Please wait a minute...

Frontiers in Energy

Front. Energy    2019, Vol. 13 Issue (2) : 221-250
Metal-organic frameworks for CO2 photoreduction
Lei ZHANG(), Junqing ZHANG()
Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Download: PDF(2773 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Metal-organic frameworks (MOFs) have attracted much attention because of their large surface areas, tunable structures, and potential applications in many areas. In recent years, MOFs have shown much promise in CO2 photoreduction. This review summarized recent research progresses in MOF-based photocatalysts for photocatalytic reduction of CO2. Besides, it discussed strategies in rational design of MOF-based photocatalysts (functionalized pristine MOFs, MOF-photosensitizer, MOF-semiconductor, MOF-metal, and MOF-carbon materials composites) with enhanced performance on CO2 reduction. Moreover, it explored challenges and outlook on using MOF-based photocatalysts for CO2 reduction.

Keywords metal-organic frameworks (MOFs)      photocatalysis      CO2 photoreduction      composite     
Corresponding Authors: Lei ZHANG,Junqing ZHANG   
Online First Date: 04 June 2019    Issue Date: 04 July 2019
 Cite this article:   
Lei ZHANG,Junqing ZHANG. Metal-organic frameworks for CO2 photoreduction[J]. Front. Energy, 2019, 13(2): 221-250.
E-mail this article
E-mail Alert
Articles by authors
Junqing ZHANG
Reaction Thermodynamics potential (V) vs. NHE
CO2 + 2H+ + 2e-->HCOOH -0.61
CO2 + 4H+ + 4e-->HCHO+ H2O -0.52
CO2 + 2H+ + 2e-->CO+ H2O -0.48
CO2 + 6H+ + 6e-->CH3OH+ H2O -0.38
CO2 + 12H+ + 12e-->C2H5OH+ 3H2O -0.33
CO2 + 8H+ + 8e-->CH4 + 2H2O -0.24
H2O ->1/2O2 + 2H+ + 2e- +0.82
2H+ + 2e-->H2 -0.41
Tab.1  Photoreduction reactions of CO2 in aqueous solution at pH= 7 and their reduction potentials with reference to normal hydrogen electrode (NHE) at 25°C and 1 atm
Functionalization MOF Irradiation Solvent/sacrificial agent Main product Photocatalytic reactivity Reaction time/h Ref.
MIL-125(Ti) UV MeCN/TEOA HCOO- 2.41 mmol 10 [53]
MIL-125(Ti) Visible 0
NH2-functionalized linker MIL-125(Ti)-NH2 8.14 mmol
NH2-functionalized linker NH2‐UiO‐66(Zr) Visible MeCN/TEOA HCOO- 13.2 mmol 10 [93]
(NH2)2‐UiO‐66(Zr) 20.7 mmol
NH2-modified with partial Ti cation substitution NH2-UiO-66(Zr/Ti) Visible MeCN/TEOA BNAH HCOO- 22.23 mmol 6 [94]
(NH2)2‐UiO‐66(Zr/Ti) 31.57±1.64 mmol
MIL-101(Fe) Visible MeCN/TEOA HCOO- 59.0 mmol 8 [95]
NH2-functionalized linker MIL-101(Fe)-NH2 178 mmol
MIL-53(Fe) 29.7 mmol
NH2-functionalized linker MIL-53(Fe)-NH2 46.5 mmol
MIL-88B(Fe) 9.0 mmol
NH2-modified with partial metal ion substitution MIL-88B(Fe)-NH2 30 mmol
NH2-modified with partial Ti cation substitution NH2-UiO-66(Zr/Ti) Visible MeCN/TEOA HCOO- 3.4 mmol/mol 10 [96]
NH2-UiO-66(Zr/Ti)-100-4 4.2 mmol/mol
NH2-UiO-66(Zr/Ti)-120-16 5.8 mmol/mol
Porphyrin- functionalized linker Rh-PMOF-1(Zr) Visible MeCN/TEOA HCOO- 6.1 mmol/mmol 18 [97]
Porphyrin- functionalized linker Zn/PMOF UV-visible H2O vapor CH4 10.43 mmol 4 [98]
Porphyrin- functionalized linker Al/PMOF Visible H2O/TEOA CH3OH 37.5 ppm?/(g·h) [99]
Porphyrin- functionalized linker with partial Cu cation substitution Cu-Al/PMOF 262.6 ppm?/(g·h)
Porphyrin- functionalized linker MOF-525 Visible MeCN/TEOA CO 64.02 mmol?/(g·h) 6 [100]
CH4 6.2 mmol?/(g·h)
Porphyrin- functionalized linker with
Zn cations
MOF-525-Zn CO 111.7 mmol?/(g·h)
CH4 11.64 mmol?/(g·h)
Porphyrin- functionalized linker with
Co cations
MOF-525-Co CO 200.6 mmol?/(g·h)
CH4 36.76 mmol?/(g·h)
Porphyrin- functionalized linker PCN-222 Visible MeCN/TEOA HCOO- 30 mmol 10 [101]
Photosensitizer functionalization Eu-Ru(phen)3-MOF Visible MeCN/TEA HCOO- 47 mmol 10 [102]
Photosensitizer functionalization UiO-67-ReI(CO)3(5,5′-dcbpy)Cl Visible MeCN/TEA CO TON= 5.0 6 [103]
H2 TON= 0.5
CO TON= 10.9 20
H2 TON= 2.5
ReI(CO)3(5,5′-dcbpy)Cl CO TON= 5.6 6
H2 TON= 0.3
CO TON= 7.0 20
H2 TON= 1.0
Photosensitizer functionalization Zr6(O)4(OH)4[Re(CO)3Cl(bpydb)]6 Visible MeCN/TEA CO TON= 6.44 6 [104]
H2 TON= 0.40 6
Photosensitizer functionalization UiO-67-ReI(CO)3(5,5′-dcbpy)Cl Visible TEA CO 0.5 mmol/(g·h) 6 [52]
UiO-67-ReI(CO)3(5,5′-dcbpy)Cl-NH2 (33% (mol)) CO 1.5 mmol/(g·h) 6
Photosensitizer functionalization UiO-67-Cp*Rh(5,5′- dcbpy)Cl2 (10%) Visible ACN/TEOA HCOO- TON= 47 10 [105]
H2 TON= 36
Cp*Rh(5,5′- dcbpy)Cl2 HCOO- TON= 42
H2 TON= 38
[Ru(bpy)3]Cl2 HCOO- TON= 125
H2 TON= 55
Photosensitizer functionalization MOF-253-Ru(CO)2Cl2 Visible MeCN/TEOA HCOO 0.67 mmol 8 [106]
CO 1.86 mmol
H2 0.09 mmol
Ru(bpy)2Cl2- sensitized MOF-253-Ru(CO)2Cl2 HCOO 4.84 mmol
CO 1.85 mmol
H2 0.72 mmol
HCOO 0.46 mmol
CO 0.21 mmol
H2 0.07 mmol
Ru(bpy)2Cl2 HCOO 0.27 mmol
CO 0.18 mmol
H2 0 mmol
Photosensitizer functionalization Y[Ir(ppy)2(4,4′‐dcbpy)]2[OH] Visible MeCN/TEOA HCOO 118.8 mmol/(g·h) 6 [107]
Photosensitizer functionalization [Cd2[Ru(4,4’-dcbpy)3]·12H2O]n nanoflower Visible MeCN/TEOA HCOO 77.2 mmol/(g·h) 8 [108]
[Cd2[Ru(4,4’-dcbpy)3]·12H2O]n microflake 52.7 mmol/(g·h)
[Cd2[Ru(4,4’-dcbpy)3]·12H2O]n bulk crystals 30.6 mmol/(g·h)
Photosensitizer functionalization [Cd3[Ru(5,5′-dcbpy)3]2·2(Me2NH2)]n Visible MeCN/TEOA HCOO 67.5 mmol/(g·h) 6 [109]
[Cd[Ru(bpy)(4,4′-dcbpy)2]·3H2O]n 71.7 mmol/(g·h)
Catechol- functionalized linker UiO-66-CrIIIcatbdc Visible MeCN/TEOA/BNAH HCOO TON= 11.22±0.37 6 [110]
UiO-66-GaIIIcatbdc TON= 6.14±0.22
