Please wait a minute...

Frontiers of Medicine

Front Med    2012, Vol. 6 Issue (3) : 275-279     DOI: 10.1007/s11684-012-0216-4
REVIEW |
Dual faces of SH2-containing protein-tyrosine phosphatase Shp2/PTPN11 in tumorigenesis
Shuangwei Li1, Diane DiFang Hsu1, Hongyang Wang2, Gen-Sheng Feng1()
1. Department of Pathology, and Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0864, USA; 2. Laboratory of Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, 225 Changhai Road, Shanghai 200438; State Key Laboratory of Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, China
Download: PDF(116 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

PTPN11, which encodes tyrosine phosphatase Shp2, is a critical gene mediating cellular responses to hormones and cytokines. Against original prediction as tumor suppressor for tyrosine phosphatases, PTPN11 was first identified as a proto-oncogene because activating mutations of this gene are associated with leukemogenesis. However, most recent experimental data suggest PTPN11/Shp2 acting as a tumor suppressor in hepatocarcinogenesis. This review focuses on the tumor-promoting or suppressing roles of the gene PTPN11/Shp2 in different cell types.

Keywords PTPN11/Shp2      leukemia      hepatocellular carcinoma      mutation     
Corresponding Authors: Feng Gen-Sheng,Email:gfeng@ucsd.edu   
Issue Date: 05 September 2012
 Cite this article:   
Shuangwei Li,Diane DiFang Hsu,Hongyang Wang, et al. Dual faces of SH2-containing protein-tyrosine phosphatase Shp2/PTPN11 in tumorigenesis[J]. Front Med, 2012, 6(3): 275-279.
 URL:  
http://journal.hep.com.cn/fmd/EN/10.1007/s11684-012-0216-4
http://journal.hep.com.cn/fmd/EN/Y2012/V6/I3/275
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shuangwei Li
Diane DiFang Hsu
Hongyang Wang
Gen-Sheng Feng
1 Freeman RM Jr, Plutzky J, Neel BG. Identification of a human src homology 2-containing protein-tyrosine-phosphatase: a putative homolog of Drosophila corkscrew. Proc Natl Acad Sci U S A 1992; 89(23): 11239–11243
doi: 10.1073/pnas.89.23.11239 pmid:1280823
2 Adachi M, Sekiya M, Miyachi T, Matsuno K, Hinoda Y, Imai K, Yachi A. Molecular cloning of a novel protein-tyrosine phosphatase SH-PTP3 with sequence similarity to the src-homology region 2. FEBS Lett 1992; 314(3): 335–339
doi: 10.1016/0014-5793(92)81500-L pmid:1281790
3 Feng GS, Hui CC, Pawson T. SH2-containing phosphotyrosine phosphatase as a target of protein-tyrosine kinases. Science 1993; 259(5101): 1607–1611
doi: 8096088" target="_blank">10.1126/science. pmid:8096088 pmid:8096088
4 Hof P, Pluskey S, Dhe-Paganon S, Eck MJ, Shoelson SE. Crystal structure of the tyrosine phosphatase SHP-2. Cell 1998; 92(4): 441–450
doi: 10.1016/S0092-8674(00)80938-1 pmid:9491886
5 Eck MJ, Pluskey S, Trüb T, Harrison SC, Shoelson SE. Spatial constraints on the recognition of phosphoproteins by the tandem SH2 domains of the phosphatase SH-PTP2. Nature 1996; 379(6562): 277–280
doi: 10.1038/379277a0 pmid:8538796
6 Vogel W, Lammers R, Huang J, Ullrich A. Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation. Science 1993; 259(5101): 1611–1614
