Metal-organic frameworks for CO2 photoreduction
Lei ZHANG, Junqing ZHANG
Metal-organic frameworks for CO2 photoreduction
Metal-organic frameworks (MOFs) have attracted much attention because of their large surface areas, tunable structures, and potential applications in many areas. In recent years, MOFs have shown much promise in CO2 photoreduction. This review summarized recent research progresses in MOF-based photocatalysts for photocatalytic reduction of CO2. Besides, it discussed strategies in rational design of MOF-based photocatalysts (functionalized pristine MOFs, MOF-photosensitizer, MOF-semiconductor, MOF-metal, and MOF-carbon materials composites) with enhanced performance on CO2 reduction. Moreover, it explored challenges and outlook on using MOF-based photocatalysts for CO2 reduction.
metal-organic frameworks (MOFs) / photocatalysis / CO2 photoreduction / composite
[1] |
Pearson P N, Palmer M R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 2000, 406(6797): 406695
CrossRef
Google scholar
|
[2] |
Quadrelli R, Peterson S. The energy–climate challenge: recent trends in CO2 emissions from fuel combustion. Energy Policy, 2007, 35(11): 5938–5952
CrossRef
Google scholar
|
[3] |
Song C. CO2 conversion and utilization: an overview. In: Song C, eds. CO2 Conversion and Utilization. Washington, DC: ACS Symposium Series, 2002, 809, 2–30
CrossRef
Google scholar
|
[4] |
Herzog H J, Drake E M. Carbon dioxide recovery and disposal from large energy systems. Annual Review of Energy and the Environment, 1996, 21(1): 145–166
CrossRef
Google scholar
|
[5] |
Muradov N. Industrial Utilization of CO2: A Win–Win Solution. New York: Springer New York, 2014, 325–383
|
[6] |
Rafiee A, Rajab Khalilpour K, Milani D, Panahi M. Trends in CO2 conversion and utilization: a review from process systems perspective. Journal of Environmental Chemical Engineering, 2018, 6(5): 5771–5794
CrossRef
Google scholar
|
[7] |
Wang B, Chen W, Song Y, Li G, Wei W, Fang J, Sun Y. Recent progress in the photocatalytic reduction of aqueous carbon dioxide. Catalysis Today, 2018, 311: 23–39
CrossRef
Google scholar
|
[8] |
Yu Y, Zheng W, Cao Y. TiO2–Pd/C composited photocatalyst with improved photocatalytic activity for photoreduction of CO2 into CH4. New Journal of Chemistry, 2017, 41(8): 3204–3210
CrossRef
Google scholar
|
[9] |
Sneddon G, Greenaway A, Yiu H H P. The potential applications of nanoporous materials for the adsorption, separation, and catalytic conversion of carbon dioxide. Advanced Energy Materials, 2014, 4(10): 1301873
CrossRef
Google scholar
|
[10] |
North M, Pasquale R, Young C. Synthesis of cyclic carbonates from epoxides and CO2. Green Chemistry, 2010, 12(9): 1514–1539
CrossRef
Google scholar
|
[11] |
Li W, Wang H, Jiang X, Zhu J, Liu Z, Guo X, Song C. A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Advances, 2018, 8(14): 7651–7669
CrossRef
Google scholar
|
[12] |
Raciti D, Wang C. Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Letters, 2018, 3(7): 1545–1556
CrossRef
Google scholar
|
[13] |
Tahir M, Amin N S. Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels. Energy Conversion and Management, 2013, 76: 194–214
CrossRef
Google scholar
|
[14] |
Matsubara Y, Grills D C, Kuwahara Y. Thermodynamic aspects of electrocatalytic CO2 reduction in acetonitrile and with an ionic liquid as solvent or electrolyte. ACS Catalysis, 2015, 5(11): 6440–6452
CrossRef
Google scholar
|
[15] |
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 23837
CrossRef
Google scholar
|
[16] |
Wang M, Ioccozia J, Sun L, Lin C, Lin Z. Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis. Energy & Environmental Science, 2014, 7(7): 2182–2202
CrossRef
Google scholar
|
[17] |
Bao N, Shen L, Takata T, Domen K. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chemistry of Materials, 2008, 20(1): 110–117
CrossRef
Google scholar
|
[18] |
Ong C B, Ng L Y, Mohammad A W. A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renewable & Sustainable Energy Reviews, 2018, 81: 536–551
CrossRef
Google scholar
|
[19] |
