem Pharm Bull (Tokyo) 2011; 59(8): 972-977
doi: 10.1248/cpb.59.972 pmid:21804241
181 Chen H, Carlson EC, Pellet L, Moritz JT, Epstein PN. Overexpression of metallothionein in pancreatic beta-cells reduces streptozotocin-induced DNA damage and diabetes. Diabetes 2001; 50(9): 2040-2046
doi: 10.2337/diabetes.50.9.2040 pmid:11522669
184 Parham M, Amini M, Aminorroaya A, Heidarian E. Effect of zinc supplementation on microalbuminuria in patients with type 2 diabetes: a double blind, randomized, placebo-controlled, cross-over trial. Rev Diabet Stud 2008; 5(2): 102-109
doi: 10.1900/RDS.2008.5.102 pmid:18795212
185 Heidarian E, Amini M, Parham M, Aminorroaya A. Effect of zinc supplementation on serum homocysteine in type 2 diabetic patients with microalbuminuria. Rev Diabet Stud 2009; 6(1): 64-70
doi: 10.1900/RDS.2009.6.64 pmid:19557297
186 Yamaguchi M, Uchiyama S. Preventive effect of zinc acexamate administration in streptozotocin-diabetic rats: Restoration of bone loss. Int J Mol Med 2003; 12(5): 755-761
187 Uchiyama S, Yamaguchi M. Alteration in serum and bone component findings induced in streptozotocin-diabetic rats is restored by zinc acexamate. Int J Mol Med 2003; 12(6): 949-954
188 Moustafa SA. Zinc might protect oxidative changes in the retina and pancreas at the early stage of diabetic rats. Toxicol Appl Pharmacol 2004; 201(2): 149-155
doi: 10.1016/j.taap.2004.05.014 pmid:15541754
189 Kumar SD, Vijaya M, Samy RP, Dheen ST, Ren M, Watt F, Kang YJ, Bay BH, Tay SS. Zinc supplementation prevents cardiomyocyte apoptosis and congenital heart defects in embryos of diabetic mice. Free Radic Biol Med 2012; 53(8): 1595-1606
doi: 10.1016/j.freeradbiomed.2012.07.008 pmid:22819979
190 Karatug A, Kaptan E, Bolkent S, Mutlu O, Yanardag R. Alterations in kidney tissue following zinc supplementation to stz-induced diabetic rats. J Trace Elem Med Biol 2012 Aug 31. [Epub ahead of print]
doi: 10.1016/j.jtemb.2012.07.006 pmid:22944585
191 Kojima Y, Yoshikawa Y, Ueda E, Ueda R, Yamamoto S, Kumekawa K, Yanagihara N, Sakurai H. Insulinomimetic zinc(II) complexes with natural products: in vitro evaluation and blood glucose lowering effect in KK-Ay mice with type 2 diabetes mellitus. Chem Pharm Bull (Tokyo) 2003; 51(8): 1006-1008
doi: 10.1248/cpb.51.1006 pmid:12913247
192 Hwang IK, Go VL, Harris DM, Yip I, Kang KW, Song MK. Effects of cyclo (his-pro) plus zinc on glucose metabolism in genetically diabetic obese mice. Diabetes Obes Metab 2003; 5(5): 317-324
doi: 10.1046/j.1463-1326.2003.00281.x pmid:12940869
193 Song MK, Hwang IK, Rosenthal MJ, Harris DM, Yamaguchi DT, Yip I, Go VL. Anti-hyperglycemic activity of zinc plus cyclo (his-pro) in genetically diabetic Goto-Kakizaki and aged rats. Exp Biol Med (Maywood) 2003; 228(11): 1338-1345
194 Yoshikawa Y, Ueda E, Sakurai H, Kojima Y. Anti-diabetes effect of Zn(II)/carnitine complex by oral administration. Chem Pharm Bull (Tokyo) 2003; 51(2): 230-231
doi: 10.1248/cpb.51.230 pmid:12576666
195 Adachi Y, Yoshida J, Kodera Y, Kato A, Yoshikawa Y, Kojima Y, Sakurai H. A new insulin-mimetic bis(allixinato)zinc(II) complex: structure-activity relationship of zinc(II) complexes. J Biol Inorg Chem 2004; 9(7): 885-893
doi: 10.1007/s00775-004-0590-8 pmid:15378407
Related articles from Frontiers Journals
[1] Chao Chen, Chang Wang, Chun Hu, Yachun Han, Li Zhao, Xuejing Zhu, Li Xiao, Lin Sun. Normoalbuminuric diabetic kidney disease[J]. Front. Med., 2017, 11(3): 310-318.