doi: 7681217" target="_blank">10.1126/science. pmid:7681217 pmid:7681217
7 Kazlauskas A, Feng GS, Pawson T, Valius M. The 64-kDa protein that associates with the platelet-derived growth factor receptor beta subunit via Tyr-1009 is the SH2-containing phosphotyrosine phosphatase Syp. Proc Natl Acad Sci U S A 1993; 90(15): 6939–6943
doi: 10.1073/pnas.90.15.6939 pmid:7688466
8 Lechleider RJ, Freeman RM Jr, Neel BG. Tyrosyl phosphorylation and growth factor receptor association of the human corkscrew homologue, SH-PTP2. J Biol Chem 1993; 268(18): 13434–13438
pmid:8514779
9 Kuhné MR, Pawson T, Lienhard GE, Feng GS. The insulin receptor substrate 1 associates with the SH2-containing phosphotyrosine phosphatase Syp. J Biol Chem 1993; 268(16): 11479–11481
pmid:8505282
10 Fujioka Y, Matozaki T, Noguchi T, Iwamatsu A, Yamao T, Takahashi N, Tsuda M, Takada T, Kasuga M. A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion. Mol Cell Biol 1996; 16(12): 6887–6899
pmid:8943344
11 Gu H, Pratt JC, Burakoff SJ, Neel BG. Cloning of p97/Gab2, the major SHP2-binding protein in hematopoietic cells, reveals a novel pathway for cytokine-induced gene activation. Mol Cell 1998; 2(6): 729–740
doi: 10.1016/S1097-2765(00)80288-9 pmid:9885561
12 Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007; 26(22): 3291–3310
doi: 10.1038/sj.onc.1210422 pmid:17496923
13 Milarski KL, Saltiel AR. Expression of catalytically inactive Syp phosphatase in 3T3 cells blocks stimulation of mitogen-activated protein kinase by insulin. J Biol Chem 1994; 269(33): 21239–21243
pmid:8063746
14 Noguchi T, Matozaki T, Horita K, Fujioka Y, Kasuga M. Role of SH-PTP2, a protein-tyrosine phosphatase with Src homology 2 domains, in insulin-stimulated Ras activation. Mol Cell Biol 1994; 14(10): 6674–6682
pmid:7935386
15 Tang TL, Freeman RM Jr, O’Reilly AM, Neel BG, Sokol SY. The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early Xenopus development. Cell 1995; 80(3): 473–483
doi: 10.1016/0092-8674(95)90498-0 pmid:7859288
16 Qu CK. Role of the SHP-2 tyrosine phosphatase in cytokine-induced signaling and cellular response. Biochim Biophys Acta 2002; 1592(3): 297–301
doi: 10.1016/S0167-4889(02)00322-1 pmid:12421673
17 Chan RJ, Feng GS. PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood 2007; 109(3): 862–867
doi: 10.1182/blood-2006-07-028829 pmid:17053061
18 Bard-Chapeau EA, Li S, Ding J, Zhang SS, Zhu HH, Princen F, Fang DD, Han T, Bailly-Maitre B, Poli V, Varki NM, Wang H, Feng GS. Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis. Cancer Cell 2011; 19(5): 629–639
doi: 10.1016/j.ccr.2011.03.023 pmid:21575863
19 Jiang C, Hu F, Tai Y, Du J, Mao B, Yuan Z, Wang Y, Wei L. The tumor suppressor role of Src homology phosphotyrosine phosphatase 2 in hepatocellular carcinoma. J Cancer Res Clin Oncol 2012; 138(4): 637–646
doi: 10.1007/s00432-011-1143-5 pmid:22228034
20 Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, van der Burgt I, Crosby AH, Ion A, Jeffery S, Kalidas K, Patton MA, Kucherlapati RS, Gelb BD. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 2001; 29(4): 465–468
doi: 10.1038/ng772 pmid:11704759