Anthracene- functionalized linker NNU-28 Visible MeCN/TEOA HCOO 183.3 mmol/(h·mmol) 10 [111]
Tab.2  Performances of recent photocatalytic MOFs for CO2 photoreduction
Fig.1  Enhanced photoreduction of CO2 over NH2-UiO-66(Zr) induced by Ti substitution and the proposed CO2 photoreduction mechanism
Fig.2  Proposed CO2 photoreduction through the dual excitation pathways over amino-functionalized Fe-based MOFs (Reproduced with permission from Ref [95]. Copyright 2014, American Chemical Society)
Fig.3  Enhanced visible light absorption in NH2-MIL-125(Ti) induced by amino functionality and the proposed CO2photoreduction mechanism
Fig.4  Amount of HCOO- produced over NH2-UiO-66(Zr) and mixed NH2-UiO-66(Zr) as a function of light irradiation time (Reproduced with permission from Ref. [93]. Copyright 2013, Wiley)
Fig.5  Effect of metallization on the photocatalytic behavior of MOF-525
Fig.6  Left: Amount of HCOO- produced as a function of visible light irradiation time over PCN-222 (a), H2TCPP (b), no PCN-222 (c), no TEOA (d), and no CO2 (e). Right: 13C Nuclear magnetic resonance (NMR) spectra for the product obtained from reaction with 13CO2 (a) or 12CO2 (b) (Reproduced with permission from Ref. [101]. Copyright 2015, American Chemical Society)
Fig.7  Crystal structure of Zr6(O)4(OH)4[Re(CO)3Cl(bpydb)]6 (MOF-1)
Fig.8  Amount of HCOO produced as a function of irradiation time of visible light over (a) nanoflowers, (b) microcrystals, and (c) bulk crystals of the Ru-MOF ([Cd2[Ru(4,4’-dcbpy)3]·12H2O]n). (d) visible light irradiation without a sample (Inset images (from top to bottom) show nanoflowers, microcrystals and bulk crystals of the Ru-MOF, respectively. Reproduced with permission from reference [108]. Copyright 2015, Royal Society of Chemistry. )
Strategy MOF composite Irradiation Solvent/
sacrificial agent
Main product Photocatalytic reactivity Reaction time/h Ref.
Photosensitizer incorporation Co-ZIF-9/[Ru(bpy)3]Cl2·6H2O Visible MeCN/H2O/
CO 41.8 mmol 0.5 [57]
H2 29.9 mmol
Co-MOF-74/[Ru(bpy)3]Cl2·6H2O CO 11.7 mmol
H2 7.3 mmol
Mn-MOF-74/[Ru(bpy)3]Cl2·6H2O CO 1.5 mmol
H2 2.9 mmol
Zn-ZIF-8/[Ru(bpy)3]Cl2·6H2O CO 2.1 mmol
H2 2.4 mmol
Zr-UiO-66-NH2/[Ru(bpy)3]Cl2·6H2O CO 1.2 mmol
H2 2.2 mmol
Co-ZIF-67 /[Ru(bpy)3]Cl2·6H2O Visible MeCN/H2O/TEOA CO 29.6 mmol 0.5 [59]
H2 14.8 mmol
Zn-ZIF-9/[Ru(bpy)3]Cl2·6H2O CO 1.8 mmol
H2 2.0 mmol
Cu-HKUST-1/[Ru(bpy)3]Cl2·6H2O CO 1.2 mmol
H2 1.5 mmol
Fe-MIL-101-NH2/[Ru(bpy)3]Cl2·6H2O CO 4.7 mmol
H2 2.1 mmol
Zr-UiO-66-NH2/[Ru(bpy)3]Cl2·6H2O CO 0.9 mmol
H2 1.2 mmol
UiO-67-Mn(5,5′‐dcbpy) (CO)3Br)/Ru(dmb)3(PF6)2 Visible DMF/TEOA/ BNAH HCOO TON= 50 4 [58]
TON= 110 18
UiO-67-Mn(5,5′‐dcbpy)(CO)3Br) (without a photosensitizer) TON= 18 18
TON= 32 4
TON= 57 18
Mn(bpy)(CO)3Br)/Ru(dmb)3(PF6)2 TON= 35 4
TON= 70 18
UiO-67-5,5′‐dcbpy)/Ru(dmb)3(PF6)2 TON= 38 18
[Ru(dmb)3]2+ HCOO TON= 33 18
Semiconductor incorporation ZIF-8/TiO2 (ZIF-8 growth step on TiO2 film was repeated twice) UV H2O vapor CO 0.53 mmol/(g·h) 5 [124]
CH4 0.18 mmol/(g·h)
ZIF-8/Ti/TiO2 nanotube UV-visible Na2SO4
(0.1 mol L-1)
C2H5OH 10 mmol/L 3 [125]
CH3OH 0.7 mmol/L
Co-ZIF-9/TiO2 (mass ratio of Co-ZIF-9 in composite is 0.03) UV-visible H2O vapor CO 8.79 mmol 10 [54]
CH4 0.99 mmol
H2 1.30 mmol
TiO2 CO 3.58 mmol
CH4 0.60 mmol
H2 0.63 mmol
Co-ZIF-9 CO 0
CH4 0
H2 0
Physical mixture of TiO2 and Co-ZIF-9 with the mass ratio of 0.03:0.97 CO 3.86 mmol
CH4 0.42 mmol
H2 0.56 mmol
Cu-BTC/TiO2 UV H2O vapor CH4 2.64 mmol/(g TiO2·h) 4 [126]
TiO2 CH4 0.52 mmol/(g TiO2·h)
H2 2.29 mmol/(g TiO2·h)
Cu-BTC CH4 0
H2 0
Cu-BTC/TiO2 (molar ratio of Cu-BTC to TiO2 is 3.33) N/A CO2/H2O
CO 256.38 mmol/(g TiO2·h) 8 [127]
TiO2 11.48 mmol/(gTiO2·h)
Cu-BTC 0
CPO-27-Mg/TiO2 UV H2O vapor CO 40.9 mmol/g 10 [128]
CH4 23.5 mmol/g
TiO2 CO 22.5 mmol/g
CH4 13.7 mmol/g
CPO-27-Mg CO 0
CH4 0
Physical mixture of TiO2 and CPO-27-Mg with the ratio of 6:4 H2 8.5 mmol/g
CO 18.9 mmol/g
CH4 7.1 mmol/g
NH2-UiO-66/TiO2 (with 19%(wt) NH2-UiO-66) UV-visible CO2/H2 CO 3.74 mmol/(g·h) [129]
NH2-UiO-66/TiO2 (19.5%(wt)NH2-UiO-66) 4.24 mmol/(g·h)
NH2-UiO-66/TiO2 (24.5%(wt) NH2-UiO-66) 3.37 mmol/(g·h)
NH2-UiO-66/TiO2 (36.8%(wt) NH2-UiO-66) 2.85 mmol/(g·h)
TiO2 2.85 mmol/(g·h)
NH2-UiO-66 1.50 mmol/(g·h)
Co-ZIF-9/CdS Visible MeCN/H2O /TEOA/bpy CO 50.4 mmol 1
H2 11.1 mmol
Co-MOF-74/CdS CO 39.6 mmol
H2 7.7 mmol
Mn-MOF-74/CdS CO 1.0 mmol
H2 2.0 mmol
Zn-ZIF-8/CdS CO 0.6 mmol
H2 0.6 mmol
Zr-UiO-66-NH2/CdS CO 0.4 mmol
H2 0.3 mmol
CdS CO 0.5 mmol
H2 0.6 mmol
Co-ZIF-9 CO 0
H2 0
UiO-66-NH2/Cd0.2Zn0.8S (10%(wt)UiO-66-NH2) Visible Na2S/Na2SO3 H2 4591.6 mmol/(g·h) [55]
CH3OH 4.1 mmol/(g·h)
UiO-66-NH2/Cd0.2Zn0.8S (20%(wt)UiO-66-NH2) H2 5846.5 mmol/(g·h)
CH3OH 6.8 mmol/(g·h)
UiO-66-NH2/Cd0.2Zn0.8S (30%(wt)UiO-66-NH2) H2 5235.9 mmol/(g·h)
CH3OH 5.9 mmol/(g·h)
UiO-66-NH2/Cd0.2Zn0.8S (40%(wt)UiO-66-NH2) H2 4922.7 mmol/(g·h)
CH3OH 5.3 mmol/(g·h)
Cd0.2Zn0.8S H2 2804.2 mmol/(g·h)
CH3OH 2.0 mmol/(g·h)
UiO-66-NH2 H2 0
Co-ZIF-9/mesoporous g-C3N4 Visible MeCN/H2O /TEOA/bpy CO 20.8 mmol 2 [131]
H2 3.3 mmol
Co-ZIF-9 CO 0
H2 0
g-C3N4 CO 0
H2 0
ZIF-8/g-C3N4 nanotubes (molar ratio of g-C3N4 nanotubes to ZIF-8 is 10) UV-visible CO2/H2O
CH3OH 0.64 mmol/(g·h) 1 [56]
ZIF-8/g-C3N4 nanotubes (molar ratio of g-C3N4 nanotubes to ZIF-8 is 8) 0.75 mmol/(g·h)
ZIF-8/g-C3N4 nanotubes (molar ratio of g-C3N4 nanotubes to ZIF-8 is 5) 0.45 mmol/(g·h)
ZIF-8/g-C3N4 nanotubes (molar ratio of g-C3N4 nanotubes to ZIF-8 is 2) 0.31 mmol/(g·h)