Lee G J, Wu J J. Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications—a review. Powder Technology, 2017, 318: 8–22
CrossRef
Google scholar
|
[20] |
Mishra M, Chun D M. α-Fe2O3 as a photocatalytic material: a review. Applied Catalysis A, General, 2015, 498: 126–141
CrossRef
Google scholar
|
[21] |
Wen J, Xie J, Chen X, Li X. A review on g-C3N4-based photocatalysts. Applied Surface Science, 2017, 391: 72–123
CrossRef
Google scholar
|
[22] |
Luo L, Li Y, Hou J, Yang Y. Visible photocatalysis and photostability of Ag3PO4 photocatalyst. Applied Surface Science, 2014, 319: 332–338
CrossRef
Google scholar
|
[23] |
Dong C, Lian C, Hu S, Deng Z, Gong J, Li M, Liu H, Xing M, Zhang J. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nature Communications, 2018, 9(1): 1252
CrossRef
Google scholar
|
[24] |
Xing M, Zhou Y, Dong C, Cai L, Zeng L, Shen B, Pan L, Dong C, Chai Y, Zhang J, Yin Y. Modulation of the reduction potential of TiO2–x by fluorination for efficient and selective CH4 generation from CO2 photoreduction. Nano Letters, 2018, 18(6): 3384–3390
CrossRef
Google scholar
|
[25] |
Zhang H, Liu G, Shi L, Liu H, Wang T, Ye J. Engineering coordination polymers for photocatalysis. Nano Energy, 2016, 22: 149–168
CrossRef
Google scholar
|
[26] |
Meissner D, Memming R, Kastening B. Photoelectrochemistry of cadmium sulfide. 1. Reanalysis of photocorrosion and flat-band potential. Journal of Physical Chemistry, 1988, 92(12): 3476–3483
CrossRef
Google scholar
|
[27] |
Bahnemann D W, Kormann C, Hoffmann M R. Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study. Journal of Physical Chemistry, 1987, 91(14): 3789–3798
CrossRef
Google scholar
|
[28] |
Zhang L, Hu Y H. Desorption of dimethylformamide from Zn4O(C8H4O4)3 framework. Applied Surface Science, 2011, 257(8): 3392–3398
CrossRef
Google scholar
|
[29] |
Hu Y H, Zhang L. Amorphization of metal-organic framework MOF-5 at unusually low applied pressure. Physical Review. B, 2010, 81(17): 174103
CrossRef
Google scholar
|
[30] |
Zhang L, Hu Y H. A systematic investigation of decomposition of nano Zn4O(C8H4O4)3 metal-organic framework. Journal of Physical Chemistry C, 2010, 114(6): 2566–2572
CrossRef
Google scholar
|
[31] |
Zhang L, Hu Y H. Strong effects of higher-valent cations on the structure of the zeolitic Zn(2-methylimidazole)2 framework (ZIF-8). Journal of Physical Chemistry C, 2011, 115(16): 7967–7971
CrossRef
Google scholar
|
[32] |
Zhang L, Hu Y H. Structure distortion of Zn4O13C24H12 framework (MOF-5). Materials Science and Engineering B, 2011, 176(7): 573–578
CrossRef
Google scholar
|
[33] |
Zhang L, Hu Y H. Observation of ZnO nanoparticles outside pores of nano Zn4O(C8H4O4)3 metal–organic framework. Physics Letters [Part A], 2011, 375(13): 1514–1517
CrossRef
Google scholar
|
[34] |
Loera-Serna S, Zarate-Rubio J, Medina-Velazquez D Y, Zhang L, Ortiz E. Encapsulation of urea and caffeine in Cu3(BTC)2 metal–organic framework. Surface Innovations, 2016, 4(2): 76–87
CrossRef
Google scholar
|
[35] |
Hu Y H, Zhang L. Hydrogen storage in metal–organic frameworks. Advanced Materials, 2010, 22(20): E117–E130
CrossRef
Google scholar
|
[36] |
Zhang T, Lin W. Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chemical Society Reviews, 2014, 43(16): 5982–5993
CrossRef
Google scholar
|
[37] |
Wu M X, Yang Y W. Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Advanced Materials, 2017, 29(23): 1606134
CrossRef
Google scholar
|
[38] |
Chowdhury T, Zhang L, Zhang J, Aggarwal S. Removal of arsenic(III) from aqueous solution using metal organic framework-graphene oxide nanocomposite. Nanomaterials (Basel, Switzerland), 2018, 8(12): 1062
CrossRef
Google scholar
|
[39] |
Kreno L E, Leong K, Farha O K, Allendorf M, Van Duyne R P, Hupp J T. Metal–organic framework materials as chemical sensors. Chemical Reviews, 2012, 112(2): 1105–1125
CrossRef
Google scholar
|
[40] |
Wang Y, Huang N Y, Shen J Q, Liao P Q, Chen X M, Zhang J P. Hydroxide ligands cooperate with catalytic centers in metal–organic frameworks for efficient photocatalytic CO2 reduction. Journal of the American Chemical Society, 2018, 140(1): 38–41