21 Tartaglia M, Kalidas K, Shaw A, Song X, Musat DL, van der Burgt I, Brunner HG, Bertola DR, Crosby A, Ion A, Kucherlapati RS, Jeffery S, Patton MA, Gelb BD. PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet 2002; 70(6): 1555–1563
doi: 10.1086/340847 pmid:11992261
22 Legius E, Schrander-Stumpel C, Schollen E, Pulles-Heintzberger C, Gewillig M, Fryns JP. PTPN11 mutations in LEOPARD syndrome. J Med Genet 2002; 39(8): 571–574
doi: 10.1136/jmg.39.8.571 pmid:12161596
23 Digilio MC, Conti E, Sarkozy A, Mingarelli R, Dottorini T, Marino B, Pizzuti A, Dallapiccola B. Grouping of multiple-lentigines/LEOPARD and Noonan syndromes on the PTPN11 gene. Am J Hum Genet 2002; 71(2): 389–394
doi: 10.1086/341528 pmid:12058348
24 Fragale A, Tartaglia M, Wu J, Gelb BD. Noonan syndrome-associated SHP2/PTPN11 mutants cause EGF-dependent prolonged GAB1 binding and sustained ERK2/MAPK1 activation. Hum Mutat 2004; 23(3): 267–277
doi: 10.1002/humu.20005 pmid:14974085
25 Keilhack H, David FS, McGregor M, Cantley LC, Neel BG. Diverse biochemical properties of Shp2 mutants. Implications for disease phenotypes. J Biol Chem 2005; 280(35): 30984–30993
doi: 10.1074/jbc.M504699200 pmid:15987685
26 Oishi K, Zhang H, Gault WJ, Wang CJ, Tan CC, Kim IK, Ying H, Rahman T, Pica N, Tartaglia M, Mlodzik M, Gelb BD. Phosphatase-defective LEOPARD syndrome mutations in PTPN11 gene have gain-of-function effects during Drosophila development. Hum Mol Genet 2009; 18(1): 193–201
doi: 10.1093/hmg/ddn336 pmid:18849586
27 Jopling C, van Geemen D, den Hertog J. Shp2 knockdown and Noonan/LEOPARD mutant Shp2-induced gastrulation defects. PLoS Genet 2007; 3(12): e225
doi: 10.1371/journal.pgen.0030225 pmid:18159945
28 Araki T, Mohi MG, Ismat FA, Bronson RT, Williams IR, Kutok JL, Yang W, Pao LI, Gilliland DG, Epstein JA, Neel BG. Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. Nat Med 2004; 10(8): 849–857
doi: 10.1038/nm1084 pmid:15273746
29 Marin TM, Keith K, Davies B, Conner DA, Guha P, Kalaitzidis D, Wu X, Lauriol J, Wang B, Bauer M, Bronson R, Franchini KG, Neel BG, Kontaridis MI. Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. J Clin Invest 2011; 121(3): 1026–1043
doi: 10.1172/JCI44972 pmid:21339643
30 Saxton TM, Henkemeyer M, Gasca S, Shen R, Rossi DJ, Shalaby F, Feng GS, Pawson T. Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. EMBO J 1997; 16(9): 2352–2364
doi: 10.1093/emboj/16.9.2352 pmid:9171349
31 Wu D, Pang Y, Ke Y, Yu J, He Z, Tautz L, Mustelin T, Ding S, Huang Z, Feng GS. A conserved mechanism for control of human and mouse embryonic stem cell pluripotency and differentiation by shp2 tyrosine phosphatase. PLoS ONE 2009; 4(3): e4914
doi: 10.1371/journal.pone.0004914 pmid:19290061
32 Yang W, Klaman LD, Chen B, Araki T, Harada H, Thomas SM, George EL, Neel BG. An Shp2/SFK/Ras/Erk signaling pathway controls trophoblast stem cell survival. Dev Cell 2006; 10(3): 317–327
doi: 10.1016/j.devcel.2006.01.002 pmid:16516835
33 Zhang X, Zhang Y, Tao B, Teng L, Li Y, Cao R, Gui Q, Ye M, Mou X, Cheng H, Hu H, Zhou R, Wu X, Xie Q, Ning W, Lai M, Shen H, Feng GS, Ke Y. Loss of Shp2 in alveoli epithelia induces deregulated surfactant homeostasis, resulting in spontaneous pulmonary fibrosis. FASEB J 2012; 26(6): 2338–2350