[2] Palka Kaur Khanuja,Satish Chander Narula,Rajesh Rajput,Rajinder Kumar Sharma,Shikha Tewari. Association of periodontal disease with glycemic control in patients with type 2 diabetes in Indian population[J]. Front. Med., 2017, 11(1): 110-119.
[3] Huiqin Zhong,Ya Shao,Ling Fan,Tangshen Zhong,Lu Ren,Yan Wang. Perceived resource support for chronic illnesses among diabetics in north-western China[J]. Front. Med., 2016, 10(2): 219-227.
[4] Lixia Gan,Wei Xiang,Bin Xie,Liqing Yu. Molecular mechanisms of fatty liver in obesity[J]. Front. Med., 2015, 9(3): 275-287.
[5] Juan Zheng,Shih-Lung Woo,Xiang Hu,Rachel Botchlett,Lulu Chen,Yuqing Huo,Chaodong Wu. Metformin and metabolic diseases: a focus on hepatic aspects[J]. Front. Med., 2015, 9(2): 173-186.
[6] Jianping Ye. Beneficial metabolic activities of inflammatory cytokine interleukin 15 in obesity and type 2 diabetes[J]. Front. Med., 2015, 9(2): 139-145.
[7] Xiaoyan Chen,Wenxia Xiao,Xinchun Li,Jianxun He,Xiaochun Huang,Yuyu Tan. In vivo evaluation of renal function using diffusion weighted imaging and diffusion tensor imaging in type 2 diabetics with normoalbuminuria versus microalbuminuria[J]. Front. Med., 2014, 8(4): 471-476.
[8] Jie Zheng,Yuzhen Gao,Yuejuan Jing,Xiaoshuang Zhou,Yuanyuan Shi,Yanhong Li,Lihua Wang,Ruiying Wang,Maolian Li,Chuanshi Xiao,Yafeng Li,Rongshan Li. Gender differences in the relationship between plasma lipids and fasting plasma glucose in non-diabetic urban Chinese population: a cross-section study[J]. Front. Med., 2014, 8(4): 477-483.
[9] Jichun Yang, Jihong Kang, Youfei Guan. The mechanisms linking adiposopathy to type 2 diabetes[J]. Front Med, 2013, 7(4): 433-444.
[10] Tingting Wang, Shanglong Yao, Zhengyuan Xia, Michael G. Irwin. Adiponectin: mechanisms and new therapeutic approaches for restoring diabetic heart sensitivity to ischemic post-conditioning[J]. Front Med, 2013, 7(3): 301-305.
[11] Wenbo Yan, Xin Li. Impact of diabetes and its treatments on skeletal diseases[J]. Front Med, 2013, 7(1): 81-90.
[12] Jingyi Lu, Guoxiang Xie, Weiping Jia, Wei Jia. Insulin resistance and the metabolism of branched-chain amino acids[J]. Front Med, 2013, 7(1): 53-59.
[13] Jingyi Lu, Guoxiang Xie, Weiping Jia, Wei Jia. Metabolomics in human type 2 diabetes research[J]. Front Med, 2013, 7(1): 4-13.
[14] Xiaoyan Chen, Xiaochun Huang, Yuan Qiu, Hanzhang Chen, Yingyu Fu, Xinchun Li. A case of thymic Langerhans cell histiocytosis with diabetes insipidus as the first presentation[J]. Front Med, 2013, 7(1): 143-146.
[15] Jianping Ye. Mechanisms of insulin resistance in obesity[J]. Front Med, 2013, 7(1): 14-24.
Full text