ZIF-8/g-C3N4 nanotubes (molar ratio of g-C3N4 nanotubes to ZIF-8 is 1) 0.16 mmol/(g·h)
g-C3N4 nanotubes 0.49 mmol/(g·h)
Bulk g-C3N4 0.24 mmol/(g·h)
ZIF-8 nanocrystals 0
UiO-66/g-C3N4 nanosheets Visible MeCN/TEOA CO 9.9 mmol/(g g-C3N4·h) 6 [132]
UiO-66/bulk g-C3N4 3.2 mmol/(g g-C3N4·h)
g-C3N4 nanosheets 2.9 mmol/(g g-C3N4·h)
bulk g-C3N4 2.0 mmol/(g g-C3N4·h)
UiO-66 0
BIF-20/g-C3N4 nanosheets (10%(wt) g-C3N4 nanosheets) Visible MeCN/TEOA CO 3.42 mmol 6 [133]
CH4 1.12 mmol
BIF-20/g-C3N4 nanosheets (15%(wt) g-C3N4 nanosheets) CO 4.86 mmol
CH4 1.45 mmol
BIF-20/g-C3N4 nanosheets (20%(wt) g-C3N4 nanosheets) CO 6.12 mmol
CH4 1.76 mmol
BIF-20/g-C3N4 nanosheets (25%(wt) g-C3N4 nanosheets) CO 5.14 mmol
CH4 1.51 mmol
ZIF-8/Zn2GeO4 (25%(wt) ZIF-8) N/A Na2SO3 CH3OH 0.22 mmol/(g·h) 11 [134]
Metal incorporation Pt/NH2-MIL-125(Ti) Visible MeCN/TEOA HCOO 12.96 mmol 8 [135]
H2 235 mmol
Au/NH2-MIL-125(Ti) HCOO 9.06 mmol
H2 40.2 mmol
NH2-MIL-125(Ti) HCOO 10.75 mmol
H2 0
1%(wt) Co/NH2-MIL-125(Ti) Visible MeCN/TEOA HCOO 384.2 mmol 10 [136]
2%(wt) Co/NH2-MIL-125(Ti) 321.8 mmol
3%(wt) Co/NH2-MIL-125(Ti) 239.4 mmol
NH2-MIL-125(Ti) 162.8 mmol
Ag⊂Re3-MOF (16 nm thick Re3-MOF) Visible MeCN/TEOA CO TON ≈ 2.8 48 [137]
ReI(CO)3(5,5′‐dcbpy)Cl TON ≈ 1.7
Carbon materials incorporation 1%(wt) UiO-66-NH2/graphene Visible DMF/TEOA/H2O HCOO 12.3 mmol 4 [138]
CH4 0.25 mmol
H2 15.2 mmol
1.5%(wt) UiO-66-NH2/graphene HCOO 21.2 mmol
CH4 0.59 mmol
H2 13.9 mmol
2%(wt) UiO-66-NH2/graphene HCOO 33.5 mmol
CH4 0.90 mmol
H2 13.2 mmol
2.5%(wt) UiO-66-NH2/graphene HCOO 14.9 mmol
CH4 0.51 mmol
H2 15.1 mmol
3%(wt) UiO-66-NH2/graphene HCOO 8.6 mmol
CH4 0.19 mmol
H2 16.8 mmol
UiO-66-NH2 HCOO 3.1 mmol
CH4 0.11 mmol
H2 16.9 mmol
Graphene HCOO 0
CH4 0
H2 0
UiO-66-NH2/graphene (hydrothermal synthesis) HCOO 16.1 mmol
H2 20.4 mmol
Al-PMOF/5%(wt) NH2-rGO Visible MeCN/TEOA HCOO 685.6 mmol/(g·h) 6 [139]
Al-PMOF/15%(wt) NH2-rGO 479.8 mmol/(g·h)
Al-PMOF/25%(wt) NH2-rGO 476.4 mmol/(g·h)
Al-PMOF 165.3 mmol/(g·h)
Tab.3  Performances of recent photocatalytic MOF composites for CO2photoreduction
Fig.9  TON of HCOO as a function of reaction time over UiO-67-Mn(bpy)(CO)3Br (red), Mn(bpy)(CO)3Br (green), Mn(bpydc)(CO)3Br (blue), UiO-67-bpydc (black), no added Mncomplex or MOF (only Ru2+ , brown), and UiO-67-Mn(bpy)(CO)3Br without added Ru2+ (gray) (Reproduced with permission from Ref. [58]. Copyright 2015, American Chemical Society)
Fig.10  Core‐shell structures of Cu(BTC)/TiO2
Fig.11  CO2 photoreduction analysis of TiO2 and HKUST-1/TiO2 composites (CO yield over the HKUST-1/TiO2 composites and pure TiO2) Inset image: CO yield peak time of the HKUST-1/TiO2 composites and pure TiO2 (Reproduced with permission from Ref. [127]. Copyright 2017, American Chemical Society)
Fig.12  Structures of Ren-MOF and Ag⊂Ren-MOF for plasmon-enhanced photocatalytic CO2 conversion
1 P N Pearson, M R Palmer. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 2000, 406(6797): 406695
2 R Quadrelli, S Peterson. The energy–climate challenge: recent trends in CO2 emissions from fuel combustion. Energy Policy, 2007, 35(11): 5938–5952
3 C Song. CO2 conversion and utilization: an overview. In: Song C, eds. CO2 Conversion and Utilization. Washington, DC: ACS Symposium Series, 2002, 809, 2–30
4 H J Herzog, E M Drake. Carbon dioxide recovery and disposal from large energy systems. Annual Review of Energy and the Environment, 1996, 21(1): 145–166
5 N Muradov. Industrial Utilization of CO2: A Win–Win Solution. New York: Springer New York, 2014, 325–383
6 A Rafiee, K Rajab Khalilpour, D Milani, M Panahi. Trends in CO2 conversion and utilization: a review from process systems perspective. Journal of Environmental Chemical Engineering, 2018, 6(5): 5771–5794
7 B Wang, W Chen, Y Song, G Li, W Wei, J Fang, Y Sun. Recent progress in the photocatalytic reduction of aqueous carbon dioxide. Catalysis Today, 2018, 311: 23–39
8 Y Yu, W Zheng, Y Cao. TiO2–Pd/C composited photocatalyst with improved photocatalytic activity for photoreduction of CO2 into CH4. New Journal of Chemistry, 2017, 41(8): 3204–3210
9 G Sneddon, A Greenaway, H H P Yiu. The potential applications of nanoporous materials for the adsorption, separation, and catalytic conversion of carbon dioxide. Advanced Energy Materials, 2014, 4(10): 1301873
10 M North, R Pasquale, C Young. Synthesis of cyclic carbonates from epoxides and CO2. Green Chemistry, 2010, 12(9): 1514–1539
11 W Li, H Wang, X Jiang, J Zhu, Z Liu, X Guo, C Song. A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Advances, 2018, 8(14): 7651–7669
12 D Raciti, C Wang. Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Letters, 2018, 3(7): 1545–1556
13 M Tahir, N S Amin. Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels. Energy Conversion and Management, 2013, 76: 194–214
14 Y Matsubara, D C Grills, Y Kuwahara. Thermodynamic aspects of electrocatalytic CO2 reduction in acetonitrile and with an ionic liquid as solvent or electrolyte. ACS Catalysis, 2015, 5(11): 6440–6452
15 A Fujishima, K Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 23837
16 M Wang, J Ioccozia, L Sun, C Lin, Z Lin. Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis. Energy & Environmental Science, 2014, 7(7): 2182–2202
17 N Bao, L Shen, T Takata, K Domen. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chemistry of Materials, 2008, 20(1): 110–117