doi: 10.1096/fj.11-200139 pmid:22362894
34 Zhang EE, Chapeau E, Hagihara K, Feng GS. Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism. Proc Natl Acad Sci U S A 2004; 101(45): 16064–16069
doi: 10.1073/pnas.0405041101 pmid:15520383
35 Ke Y, Zhang EE, Hagihara K, Wu D, Pang Y, Klein R, Curran T, Ranscht B, Feng GS. Deletion of Shp2 in the brain leads to defective proliferation and differentiation in neural stem cells and early postnatal lethality. Mol Cell Biol 2007; 27(19): 6706–6717
doi: 10.1128/MCB.01225-07 pmid:17646384
36 Zhang SS, Hao E, Yu J, Liu W, Wang J, Levine F, Feng GS. Coordinated regulation by Shp2 tyrosine phosphatase of signaling events controlling insulin biosynthesis in pancreatic beta-cells. Proc Natl Acad Sci U S A 2009; 106(18): 7531–7536
doi: 10.1073/pnas.0811715106 pmid:19380737
37 He Z, Zhang SS, Meng Q, Li S, Zhu HH, Raquil MA, Alderson N, Zhang H, Wu J, Rui L, Cai D, Feng GS. Shp2 controls female body weight and energy balance by integrating leptin and estrogen signals. Mol Cell Biol 2012; 32(10): 1867–1878
doi: 10.1128/MCB.06712-11 pmid:22431513
38 Choong K, Freedman MH, Chitayat D, Kelly EN, Taylor G, Zipursky A. Juvenile myelomonocytic leukemia and Noonan syndrome. J Pediatr Hematol Oncol 1999; 21(6): 523–527
doi: 10.1097/00043426-199911000-00014 pmid:10598665
39 Fukuda M, Horibe K, Miyajima Y, Matsumoto K, Nagashima M. Spontaneous remission of juvenile chronic myelomonocytic leukemia in an infant with Noonan syndrome. J Pediatr Hematol Oncol 1997; 19(2): 177–179
doi: 10.1097/00043426-199703000-00019 pmid:9149755
40 Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A, H?hlen K, Hasle H, Licht JD, Gelb BD. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 2003; 34(2): 148–150
doi: 10.1038/ng1156 pmid:12717436
41 Tartaglia M, Martinelli S, Cazzaniga G, Cordeddu V, Iavarone I, Spinelli M, Palmi C, Carta C, Pession A, Aricò M, Masera G, Basso G, Sorcini M, Gelb BD, Biondi A. Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. Blood 2004; 104(2): 307–313
doi: 10.1182/blood-2003-11-3876 pmid:14982869
42 Xu R, Yu Y, Zheng S, Zhao X, Dong Q, He Z, Liang Y, Lu Q, Fang Y, Gan X, Xu X, Zhang S, Dong Q, Zhang X, Feng GS. Overexpression of Shp2 tyrosine phosphatase is implicated in leukemogenesis in adult human leukemia. Blood 2005; 106(9): 3142–3149
doi: 10.1182/blood-2004-10-4057 pmid:16030196
43 Loh ML, Vattikuti S, Schubbert S, Reynolds MG, Carlson E, Lieuw KH, Cheng JW, Lee CM, Stokoe D, Bonifas JM, Curtiss NP, Gotlib J, Meshinchi S, Le Beau MM, Emanuel PD, Shannon KM. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood 2004; 103(6): 2325–2331
doi: 10.1182/blood-2003-09-3287 pmid:14644997
44 Mohi MG, Williams IR, Dearolf CR, Chan G, Kutok JL, Cohen S, Morgan K, Boulton C, Shigematsu H, Keilhack H, Akashi K, Gilliland DG, Neel BG. Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell 2005; 7(2): 179–191
doi: 10.1016/j.ccr.2005.01.010 pmid:15710330