CrossRef
Google scholar
|
[41] |
He J, Zhang Y, He J, Zeng X, Hou X, Long Z. Enhancement of photoredox catalytic properties of porphyrinic metal–organic frameworks based on titanium incorporation via post-synthetic modification. Chemical Communications, 2018, 54(62): 8610–8613
CrossRef
Google scholar
|
[42] |
Horiuchi Y, Toyao T, Saito M, Mochizuki K, Iwata M, Higashimura H, Anpo M, Matsuoka M. Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(IV) metal–organic framework. Journal of Physical Chemistry C, 2012, 116(39): 20848–20853
CrossRef
Google scholar
|
[43] |
Maina J W, Pozo-Gonzalo C, Kong L, Schütz J, Hill M, Dumée L F. Metal organic framework based catalysts for CO2 conversion. Materials Horizons, 2017, 4(3): 345–361
CrossRef
Google scholar
|
[44] |
Nasalevich M A, Goesten M G, Savenije T J, Kapteijn F, Gascon J. Enhancing optical absorption of metal–organic frameworks for improved visible light photocatalysis. Chemical Communications, 2013, 49(90): 10575–10577
CrossRef
Google scholar
|
[45] |
Jiang D, Mallat T, Krumeich F, Baiker A. Copper-based metal-organic framework for the facile ring-opening of epoxides. Journal of Catalysis, 2008, 257(2): 390–395
CrossRef
Google scholar
|
[46] |
Hasegawa S, Horike S, Matsuda R, Furukawa S, Mochizuki K, Kinoshita Y, Kitagawa S. Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis. Journal of the American Chemical Society, 2007, 129(9): 2607–2614
CrossRef
Google scholar
|
[47] |
Wang J L, Wang C, Lin W. Metal–organic frameworks for light harvesting and photocatalysis. ACS Catalysis, 2012, 2(12): 2630–2640
CrossRef
Google scholar
|
[48] |
Llabrés i Xamena F X, Casanova O, Galiasso Tailleur R, Garcia H, Corma A. Metal organic frameworks (MOFs) as catalysts: a combination of Cu2+ and Co2+ MOFs as an efficient catalyst for tetralin oxidation. Journal of Catalysis, 2008, 255(2): 220–227
CrossRef
Google scholar
|
[49] |
Llabrés i Xamena F X, Corma A, Garcia H. Applications for metal-organic frameworks (MOFs) as quantum dot semiconductors. Journal of Physical Chemistry C, 2007, 111(1): 80–85
CrossRef
Google scholar
|
[50] |
Gao J, Miao J, Li P Z, Teng W Y, Yang L, Zhao Y, Liu B, Zhang Q. A p-type Ti(iv)-based metal–organic framework with visible-light photo-response. Chemical Communications, 2014, 50(29): 3786–3788
CrossRef
Google scholar
|
[51] |
Shen L, Liang S, Wu W, Liang R, Wu L. CdS-decorated UiO-66(NH2) nanocomposites fabricated by a facile photodeposition process: an efficient and stable visible-light-driven photocatalyst for selective oxidation of alcohols. Journal of Materials Chemistry. A, 2013, 1(37): 11473–11482
CrossRef
Google scholar
|
[52] |
Ryu U J, Kim S J, Lim H K, Kim H, Choi K M, Kang J K. Synergistic interaction of Re complex and amine functionalized multiple ligands in metal-organic frameworks for conversion of carbon dioxide. Scientific Reports, 2017, 7(1): 612
CrossRef
Google scholar
|
[53] |
Fu Y, Sun D, Chen Y, Huang R, Ding Z, Fu X, Li Z. An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angewandte Chemie International Edition, 2012, 51(14): 3364–3367
CrossRef
Google scholar
|
[54] |
Yan S, Ouyang S, Xu H, Zhao M, Zhang X, Ye J. Co-ZIF-9/TiO2 nanostructure for superior CO2 photoreduction activity. Journal of Materials Chemistry. A, 2016, 4(39): 15126–15133
CrossRef
Google scholar
|
[55] |
Su Y, Zhang Z, Liu H, Wang Y. Cd0.2Zn0.8S@UiO-66–NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction. Applied Catalysis B: Environmental, 2017, 200: 448–457
CrossRef
Google scholar
|
[56] |
Liu S, Chen F, Li S, Peng X, Xiong Y. Enhanced photocatalytic conversion of greenhouse gas CO2 into solar fuels over g-C3N4 nanotubes with decorated transparent ZIF-8 nanoclusters. Applied Catalysis B: Environmental, 2017, 211: 1–10
CrossRef
Google scholar
|
[57] |
Wang S, Yao W, Lin J, Ding Z, Wang X. Cobalt imidazolate metal–organic frameworks photosplit CO2 under mild reaction conditions. Angewandte Chemie International Edition, 2014, 53(4): 1034–1038
CrossRef
Google scholar
|
[58] |