18 C B Ong, L Y Ng, A W Mohammad. A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renewable & Sustainable Energy Reviews, 2018, 81: 536–551
19 G J Lee, J J Wu. Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications—a review. Powder Technology, 2017, 318: 8–22
20 M Mishra, D M Chun. α-Fe2O3 as a photocatalytic material: a review. Applied Catalysis A, General, 2015, 498: 126–141
21 J Wen, J Xie, X Chen, X Li. A review on g-C3N4-based photocatalysts. Applied Surface Science, 2017, 391: 72–123
22 L Luo, Y Li, J Hou, Y Yang. Visible photocatalysis and photostability of Ag3PO4 photocatalyst. Applied Surface Science, 2014, 319: 332–338
23 C Dong, C Lian, S Hu, Z Deng, J Gong, M Li, H Liu, M Xing, J Zhang. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nature Communications, 2018, 9(1): 1252
24 M Xing, Y Zhou, C Dong, L Cai, L Zeng, B Shen, L Pan, C Dong, Y Chai, J Zhang, Y Yin. Modulation of the reduction potential of TiO2–x by fluorination for efficient and selective CH4 generation from CO2 photoreduction. Nano Letters, 2018, 18(6): 3384–3390
25 H Zhang, G Liu, L Shi, H Liu, T Wang, J Ye. Engineering coordination polymers for photocatalysis. Nano Energy, 2016, 22: 149–168
26 D Meissner, R Memming, B Kastening. Photoelectrochemistry of cadmium sulfide. 1. Reanalysis of photocorrosion and flat-band potential. Journal of Physical Chemistry, 1988, 92(12): 3476–3483
27 D W Bahnemann, C Kormann, M R Hoffmann. Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study. Journal of Physical Chemistry, 1987, 91(14): 3789–3798
28 L Zhang, Y H Hu. Desorption of dimethylformamide from Zn4O(C8H4O4)3 framework. Applied Surface Science, 2011, 257(8): 3392–3398
29 Y H Hu, L Zhang. Amorphization of metal-organic framework MOF-5 at unusually low applied pressure. Physical Review. B, 2010, 81(17): 174103
30 L Zhang, Y H Hu. A systematic investigation of decomposition of nano Zn4O(C8H4O4)3 metal-organic framework. Journal of Physical Chemistry C, 2010, 114(6): 2566–2572
31 L Zhang, Y H Hu. Strong effects of higher-valent cations on the structure of the zeolitic Zn(2-methylimidazole)2 framework (ZIF-8). Journal of Physical Chemistry C, 2011, 115(16): 7967–7971
32 L Zhang, Y H Hu. Structure distortion of Zn4O13C24H12 framework (MOF-5). Materials Science and Engineering B, 2011, 176(7): 573–578
33 L Zhang, Y H Hu. Observation of ZnO nanoparticles outside pores of nano Zn4O(C8H4O4)3 metal–organic framework. Physics Letters [Part A], 2011, 375(13): 1514–1517
34 S Loera-Serna, J Zarate-Rubio, D Y Medina-Velazquez, L Zhang, E Ortiz. Encapsulation of urea and caffeine in Cu3(BTC)2 metal–organic framework. Surface Innovations, 2016, 4(2): 76–87
35 Y H Hu, L Zhang. Hydrogen storage in metal–organic frameworks. Advanced Materials, 2010, 22(20): E117–E130
36 T Zhang, W Lin. Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chemical Society Reviews, 2014, 43(16): 5982–5993
37 M X Wu, Y W Yang. Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Advanced Materials, 2017, 29(23): 1606134
38 T Chowdhury, L Zhang, J Zhang, S Aggarwal. Removal of arsenic(III) from aqueous solution using metal organic framework-graphene oxide nanocomposite. Nanomaterials (Basel, Switzerland), 2018, 8(12): 1062
39 L E Kreno, K Leong, O K Farha, M Allendorf, R P Van Duyne, J T Hupp. Metal–organic framework materials as chemical sensors. Chemical Reviews, 2012, 112(2): 1105–1125
40 Y Wang, N Y Huang, J Q Shen, P Q Liao, X M Chen, J P Zhang. Hydroxide ligands cooperate with catalytic centers in metal–organic frameworks for efficient photocatalytic CO2 reduction. Journal of the American Chemical Society, 2018, 140(1): 38–41
41 J He, Y Zhang, J He, X Zeng, X Hou, Z Long. Enhancement of photoredox catalytic properties of porphyrinic metal–organic frameworks based on titanium incorporation via post-synthetic modification. Chemical Communications, 2018, 54(62): 8610–8613
42 Y Horiuchi, T Toyao, M Saito, K Mochizuki, M Iwata, H Higashimura, M Anpo, M Matsuoka. Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(IV) metal–organic framework. Journal of Physical Chemistry C, 2012, 116(39): 20848–20853
43 J W Maina, C Pozo-Gonzalo, L Kong, J Schütz, M Hill, L F Dumée. Metal organic framework based catalysts for CO2 conversion. Materials Horizons, 2017, 4(3): 345–361
44 M A Nasalevich, M G Goesten, T J Savenije, F Kapteijn, J Gascon. Enhancing optical absorption of metal–organic frameworks for improved visible light photocatalysis. Chemical Communications, 2013, 49(90): 10575–10577
45 D Jiang, T Mallat, F Krumeich, A Baiker. Copper-based metal-organic framework for the facile ring-opening of epoxides. Journal of Catalysis, 2008, 257(2): 390–395
46 S Hasegawa, S Horike, R Matsuda, S Furukawa, K Mochizuki, Y Kinoshita, S Kitagawa. Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis. Journal of the American Chemical Society, 2007, 129(9): 2607–2614
47 J L Wang, C Wang, W Lin. Metal–organic frameworks for light harvesting and photocatalysis. ACS Catalysis, 2012, 2(12): 2630–2640
48 F X Llabrés i Xamena, O Casanova, R Galiasso Tailleur, H Garcia, A Corma. Metal organic frameworks (MOFs) as catalysts: a combination of Cu2+ and Co2+ MOFs as an efficient catalyst for tetralin oxidation. Journal of Catalysis, 2008, 255(2): 220–227