45 Xu D, Liu X, Yu WM, Meyerson HJ, Guo C, Gerson SL, Qu CK. Non-lineage/stage-restricted effects of a gain-of-function mutation in tyrosine phosphatase Ptpn11 (Shp2) on malignant transformation of hematopoietic cells. J Exp Med 2011; 208(10): 1977–1988
doi: 10.1084/jem.20110450 pmid:21930766
46 Chan G, Kalaitzidis D, Usenko T, Kutok JL, Yang W, Mohi MG, Neel BG. Leukemogenic Ptpn11 causes fatal myeloproliferative disorder via cell-autonomous effects on multiple stages of hematopoiesis. Blood 2009; 113(18): 4414–4424
doi: 10.1182/blood-2008-10-182626 pmid:19179468
47 Kühn R, Schwenk F, Aguet M, Rajewsky K. Inducible gene targeting in mice. Science 1995; 269(5229): 1427–1429
doi: 7660125" target="_blank">10.1126/science. pmid:7660125 pmid:7660125
48 Xu D, Wang S, Yu WM, Chan G, Araki T, Bunting KD, Neel BG, Qu CK. A germline gain-of-function mutation in Ptpn11 (Shp-2) phosphatase induces myeloproliferative disease by aberrant activation of hematopoietic stem cells. Blood 2010; 116(18): 3611–3621
doi: 10.1182/blood-2010-01-265652 pmid:20651068
49 Qu CK, Yu WM, Azzarelli B, Cooper S, Broxmeyer HE, Feng GS. Biased suppression of hematopoiesis and multiple developmental defects in chimeric mice containing Shp-2 mutant cells. Mol Cell Biol 1998; 18(10): 6075–6082
pmid:9742124
50 Zhu HH, Ji K, Alderson N, He Z, Li S, Liu W, Zhang DE, Li L, Feng GS. Kit-Shp2-Kit signaling acts to maintain a functional hematopoietic stem and progenitor cell pool. Blood 2011; 117(20): 5350–5361
doi: 10.1182/blood-2011-01-333476 pmid:21450902
51 Chan G, Cheung LS, Yang W, Milyavsky M, Sanders AD, Gu S, Hong WX, Liu AX, Wang X, Barbara M, Sharma T, Gavin J, Kutok JL, Iscove NN, Shannon KM, Dick JE, Neel BG, Braun BS. Essential role for Ptpn11 in survival of hematopoietic stem and progenitor cells. Blood 2011; 117(16): 4253–4261
doi: 10.1182/blood-2010-11-319517 pmid:21398220
52 Bard-Chapeau EA, Yuan J, Droin N, Long S, Zhang EE, Nguyen TV, Feng GS. Concerted functions of Gab1 and Shp2 in liver regeneration and hepatoprotection. Mol Cell Biol 2006; 26(12): 4664–4674
doi: 10.1128/MCB.02253-05 pmid:16738330
53 Peters M, Blinn G, Jostock T, Schirmacher P, Meyer zum Büschenfelde KH, Galle PR, Rose-John S. Combined interleukin 6 and soluble interleukin 6 receptor accelerates murine liver regeneration. Gastroenterology 2000; 119(6): 1663–1671
doi: 10.1053/gast.2000.20236 pmid:11113088
54 Streetz KL, Luedde T, Manns MP, Trautwein C. Interleukin 6 and liver regeneration. Gut 2000; 47(2): 309–312
doi: 10.1136/gut.47.2.309 pmid:10896929
55 Feng GS. Conflicting roles of molecules in hepatocarcinogenesis: paradigm or paradox. Cancer Cell 2012; 21(2): 150–154
doi: 10.1016/j.ccr.2012.01.001 pmid:22340589
56 Aleksic K, Lackner C, Geigl JB, Schwarz M, Auer M, Ulz P, Fischer M, Trajanoski Z, Otte M, Speicher MR. Evolution of genomic instability in diethylnitrosamine-induced hepatocarcinogenesis in mice. Hepatology 2011; 53(3): 895–904
doi: 10.1002/hep.24133 pmid:21374661
Related articles from Frontiers Journals
[1] Xinsen Xu,Yanyan Zhou,Runchen Miao,Wei Chen,Kai Qu,Qing Pang,Chang Liu. Transcriptional modules related to hepatocellular carcinoma survival: coexpression network analysis[J]. Front. Med., 2016, 10(2): 183-190.