Fei H, Sampson M D, Lee Y, Kubiak C P, Cohen S M. Photocatalytic CO2 reduction to formate using a Mn(I) molecular catalyst in a robust metal–organic framework. Inorganic Chemistry, 2015, 54(14): 6821–6828
CrossRef
Google scholar
|
[59] |
Qin J, Wang S, Wang X. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Applied Catalysis B: Environmental, 2017, 209: 476–482
CrossRef
Google scholar
|
[60] |
Huang Y B, Liang J, Wang X S, Cao R. Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 2017, 46(1): 126–157
CrossRef
Google scholar
|
[61] |
Wang S, Wang X. Multifunctional metal–organic frameworks for photocatalysis. Small, 2015, 11(26): 3097–3112
CrossRef
Google scholar
|
[62] |
Yu X, Wang L, Cohen S M. Photocatalytic metal–organic frameworks for organic transformations. CrystEngComm, 2017, 19(29): 4126–4136
CrossRef
Google scholar
|
[63] |
Navarro Amador R, Carboni M, Meyer D. Photosensitive titanium and zirconium metal organic frameworks: current research and future possibilities. Materials Letters, 2016, 166: 327–338
CrossRef
Google scholar
|
[64] |
Liang Z, Qu C, Guo W, Zou R, Xu Q. Pristine metal–organic frameworks and their composites for energy storage and conversion. Advanced Materials, 2018, 30(37): 1702891
CrossRef
Google scholar
|
[65] |
Sun D, Li Z. Robust Ti- and Zr-based metal-organic frameworks for photocatalysis. Chinese Journal of Chemistry, 2017, 35(2): 135–147
CrossRef
Google scholar
|
[66] |
Shen L, Liang R, Wu L. Strategies for engineering metal-organic frameworks as efficient photocatalysts. Chinese Journal of Catalysis, 2015, 36(12): 2071–2088
CrossRef
Google scholar
|
[67] |
Zhu J, Li P Z, Guo W, Zhao Y, Zou R. Titanium-based metal–organic frameworks for photocatalytic applications. Coordination Chemistry Reviews, 2018, 359: 80–101
CrossRef
Google scholar
|
[68] |
Santaclara J G, Kapteijn F, Gascon J, van der Veen M A. Understanding metal–organic frameworks for photocatalytic solar fuel production. CrystEngComm, 2017, 19(29): 4118–4125
CrossRef
Google scholar
|
[69] |
Nasalevich M A, van der Veen M, Kapteijn F, Gascon J. Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges. CrystEngComm, 2014, 16(23): 4919–4926
CrossRef
Google scholar
|
[70] |
Song F, Li W, Sun Y. Metal–organic frameworks and their derivatives for photocatalytic water splitting. Inorganics, 2017, 5(3): 40
CrossRef
Google scholar
|
[71] |
Wang W, Xu X, Zhou W, Shao Z. Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Advancement of Science, 2017, 4(4): 1600371
CrossRef
Google scholar
|
[72] |
Yan Y, He T, Zhao B, Qi K, Liu H, Xia B Y. Metal/covalent–organic frameworks-based electrocatalysts for water splitting. Journal of Materials Chemistry. A, 2018, 6(33): 15905–15926
CrossRef
Google scholar
|
[73] |
Meyer K, Ranocchiari M, van Bokhoven J A. Metal organic frameworks for photo-catalytic water splitting. Energy & Environmental Science, 2015, 8(7): 1923–1937
CrossRef
Google scholar
|
[74] |
Pi Y, Li X, Xia Q, Wu J, Li Y, Xiao J, Li Z. Adsorptive and photocatalytic removal of persistent organic pollutants (POPs) in water by metal-organic frameworks (MOFs). Chemical Engineering Journal, 2018, 337: 351–371
CrossRef
Google scholar
|
[75] |
Wu Z, Yuan X, Zhang J, Wang H, Jiang L, Zeng G. Photocatalytic decontamination of wastewater containing organic dyes by metal–organic frameworks and their derivatives. ChemCatChem, 2017, 9(1): 41–64
CrossRef
Google scholar
|
[76] |
Wang C C, Li J R, Lv X L, Zhang Y Q, Guo G. Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy & Environmental Science, 2014, 7(9): 2831–2867
CrossRef
Google scholar
|
[77] |
Jiang D, Xu P, Wang H, Zeng G, Huang D, Chen M, Lai C, Zhang C, Wan J, Xue W. Strategies to improve metal organic frameworks photocatalyst’s performance for degradation of organic pollutants. Coordination Chemistry Reviews, 2018, 376: 449–466
CrossRef
Google scholar
|
[78] |
Dhakshinamoorthy A, Li Z, Garcia H. Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 2018, 47(22): 8134–8172
CrossRef
Google scholar
|
[79] |
Zhu B, Zou R, Xu Q. Metal–organic framework based catalysts for hydrogen evolution. Advanced Energy Materials, 2018, 8(24): 1801193
CrossRef
Google scholar
|
[80] |
Fang Y, Ma Y, Zheng M, Yang P, Asiri A M, Wang X. Metal–organic frameworks for solar energy conversion by photoredox catalysis. Coordination Chemistry Reviews, 2018, 373: 83–115
CrossRef
Google scholar
|
[81] |
Chen Y, Wang D, Deng X, Li Z. Metal–organic frameworks (MOFs) for photocatalytic CO2 reduction. Catalysis Science & Technology, 2017, 7(21): 4893–4904
CrossRef
Google scholar
|
[82] |
Li Y, Xu H, Ouyang S, Ye J. Metal–organic frameworks for photocatalysis. Physical Chemistry Chemical Physics, 2016, 18(11): 7563–7572
CrossRef
Google scholar
|
[83] |
Li R, Zhang W, Zhou K. Metal–organic-framework-based catalysts for photoreduction of CO2. Advanced Materials, 2018, 30(35): 1705512
CrossRef
Google scholar
|
[84] |
Wang C C, Zhang Y Q, Li J, Wang P. Photocatalytic CO2 reduction in metal–organic frameworks: a mini review. Journal of Molecular Structure, 2015, 1083: 127–136
CrossRef
Google scholar
|
[85] |
Qiu J, Zhang X, Feng Y, Zhang X, Wang H, Yao J. Modified metal-organic frameworks as photocatalysts. Applied Catalysis B: Environmental, 2018, 231: 317–342
CrossRef
Google scholar
|
[86] |
Gascon J, Hernández-Alonso M D, Almeida A R, van Klink G P M, Kapteijn F, Mul G. Isoreticular MOFs as efficient photocatalysts with tunable band gap: an operando FTIR study of the photoinduced oxidation of propylene. ChemSusChem, 2008, 1(12): 981–983
CrossRef
Google scholar
|
[87] |
Barkhordarian A A, Kepert C J. Two new porous UiO-66-type zirconium frameworks: open aromatic N-donor sites and their post-synthetic methylation and metallation. Journal of Materials Chemistry. A, 2017, 5(11): 5612–5618
CrossRef
Google scholar
|
[88] |
Hendon C H, Tiana D, Fontecave M, Sanchez C, D’arras L, Sassoye C, Rozes L, Mellot-Draznieks C, Walsh A. Engineering the optical response of the Titanium-MIL-125 metal–organic framework through ligand functionalization. Journal of the American Chemical Society, 2013, 135(30): 10942–10945
CrossRef
Google scholar
|
[89] |
Pham H Q, Mai T, Pham-Tran N N, Kawazoe Y, Mizuseki H, Nguyen-Manh D. Engineering of band gap in metal–organic frameworks by functionalizing organic linker: a systematic density functional theory investigation. Journal of Physical Chemistry C, 2014, 118(9): 4567–4577
CrossRef
Google scholar
|
[90] |
Yang H, He X W, Wang F, Kang Y, Zhang J. Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye. Journal of Materials Chemistry, 2012, 22(41): 21849–21851
CrossRef
Google scholar
|
[91] |
Yang L M, Fang G Y, Ma J, Pushpa R, Ganz E. Halogenated MOF-5 variants show new configuration, tunable band gaps and enhanced optical response in the visible and near infrared. Physical Chemistry Chemical Physics, 2016, 18(47): 32319–32330
CrossRef
Google scholar
|
[92] |
Nguyen H L, Vu T T, Le D, Doan T L H, Nguyen V Q, Phan N T S. A Titanium–organic framework: engineering of the band-gap energy for photocatalytic property enhancement. ACS Catalysis, 2017, 7(1): 338–342
CrossRef
Google scholar
|
[93] |
Sun D, Fu Y, Liu W, Ye L, Wang D, Yang L, Fu X, Li Z. Studies on photocatalytic CO2 reduction over NH2-Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal–organic frameworks. Chemistry–A European Journal, 2013, 19(42): 14279–14285
CrossRef
Google scholar
|
[94] |
Lee Y, Kim S, Kang J K, Cohen S M. Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal–organic framework under visible light irradiation. Chemical Communications, 2015, 51(26): 5735–5738
CrossRef
Google scholar
|
[95] |
Wang D, Huang R, Liu W, Sun D, Li Z. Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways. ACS Catalysis, 2014, 4(12): 4254–4260
CrossRef
Google scholar
|
[96] |
Sun D, Liu W, Qiu M, Zhang Y, Li Z. Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal–organic frameworks (MOFs). Chemical Communications, 2015, 51(11): 2056–2059
CrossRef
Google scholar
|
[97] |
Liu J, Fan Y Z, Li X, Wei Z, Xu Y W, Zhang L, Su C Y. A porous rhodium(III)-porphyrin metal-organic framework as an efficient and selective photocatalyst for CO2 reduction. Applied Catalysis B: Environmental, 2018, 231: 173–181
CrossRef
Google scholar
|
[98] |
Sadeghi N, Sharifnia S, Sheikh Arabi M.A porphyrin-based metal organic framework for high rate photoreduction of CO2 to CH4 in gas phase. Journal of CO2 Utilization, 2016, 16: 450–457
|
[99] |
Liu Y, Yang Y, Sun Q, Wang Z, Huang B, Dai Y, Qin X, Zhang X. Chemical adsorption enhanced CO2 capture and photoreduction over a copper porphyrin based metal organic framework. ACS Applied Materials & Interfaces, 2013, 5(15): 7654–7658
CrossRef
Google scholar
|
[100] |
Zhang H, Wei J, Dong J, Liu G, Shi L, An P, Zhao G, Kong J, Wang X, Meng X, Zhang J, Ye J. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal–organic framework. Angewandte Chemie International Edition, 2016, 55(46): 14310–14314
CrossRef
Google scholar
|
[101] |
Xu H Q, Hu J, Wang D, Li Z, Zhang Q, Luo Y, Yu S H, Jiang H L. Visible-light photoreduction of CO2 in a metal–organic framework: boosting electron–hole separation via electron trap states. Journal of the American Chemical Society, 2015, 137(42): 13440–13443
CrossRef
Google scholar
|
[102] |
Yan Z H, Du M H, Liu J, Jin S, Wang C, Zhuang G L, Kong X J, Long L S, Zheng L S. Photo-generated dinuclear {Eu(II)}2 active sites for selective CO2 reduction in a photosensitizing metal-organic framework. Nature Communications, 2018, 9(1): 3353
CrossRef
Google scholar
|
[103] |
Wang C, Xie Z, deKrafft K E, Lin W. Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. Journal of the American Chemical Society, 2011, 133(34): 13445–13454
CrossRef
Google scholar
|
[104] |
Huang R, Peng Y, Wang C, Shi Z, Lin W. A rhenium-functionalized metal–organic framework as a single-site catalyst for photochemical reduction of carbon dioxide. European Journal of Inorganic Chemistry, 2016, 2016(27): 4358–4362
CrossRef
Google scholar
|
[105] |
Chambers M B, Wang X, Elgrishi N, Hendon C H, Walsh A, Bonnefoy J, Canivet J, Quadrelli E A, Farrusseng D, Mellot-Draznieks C, Fontecave M. Photocatalytic carbon dioxide reduction with rhodium-based catalysts in solution and heterogenized within metal–organic frameworks. ChemSusChem, 2015, 8(4): 603–608
CrossRef
Google scholar
|
[106] |
Sun D, Gao Y, Fu J, Zeng X, Chen Z, Li Z. Construction of a supported Ru complex on bifunctional MOF-253 for photocatalytic CO2 reduction under visible light. Chemical Communications, 2015, 51(13): 2645–2648
CrossRef
Google scholar
|
[107] |
Li L, Zhang S, Xu L, Wang J, Shi L X, Chen Z N, Hong M, Luo J. Effective visible-light driven CO2 photoreduction via a promising bifunctional iridium coordination polymer. Chemical Science (Cambridge), 2014, 5(10): 3808–3813
CrossRef
Google scholar
|
[108] |
Zhang S, Li L, Zhao S, Sun Z, Hong M, Luo J. Hierarchical metal–organic framework nanoflowers for effective CO2 transformation driven by visible light. Journal of Materials Chemistry. A, 2015, 3(30): 15764–15768
CrossRef
Google scholar
|
[109] |
Zhang S, Li L, Zhao S, Sun Z, Luo J. Construction of interpenetrated ruthenium metal–organic frameworks as stable photocatalysts for CO2 reduction. Inorganic Chemistry, 2015, 54(17): 8375–8379
CrossRef
Google scholar
|
[110] |
Lee Y, Kim S, Fei H, Kang J K, Cohen S M. Photocatalytic CO2 reduction using visible light by metal-monocatecholato species in a metal–organic framework. Chemical Communications, 2015, 51(92): 16549–16552
CrossRef
Google scholar
|
[111] |
Chen D, Xing H, Wang C, Su Z. Highly efficient visible-light-driven CO2 reduction to formate by a new anthracene-based zirconium MOF via dual catalytic routes. Journal of Materials Chemistry. A, 2016, 4(7): 2657–2662
CrossRef
Google scholar
|
[112] |
Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P. Modulated synthesis of Zr-based metal–organic frameworks: from nano to single crystals. Chemistry–A European Journal, 2011, 17(24): 6643–6651
CrossRef
Google scholar
|
[113] |
Gomes Silva C, Luz I, Llabrés i Xamena F X, Corma A, García H. Water stable Zr–benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation. Chemistry– A European Journal, 2010, 16(36): 11133–11138
CrossRef
Google scholar
|
[114] |
Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008, 130(42): 13850–13851
CrossRef
Google scholar
|
[115] |
Mondloch J E, Katz M J, Planas N, Semrouni D, Gagliardi L, Hupp J T, Farha O K. Are Zr6-based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse. Chemical Communications, 2014, 50(64): 8944–8946
CrossRef
Google scholar
|
[116] |
Wang C C, Du X D, Li J, Guo X X, Wang P, Zhang J. Photocatalytic Cr(VI) reduction in metal-organic frameworks: a mini-review. Applied Catalysis B: Environmental, 2016, 193: 198–216
CrossRef
Google scholar
|
[117] |
Dean J A. Lange’s handbook of chemistry. Materials and Manufacturing Processes, 1990, 5(4): 687–688
CrossRef
Google scholar
|
[118] |
Laurier K G M, Vermoortele F, Ameloot R, De Vos D E, Hofkens J, Roeffaers M B J. Iron(III)-based metal–organic frameworks as visible light photocatalysts. Journal of the American Chemical Society, 2013, 135(39): 14488–14491
CrossRef
Google scholar
|
[119] |
Torrisi A, Bell R G, Mellot-Draznieks C. Functionalized MOFs for enhanced CO2 capture. Crystal Growth & Design, 2010, 10(7): 2839–2841
CrossRef
Google scholar
|
[120] |
Torrisi A, Mellot-Draznieks C, Bell R G. Impact of ligands on CO2 adsorption in metal-organic frameworks: first principles study of the interaction of CO2 with functionalized benzenes. II. Effect of polar and acidic substituents. Journal of Chemical Physics, 2010, 132(4): 044705
CrossRef
Google scholar
|
[121] |
Tamaki Y, Morimoto T, Koike K, Ishitani O. Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39): 15673–15678
CrossRef
Google scholar
|
[122] |
Sato S, Morikawa T, Kajino T, Ishitani O. A highly efficient mononuclear iridium complex photocatalyst for CO2 reduction under visible light. Angewandte Chemie International Edition, 2013, 52(3): 988–992
CrossRef
Google scholar
|
[123] |
Kuramochi Y, Kamiya M, Ishida H. Photocatalytic CO2 reduction in N,N-dimethylacetamide/water as an alternative solvent system. Inorganic Chemistry, 2014, 53(7): 3326–3332
CrossRef
Google scholar
|
[124] |
Huang Z, Dong P, Zhang Y, Nie X, Wang X, Zhang X.A ZIF-8 decorated TiO2 grid-like film with high CO2 adsorption for CO2 photoreduction. Journal of CO2 Utilization, 2018, 24, 369–375
|
[125] |
Cardoso J C, Stulp S, de Brito J F, Flor J B S, Frem R C G, Zanoni M V B. MOFs based on ZIF-8 deposited on TiO2 nanotubes increase the surface adsorption of CO2 and its photoelectrocatalytic reduction to alcohols in aqueous media. Applied Catalysis B: Environmental, 2018, 225: 563–573
CrossRef
Google scholar
|
[126] |
Li R, Hu J, Deng M, Wang H, Wang X, Hu Y, Jiang H L, Jiang J, Zhang Q, Xie Y, Xiong Y. Integration of an inorganic semiconductor with a metal–organic framework: a platform for enhanced gaseous photocatalytic reactions. Advanced Materials, 2014, 26(28): 4783–4788
CrossRef
Google scholar
|
[127] |
He X, Gan Z, Fisenko S, Wang D, El-Kaderi H M, Wang W N. Rapid formation of metal–organic frameworks (MOFs) based nanocomposites in microdroplets and their applications for CO2 photoreduction. ACS Applied Materials & Interfaces, 2017, 9(11): 9688–9698
CrossRef
Google scholar
|
[128] |
Wang M, Wang D, Li Z. Self-assembly of CPO-27-Mg/TiO2 nanocomposite with enhanced performance for photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2016, 183: 47–52
CrossRef
Google scholar
|
[129] |
Crake A, Christoforidis K C, Kafizas A, Zafeiratos S, Petit C. CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV–vis irradiation. Applied Catalysis B: Environmental, 2017, 210: 131–140
CrossRef
Google scholar
|
[130] |
Wang S, Wang X. Photocatalytic CO2 reduction by CdS promoted with a zeolitic imidazolate framework. Applied Catalysis B: Environmental, 2015, 162: 494–500
CrossRef
Google scholar
|
[131] |
Wang S, Lin J, Wang X. Semiconductor–redox catalysis promoted by metal–organic frameworks for CO2 reduction. Physical Chemistry Chemical Physics, 2014, 16(28): 14656–14660
CrossRef
Google scholar
|
[132] |
Shi L, Wang T, Zhang H, Chang K, Ye J. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal–organic framework for enhanced photocatalytic CO2 reduction. Advanced Functional Materials, 2015, 25(33): 5360–5367
CrossRef
Google scholar
|
[133] |
Xu G, Zhang H, Wei J, Zhang H X, Wu X, Li Y, Li C, Zhang J, Ye J. Integrating the g-C3N4 Nanosheet with B–H bonding decorated metal–organic framework for CO2 activation and photoreduction. ACS Nano, 2018, 12(6): 5333–5340
CrossRef
Google scholar
|
[134] |
Liu Q, Low Z X, Li L, Razmjou A, Wang K, Yao J, Wang H. ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel. Journal of Materials Chemistry. A, 2013, 1(38): 11563–11569
CrossRef
Google scholar
|
[135] |
Sun D, Liu W, Fu Y, Fang Z, Sun F, Fu X, Zhang Y, Li Z. Noble metals can have different effects on photocatalysis over metal–organic frameworks (MOFs): a case study on M/NH2-MIL-125(Ti) (M=Pt and Au). Chemistry–A European Journal, 2014, 20(16): 4780–4788
CrossRef
Google scholar
|
[136] |
Fu Y, Yang H, Du R, Tu G, Xu C, Zhang F, Fan M, Zhu W. Enhanced photocatalytic CO2 reduction over Co-doped NH2-MIL-125(Ti) under visible light. RSC Advances, 2017, 7(68): 42819–42825
CrossRef
Google scholar
|
[137] |
Choi K M, Kim D, Rungtaweevoranit B, Trickett C A, Barmanbek J T D, Alshammari A S, Yang P, Yaghi O M. Plasmon-enhanced photocatalytic CO2 conversion within metal–organic frameworks under visible light. Journal of the American Chemical Society, 2017, 139(1): 356–362
CrossRef
Google scholar
|
[138] |
Wang X, Zhao X, Zhang D, Li G, Li H. Microwave irradiation induced UIO-66–NH2 anchored on graphene with high activity for photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 2018, 228: 47–53
CrossRef
Google scholar
|
[139] |
Sadeghi N, Sharifnia S, Do T O. Enhanced CO2 photoreduction by a graphene–porphyrin metal–organic framework under visible light irradiation. Journal of Materials Chemistry. A, 2018, 6(37): 18031–18035
CrossRef
Google scholar
|
[140] |
Pipelzadeh E, Rudolph V, Hanson G, Noble C, Wang L. Photoreduction of CO2 on ZIF-8/TiO2 nanocomposites in a gaseous photoreactor under pressure swing. Applied Catalysis B: Environmental, 2017, 218: 672–678
CrossRef
Google scholar
|
[141] |
Chaudhary Y S, Woolerton T W, Allen C S, Warner J H, Pierce E, Ragsdale S W, Armstrong F A. Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals. Chemical Communications, 2012, 48(1): 58–60
CrossRef
Google scholar
|
[142] |
Liu B J, Torimoto T, Yoneyama H. Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 113(1): 93–97
CrossRef
Google scholar
|
[143] |
Fujiwara H, Hosokawa H, Murakoshi K, Wada Y, Yanagida S, Okada T, Kobayashi H. Effect of surface structures on photocatalytic CO2 reduction using quantized CdS nanocrystallites. Journal of Physical Chemistry B, 1997, 101(41): 8270–8278
CrossRef
Google scholar
|
[144] |
Nguyen N T, Altomare M, Yoo J, Schmuki P. Efficient photocatalytic H2 evolution: controlled dewetting–dealloying to fabricate site-selective high-activity nanoporous Au particles on highly ordered TiO2 nanotube arrays. Advanced Materials, 2015, 27(20): 3208–3215
CrossRef
Google scholar
|
[145] |
Bouhadoun S, Guillard C, Dapozze F, Singh S, Amans D, Bouclé J, Herlin-Boime N. One step synthesis of N-doped and Au-loaded TiO2 nanoparticles by laser pyrolysis: application in photocatalysis. Applied Catalysis B: Environmental, 2015, 174–175: 367–375
CrossRef
Google scholar
|
[146] |
Wu H J, Henzie J, Lin W C, Rhodes C, Li Z, Sartorel E, Thorner J, Yang P, Groves J T. Membrane-protein binding measured with solution-phase plasmonic nanocube sensors. Nature Methods, 2012, 9(12): 91189
CrossRef
Google scholar
|
[147] |
Tao A, Sinsermsuksakul P, Yang P. Polyhedral silver nanocrystals with distinct scattering signatures. Angewandte Chemie International Edition, 2006, 45(28): 4597–4601
CrossRef
Google scholar
|
[148] |
Han B, Ou X, Deng Z, Song Y, Tian C, Deng H, Xu Y J, Lin Z. Nickel metal–organic framework monolayers for photoreduction of diluted CO2: metal-node-dependent activity and selectivity. Angewandte Chemie International Edition, 2018, 57(51): 16811–16815
CrossRef
Google scholar
|
/
〈 | 〉 |