49 F X Llabrés i Xamena, A Corma, H Garcia. Applications for metal-organic frameworks (MOFs) as quantum dot semiconductors. Journal of Physical Chemistry C, 2007, 111(1): 80–85
50 J Gao, J Miao, P Z Li, W Y Teng, L Yang, Y Zhao, B Liu, Q Zhang. A p-type Ti(iv)-based metal–organic framework with visible-light photo-response. Chemical Communications, 2014, 50(29): 3786–3788
51 L Shen, S Liang, W Wu, R Liang, L Wu. CdS-decorated UiO-66(NH2) nanocomposites fabricated by a facile photodeposition process: an efficient and stable visible-light-driven photocatalyst for selective oxidation of alcohols. Journal of Materials Chemistry. A, 2013, 1(37): 11473–11482
52 U J Ryu, S J Kim, H K Lim, H Kim, K M Choi, J K Kang. Synergistic interaction of Re complex and amine functionalized multiple ligands in metal-organic frameworks for conversion of carbon dioxide. Scientific Reports, 2017, 7(1): 612
53 Y Fu, D Sun, Y Chen, R Huang, Z Ding, X Fu, Z Li. An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angewandte Chemie International Edition, 2012, 51(14): 3364–3367
54 S Yan, S Ouyang, H Xu, M Zhao, X Zhang, J Ye. Co-ZIF-9/TiO2 nanostructure for superior CO2 photoreduction activity. Journal of Materials Chemistry. A, 2016, 4(39): 15126–15133
55 Y Su, Z Zhang, H Liu, Y Wang. Cd0.2Zn0.8S@UiO-66–NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction. Applied Catalysis B: Environmental, 2017, 200: 448–457
56 S Liu, F Chen, S Li, X Peng, Y Xiong. Enhanced photocatalytic conversion of greenhouse gas CO2 into solar fuels over g-C3N4 nanotubes with decorated transparent ZIF-8 nanoclusters. Applied Catalysis B: Environmental, 2017, 211: 1–10
57 S Wang, W Yao, J Lin, Z Ding, X Wang. Cobalt imidazolate metal–organic frameworks photosplit CO2 under mild reaction conditions. Angewandte Chemie International Edition, 2014, 53(4): 1034–1038
58 H Fei, M D Sampson, Y Lee, C P Kubiak, S M Cohen. Photocatalytic CO2 reduction to formate using a Mn(I) molecular catalyst in a robust metal–organic framework. Inorganic Chemistry, 2015, 54(14): 6821–6828
59 J Qin, S Wang, X Wang. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Applied Catalysis B: Environmental, 2017, 209: 476–482
60 Y B Huang, J Liang, X S Wang, R Cao. Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 2017, 46(1): 126–157
61 S Wang, X Wang. Multifunctional metal–organic frameworks for photocatalysis. Small, 2015, 11(26): 3097–3112
62 X Yu, L Wang, S M Cohen. Photocatalytic metal–organic frameworks for organic transformations. CrystEngComm, 2017, 19(29): 4126–4136
63 R Navarro Amador, M Carboni, D Meyer. Photosensitive titanium and zirconium metal organic frameworks: current research and future possibilities. Materials Letters, 2016, 166: 327–338
64 Z Liang, C Qu, W Guo, R Zou, Q Xu. Pristine metal–organic frameworks and their composites for energy storage and conversion. Advanced Materials, 2018, 30(37): 1702891
65 D Sun, Z Li. Robust Ti- and Zr-based metal-organic frameworks for photocatalysis. Chinese Journal of Chemistry, 2017, 35(2): 135–147
66 L Shen, R Liang, L Wu. Strategies for engineering metal-organic frameworks as efficient photocatalysts. Chinese Journal of Catalysis, 2015, 36(12): 2071–2088
67 J Zhu, P Z Li, W Guo, Y Zhao, R Zou. Titanium-based metal–organic frameworks for photocatalytic applications. Coordination Chemistry Reviews, 2018, 359: 80–101
68 J G Santaclara, F Kapteijn, J Gascon, M A van der Veen. Understanding metal–organic frameworks for photocatalytic solar fuel production. CrystEngComm, 2017, 19(29): 4118–4125
69 M A Nasalevich, M van der Veen, F Kapteijn, J Gascon. Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges. CrystEngComm, 2014, 16(23): 4919–4926
70 F Song, W Li, Y Sun. Metal–organic frameworks and their derivatives for photocatalytic water splitting. Inorganics, 2017, 5(3): 40
71 W Wang, X Xu, W Zhou, Z Shao. Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Advancement of Science, 2017, 4(4): 1600371
72 Y Yan, T He, B Zhao, K Qi, H Liu, B Y Xia. Metal/covalent–organic frameworks-based electrocatalysts for water splitting. Journal of Materials Chemistry. A, 2018, 6(33): 15905–15926
73 K Meyer, M Ranocchiari, J A van Bokhoven. Metal organic frameworks for photo-catalytic water splitting. Energy & Environmental Science, 2015, 8(7): 1923–1937
74 Y Pi, X Li, Q Xia, J Wu, Y Li, J Xiao, Z Li. Adsorptive and photocatalytic removal of persistent organic pollutants (POPs) in water by metal-organic frameworks (MOFs). Chemical Engineering Journal, 2018, 337: 351–371
75 Z Wu, X Yuan, J Zhang, H Wang, L Jiang, G Zeng. Photocatalytic decontamination of wastewater containing organic dyes by metal–organic frameworks and their derivatives. ChemCatChem, 2017, 9(1): 41–64
76 C C Wang, J R Li, X L Lv, Y Q Zhang, G Guo. Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy & Environmental Science, 2014, 7(9): 2831–2867
77 D Jiang, P Xu, H Wang, G Zeng, D Huang, M Chen, C Lai, C Zhang, J Wan, W Xue. Strategies to improve metal organic frameworks photocatalyst’s performance for degradation of organic pollutants. Coordination Chemistry Reviews, 2018, 376: 449–466
78 A Dhakshinamoorthy, Z Li, H Garcia. Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 2018, 47(22): 8134–8172
79 B Zhu, R Zou, Q Xu. Metal–organic framework based catalysts for hydrogen evolution. Advanced Energy Materials, 2018, 8(24): 1801193
80 Y Fang, Y Ma, M Zheng, P Yang, A M Asiri, X Wang. Metal–organic frameworks for solar energy conversion by photoredox catalysis. Coordination Chemistry Reviews, 2018, 373: 83–115
81 Y Chen, D Wang, X Deng, Z Li. Metal–organic frameworks (MOFs) for photocatalytic CO2 reduction. Catalysis Science & Technology, 2017, 7(21): 4893–4904
82 Y Li, H Xu, S Ouyang, J Ye. Metal–organic frameworks for photocatalysis. Physical Chemistry Chemical Physics, 2016, 18(11): 7563–7572
83 R Li, W Zhang, K Zhou. Metal–organic-framework-based catalysts for photoreduction of CO2. Advanced Materials, 2018, 30(35): 1705512
84 C C Wang, Y Q Zhang, J Li, P Wang. Photocatalytic CO2 reduction in metal–organic frameworks: a mini review. Journal of Molecular Structure, 2015, 1083: 127–136
85 J Qiu, X Zhang, Y Feng, X Zhang, H Wang, J Yao. Modified metal-organic frameworks as photocatalysts. Applied Catalysis B: Environmental, 2018, 231: 317–342
86 J Gascon, M D Hernández-Alonso, A R Almeida, G P M van Klink, F Kapteijn, G Mul. Isoreticular MOFs as efficient photocatalysts with tunable band gap: an operando FTIR study of the photoinduced oxidation of propylene. ChemSusChem, 2008, 1(12): 981–983
87 A A Barkhordarian, C J Kepert. Two new porous UiO-66-type zirconium frameworks: open aromatic N-donor sites and their post-synthetic methylation and metallation. Journal of Materials Chemistry. A, 2017, 5(11): 5612–5618
88 C H Hendon, D Tiana, M Fontecave, C Sanchez, L D’arras, C Sassoye, L Rozes, C Mellot-Draznieks, A Walsh. Engineering the optical response of the Titanium-MIL-125 metal–organic framework through ligand functionalization. Journal of the American Chemical Society, 2013, 135(30): 10942–10945
89 H Q Pham, T Mai, N N Pham-Tran, Y Kawazoe, H Mizuseki, D Nguyen-Manh. Engineering of band gap in metal–organic frameworks by functionalizing organic linker: a systematic density functional theory investigation. Journal of Physical Chemistry C, 2014, 118(9): 4567–4577
90 H Yang, X W He, F Wang, Y Kang, J Zhang. Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye. Journal of Materials Chemistry, 2012, 22(41): 21849–21851
91 L M Yang, G Y Fang, J Ma, R Pushpa, E Ganz. Halogenated MOF-5 variants show new configuration, tunable band gaps and enhanced optical response in the visible and near infrared. Physical Chemistry Chemical Physics, 2016, 18(47): 32319–32330
92 H L Nguyen, T T Vu, D Le, T L H Doan, V Q Nguyen, N T S Phan. A Titanium–organic framework: engineering of the band-gap energy for photocatalytic property enhancement. ACS Catalysis, 2017, 7(1): 338–342
93 D Sun, Y Fu, W Liu, L Ye, D Wang, L Yang, X Fu, Z Li. Studies on photocatalytic CO2 reduction over NH2-Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal–organic frameworks. Chemistry–A European Journal, 2013, 19(42): 14279–14285
94 Y Lee, S Kim, J K Kang, S M Cohen. Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal–organic framework under visible light irradiation. Chemical Communications, 2015, 51(26): 5735–5738
95 D Wang, R Huang, W Liu, D Sun, Z Li. Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways. ACS Catalysis, 2014, 4(12): 4254–4260
96 D Sun, W Liu, M Qiu, Y Zhang, Z Li. Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal–organic frameworks (MOFs). Chemical Communications, 2015, 51(11): 2056–2059
97 J Liu, Y Z Fan, X Li, Z Wei, Y W Xu, L Zhang, C Y Su. A porous rhodium(III)-porphyrin metal-organic framework as an efficient and selective photocatalyst for CO2 reduction. Applied Catalysis B: Environmental, 2018, 231: 173–181
98 N Sadeghi, S Sharifnia, M. Sheikh ArabiA porphyrin-based metal organic framework for high rate photoreduction of CO2 to CH4 in gas phase. Journal of CO2 Utilization, 2016, 16: 450–457
99 Y Liu, Y Yang, Q Sun, Z Wang, B Huang, Y Dai, X Qin, X Zhang. Chemical adsorption enhanced CO2 capture and photoreduction over a copper porphyrin based metal organic framework. ACS Applied Materials & Interfaces, 2013, 5(15): 7654–7658
100 H Zhang, J Wei, J Dong, G Liu, L Shi, P An, G Zhao, J Kong, X Wang, X Meng, J Zhang, J Ye. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal–organic framework. Angewandte Chemie International Edition, 2016, 55(46): 14310–14314
101 H Q Xu, J Hu, D Wang, Z Li, Q Zhang, Y Luo, S H Yu, H L Jiang. Visible-light photoreduction of CO2 in a metal–organic framework: boosting electron–hole separation via electron trap states. Journal of the American Chemical Society, 2015, 137(42): 13440–13443
102 Z H Yan, M H Du, J Liu, S Jin, C Wang, G L Zhuang, X J Kong, L S Long, L S Zheng. Photo-generated dinuclear {Eu(II)}2 active sites for selective CO2 reduction in a photosensitizing metal-organic framework. Nature Communications, 2018, 9(1): 3353
103 C Wang, Z Xie, K E deKrafft, W Lin. Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. Journal of the American Chemical Society, 2011, 133(34): 13445–13454
104 R Huang, Y Peng, C Wang, Z Shi, W Lin. A rhenium-functionalized metal–organic framework as a single-site catalyst for photochemical reduction of carbon dioxide. European Journal of Inorganic Chemistry, 2016, 2016(27): 4358–4362
105 M B Chambers, X Wang, N Elgrishi, C H Hendon, A Walsh, J Bonnefoy, J Canivet, E A Quadrelli, D Farrusseng, C Mellot-Draznieks, M Fontecave. Photocatalytic carbon dioxide reduction with rhodium-based catalysts in solution and heterogenized within metal–organic frameworks. ChemSusChem, 2015, 8(4): 603–608
106 D Sun, Y Gao, J Fu, X Zeng, Z Chen, Z Li. Construction of a supported Ru complex on bifunctional MOF-253 for photocatalytic CO2 reduction under visible light. Chemical Communications, 2015, 51(13): 2645–2648
107 L Li, S Zhang, L Xu, J Wang, L X Shi, Z N Chen, M Hong, J Luo. Effective visible-light driven CO2 photoreduction via a promising bifunctional iridium coordination polymer. Chemical Science (Cambridge), 2014, 5(10): 3808–3813
108 S Zhang, L Li, S Zhao, Z Sun, M Hong, J Luo. Hierarchical metal–organic framework nanoflowers for effective CO2 transformation driven by visible light. Journal of Materials Chemistry. A, 2015, 3(30): 15764–15768
109 S Zhang, L Li, S Zhao, Z Sun, J Luo. Construction of interpenetrated ruthenium metal–organic frameworks as stable photocatalysts for CO2 reduction. Inorganic Chemistry, 2015, 54(17): 8375–8379
110 Y Lee, S Kim, H Fei, J K Kang, S M Cohen. Photocatalytic CO2 reduction using visible light by metal-monocatecholato species in a metal–organic framework. Chemical Communications, 2015, 51(92): 16549–16552
111 D Chen, H Xing, C Wang, Z Su. Highly efficient visible-light-driven CO2 reduction to formate by a new anthracene-based zirconium MOF via dual catalytic routes. Journal of Materials Chemistry. A, 2016, 4(7): 2657–2662
112 A Schaate, P Roy, A Godt, J Lippke, F Waltz, M Wiebcke, P Behrens. Modulated synthesis of Zr-based metal–organic frameworks: from nano to single crystals. Chemistry–A European Journal, 2011, 17(24): 6643–6651
113 C Gomes  Silva, I Luz, F X Llabrés i Xamena, A Corma, H García. Water stable Zr–benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation. Chemistry– A European Journal, 2010, 16(36): 11133–11138
114 J H Cavka, S Jakobsen, U Olsbye, N Guillou, C Lamberti, S Bordiga, K P Lillerud. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008, 130(42): 13850–13851
115 J E Mondloch, M J Katz, N Planas, D Semrouni, L Gagliardi, J T Hupp, O K Farha. Are Zr6-based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse. Chemical Communications, 2014, 50(64): 8944–8946
116 C C Wang, X D Du, J Li, X X Guo, P Wang, J Zhang. Photocatalytic Cr(VI) reduction in metal-organic frameworks: a mini-review. Applied Catalysis B: Environmental, 2016, 193: 198–216
117 J A Dean. Lange’s handbook of chemistry. Materials and Manufacturing Processes, 1990, 5(4): 687–688
118 K G M Laurier, F Vermoortele, R Ameloot, D E De Vos, J Hofkens, M B J Roeffaers. Iron(III)-based metal–organic frameworks as visible light photocatalysts. Journal of the American Chemical Society, 2013, 135(39): 14488–14491
119 A Torrisi, R G Bell, C Mellot-Draznieks. Functionalized MOFs for enhanced CO2 capture. Crystal Growth & Design, 2010, 10(7): 2839–2841
120 A Torrisi, C Mellot-Draznieks, R G Bell. Impact of ligands on CO2 adsorption in metal-organic frameworks: first principles study of the interaction of CO2 with functionalized benzenes. II. Effect of polar and acidic substituents. Journal of Chemical Physics, 2010, 132(4): 044705
121 Y Tamaki, T Morimoto, K Koike, O Ishitani. Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39): 15673–15678
122 S Sato, T Morikawa, T Kajino, O Ishitani. A highly efficient mononuclear iridium complex photocatalyst for CO2 reduction under visible light. Angewandte Chemie International Edition, 2013, 52(3): 988–992
123 Y Kuramochi, M Kamiya, H Ishida. Photocatalytic CO2 reduction in N,N-dimethylacetamide/water as an alternative solvent system. Inorganic Chemistry, 2014, 53(7): 3326–3332
124 Z Huang, P Dong, Y Zhang, X Nie, X Wang, X. ZhangA ZIF-8 decorated TiO2 grid-like film with high CO2 adsorption for CO2 photoreduction. Journal of CO2 Utilization, 2018, 24, 369–375
125 J C Cardoso, S Stulp, J F de Brito, J B S Flor, R C G Frem, M V B Zanoni. MOFs based on ZIF-8 deposited on TiO2 nanotubes increase the surface adsorption of CO2 and its photoelectrocatalytic reduction to alcohols in aqueous media. Applied Catalysis B: Environmental, 2018, 225: 563–573
126 R Li, J Hu, M Deng, H Wang, X Wang, Y Hu, H L Jiang, J Jiang, Q Zhang, Y Xie, Y Xiong. Integration of an inorganic semiconductor with a metal–organic framework: a platform for enhanced gaseous photocatalytic reactions. Advanced Materials, 2014, 26(28): 4783–4788
127 X He, Z Gan, S Fisenko, D Wang, H M El-Kaderi, W N Wang. Rapid formation of metal–organic frameworks (MOFs) based nanocomposites in microdroplets and their applications for CO2 photoreduction. ACS Applied Materials & Interfaces, 2017, 9(11): 9688–9698
128 M Wang, D Wang, Z Li. Self-assembly of CPO-27-Mg/TiO2 nanocomposite with enhanced performance for photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2016, 183: 47–52
129 A Crake, K C Christoforidis, A Kafizas, S Zafeiratos, C Petit. CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV–vis irradiation. Applied Catalysis B: Environmental, 2017, 210: 131–140
130 S Wang, X Wang. Photocatalytic CO2 reduction by CdS promoted with a zeolitic imidazolate framework. Applied Catalysis B: Environmental, 2015, 162: 494–500
131 S Wang, J Lin, X Wang. Semiconductor–redox catalysis promoted by metal–organic frameworks for CO2 reduction. Physical Chemistry Chemical Physics, 2014, 16(28): 14656–14660
132 L Shi, T Wang, H Zhang, K Chang, J Ye. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal–organic framework for enhanced photocatalytic CO2 reduction. Advanced Functional Materials, 2015, 25(33): 5360–5367
133 G Xu, H Zhang, J Wei, H X Zhang, X Wu, Y Li, C Li, J Zhang, J Ye. Integrating the g-C3N4 Nanosheet with B–H bonding decorated metal–organic framework for CO2 activation and photoreduction. ACS Nano, 2018, 12(6): 5333–5340
134 Q Liu, Z X Low, L Li, A Razmjou, K Wang, J Yao, H Wang. ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel. Journal of Materials Chemistry. A, 2013, 1(38): 11563–11569
135 D Sun, W Liu, Y Fu, Z Fang, F Sun, X Fu, Y Zhang, Z Li. Noble metals can have different effects on photocatalysis over metal–organic frameworks (MOFs): a case study on M/NH2-MIL-125(Ti) (M=Pt and Au). Chemistry–A European Journal, 2014, 20(16): 4780–4788
136 Y Fu, H Yang, R Du, G Tu, C Xu, F Zhang, M Fan, W Zhu. Enhanced photocatalytic CO2 reduction over Co-doped NH2-MIL-125(Ti) under visible light. RSC Advances, 2017, 7(68): 42819–42825
137 K M Choi, D Kim, B Rungtaweevoranit, C A Trickett, J T D Barmanbek, A S Alshammari, P Yang, O M Yaghi. Plasmon-enhanced photocatalytic CO2 conversion within metal–organic frameworks under visible light. Journal of the American Chemical Society, 2017, 139(1): 356–362
138 X Wang, X Zhao, D Zhang, G Li, H Li. Microwave irradiation induced UIO-66–NH2 anchored on graphene with high activity for photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 2018, 228: 47–53
139 N Sadeghi, S Sharifnia, T O Do. Enhanced CO2 photoreduction by a graphene–porphyrin metal–organic framework under visible light irradiation. Journal of Materials Chemistry. A, 2018, 6(37): 18031–18035
140 E Pipelzadeh, V Rudolph, G Hanson, C Noble, L Wang. Photoreduction of CO2 on ZIF-8/TiO2 nanocomposites in a gaseous photoreactor under pressure swing. Applied Catalysis B: Environmental, 2017, 218: 672–678
141 Y S Chaudhary, T W Woolerton, C S Allen, J H Warner, E Pierce, S W Ragsdale, F A Armstrong. Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals. Chemical Communications, 2012, 48(1): 58–60
142 B J Liu, T Torimoto, H Yoneyama. Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 113(1): 93–97
143 H Fujiwara, H Hosokawa, K Murakoshi, Y Wada, S Yanagida, T Okada, H Kobayashi. Effect of surface structures on photocatalytic CO2 reduction using quantized CdS nanocrystallites. Journal of Physical Chemistry B, 1997, 101(41): 8270–8278
144 N T Nguyen, M Altomare, J Yoo, P Schmuki. Efficient photocatalytic H2 evolution: controlled dewetting–dealloying to fabricate site-selective high-activity nanoporous Au particles on highly ordered TiO2 nanotube arrays. Advanced Materials, 2015, 27(20): 3208–3215
145 S Bouhadoun, C Guillard, F Dapozze, S Singh, D Amans, J Bouclé, N Herlin-Boime. One step synthesis of N-doped and Au-loaded TiO2 nanoparticles by laser pyrolysis: application in photocatalysis. Applied Catalysis B: Environmental, 2015, 174–175: 367–375
146 H J Wu, J Henzie, W C Lin, C Rhodes, Z Li, E Sartorel, J Thorner, P Yang, J T Groves. Membrane-protein binding measured with solution-phase plasmonic nanocube sensors. Nature Methods, 2012, 9(12): 91189
147 A Tao, P Sinsermsuksakul, P Yang. Polyhedral silver nanocrystals with distinct scattering signatures. Angewandte Chemie International Edition, 2006, 45(28): 4597–4601
148 B Han, X Ou, Z Deng, Y Song, C Tian, H Deng, Y J Xu, Z Lin. Nickel metal–organic framework monolayers for photoreduction of diluted CO2: metal-node-dependent activity and selectivity. Angewandte Chemie International Edition, 2018, 57(51): 16811–16815
Related articles from Frontiers Journals
[1] Xi CHEN, Fangming JIN. Photocatalytic reduction of carbon dioxide by titanium oxide-based semiconductors to produce fuels[J]. Front. Energy, 2019, 13(2): 207-220.
[2] Bin LIU, Lan DONG, Qing XI, Xiangfan XU, Jun ZHOU, Baowen LI. Thermal transport in organic/inorganic composites[J]. Front. Energy, 2018, 12(1): 72-86.
[3] Reza B. MOGHADDAM, Samaneh SHAHGALDI, Xianguo LI. A facile synthesis of high activity cube-like Pt/carbon composites for fuel cell application[J]. Front. Energy, 2017, 11(3): 245-253.
[4] Gang WU. Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells[J]. Front. Energy, 2017, 11(3): 286-298.
[5] Seyed Mohsen MIRYOUSEFI AVAL,Amir AHADI,Hosein HAYATI. A novel method for reliability and risk evaluation of wind energy conversion systems considering wind speed correlation[J]. Front. Energy, 2016, 10(1): 46-56.
[6] Yujie DING,Jing LIU. Water film coated composite liquid metal marble and its fluidic impact dynamics phenomenon[J]. Front. Energy, 2016, 10(1): 29-36.
[7] Nitin Kumar SAXENA,Ashwani Kumar SHARMA. Estimation of composite load model with aggregate induction motor dynamic load for an isolated hybrid power system[J]. Front. Energy, 2015, 9(4): 472-485.
[8] Xiaoping CHEN, Wenfeng SHANGGUAN. Hydrogen production from water splitting on CdS-based photocatalysts using solar light[J]. Front Energ, 2013, 7(1): 111-118.
[9] Huashan LI, Xianbiao BU, Lingbao WANG, Zhenneng LU, Weibin MA. Composite adsorbents of CaCl2 and sawdust prepared by carbonization for ammonia adsorption refrigeration[J]. Front Energ, 2012, 6(4): 356-360.
[10] Cheng ZAN, Lin SHI, Xiujuan MA, Wenyan YANG, . Evolution of composite fouling on a vertical stainless steel surface caused by treated sewage[J]. Front. Energy, 2010, 4(2): 171-180.
Full text