[2] Zhi Xu,Chunxiang Cao,Haiyan Xia,Shujing Shi,Lingzhi Hong,Xiaowei Wei,Dongying Gu,Jianmin Bian,Zijun Liu,Wenbin Huang,Yixin Zhang,Song He,Nikki Pui-Yue Lee,Jinfei Chen. Protein phosphatase magnesium-dependent 1δ is a novel tumor marker and target in hepatocellular carcinoma[J]. Front. Med., 2016, 10(1): 52-60.
[3] Yuting Tan,Han Liu,Saijuan Chen. Mutant DNA methylation regulators endow hematopoietic stem cells with the preleukemic stem cell property, a requisite of leukemia initiation and relapse[J]. Front. Med., 2015, 9(4): 412-420.
[4] Joseph Cannova,Peter Breslin S.J.,Jiwang Zhang. Toll-like receptor signaling in hematopoietic homeostasis and the pathogenesis of hematologic diseases[J]. Front. Med., 2015, 9(3): 288-303.
[5] Felice Ho-Ching Tsang,Sandy Leung-Kuen Au,Lai Wei,Dorothy Ngo-Yin Fan,Joyce Man-Fong Lee,Carmen Chak-Lui Wong,Irene Oi-Lin Ng,Chun-Ming Wong. MicroRNA-142-3p and microRNA-142-5p are downregulated in hepatocellular carcinoma and exhibit synergistic effects on cell motility[J]. Front. Med., 2015, 9(3): 331-343.
[6] Lanping Xu,Huanling Zhu,Jianda Hu,Depei Wu,Hao Jiang,Qian Jiang,Xiaojun Huang. Superiority of allogeneic hematopoietic stem cell transplantation to nilotinib and dasatinib for adult patients with chronic myelogenous leukemia in the accelerated phase[J]. Front. Med., 2015, 9(3): 304-311.
[7] Farhad Sahebjam,John M. Vierling. Autoimmune hepatitis[J]. Front. Med., 2015, 9(2): 187-219.
[8] Guanghua Rong,Wenlin Bai,Zheng Dong,Chunping Wang,Yinying Lu,Zhen Zeng,Jianhui Qu,Min Lou,Hong Wang,Xudong Gao,Xiujuan Chang,Linjing An,Yan Chen,Yongping Yang. Cryotherapy for cirrhosis-based hepatocellular carcinoma: a single center experience from 1595 treated cases[J]. Front. Med., 2015, 9(1): 63-71.
[9] Ching-Hon Pui. Genomic and pharmacogenetic studies of childhood acute lymphoblastic leukemia[J]. Front. Med., 2015, 9(1): 1-9.
[10] Marielle Reataza,David K. Imagawa. Advances in managing hepatocellular carcinoma[J]. Front. Med., 2014, 8(2): 175-189.
[11] Kai Qu,Ting Lin,Zhixin Wang,Sinan Liu,Hulin Chang,Xinsen Xu,Fandi Meng,Lei Zhou,Jichao Wei,Minghui Tai,Yafeng Dong,Chang Liu. Reactive oxygen species generation is essential for cisplatin-induced accelerated senescence in hepatocellular carcinoma[J]. Front. Med., 2014, 8(2): 227-235.
[12] Du Yan, Han Xue, Pu Rui, Xie Jiaxin, Zhang Yuwei, Cao Guangwen. Association of miRNA-122-binding site polymorphism at the interleukin-1 α gene and its interaction with hepatitis B virus mutations with hepatocellular carcinoma risk[J]. Front. Med., 2014, 8(2): 217-226.
[13] Zhangguo Chen,Jing H. Wang. Generation and repair of AID-initiated DNA lesions in B lymphocytes[J]. Front. Med., 2014, 8(2): 201-216.
[14] Chunquan Cai, Ouyan Shi. Genetic evidence in planar cell polarity signaling pathway in human neural tube defects[J]. Front Med, 2014, 8(1): 68-78.
[15] Carmen Chak-Lui Wong, Alan Ka-Lun Kai, Irene Oi-Lin Ng. The impact of hypoxia in hepatocellular carcinoma metastasis[J]. Front Med, 2014, 8(1): 33-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed