Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (2) : 10     https://doi.org/10.1007/s11783-017-0916-8
REVIEW ARTICLE |
Toxicity models of metal mixtures established on the basis of “additivity” and “interactions”
Yang Liu1,2,Martina G. Vijver2,Bo Pan1(),Willie J. G. M. Peijnenburg2,3
1. Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
2. Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, The Netherlands
3. National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven 3720 BA, The Netherlands
Download: PDF(241 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

· No preference is set between CA and IA models to assess toxicity of metal mixtures.

· Increased model complexity does not, by itself, lead to improved performance.

· Not all significant deviations have biological meaning due to poor reproducibility.

· Interactions are suggested to incorporate when they are significant and repeated.

Observed effects of metal mixtures on animals and plants often differ from the estimates, which are commonly calculated by adding up the biological responses of individual metals. This difference from additivity is commonly referred to as being a consequence of specific interactions between metals. The science of how to quantify metal interactions and whether to include them in risk assessment models is in its infancy. This review summarizes the existing predictive tools for evaluating the combined toxicity of metals present in mixtures and indicates the advantages and disadvantages of each method. We intend to provide eco-toxicologists with background information on how to make good use of the tools and how to advance the methods for assessing toxicity of metal mixtures. It is concluded that statistically significant deviations from additivity are not necessarily biologically relevant. Incorporation of interactions between metals in a model does not on forehand mean that the model is more accurate than a model developed based on additivity only. It is recommended to first use a relatively simple method for effect prediction of uninvestigated metal mixtures. To improve the reliability of toxicity modeling for metal mixtures, further efforts should focus on balancing the relationship between the significance of statistics and the biological meaning, and unraveling the toxicity mechanisms of metals and their mixtures.

Keywords Metal      Mixtures      Toxicity      Additivity      Modeling      Interactions     
Corresponding Authors: Bo Pan   
Issue Date: 06 April 2017
 Cite this article:   
Yang Liu,Martina G. Vijver,Bo Pan, et al. Toxicity models of metal mixtures established on the basis of “additivity” and “interactions”[J]. Front. Environ. Sci. Eng., 2017, 11(2): 10.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-017-0916-8
http://journal.hep.com.cn/fese/EN/Y2017/V11/I2/10
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yang Liu
Martina G. Vijver
Bo Pan
Willie J. G. M. Peijnenburg
Fig.1  Diagram of deviation patterns for binary mixtures
species metal mixtures R2 a) RMSE b)/RMSD c) sources
Lactuca sativa Cu-Ni 0.79 13.0 [42]
Lactuca sativa Cu-Cd 0.87 10.9 [42]
Lactuca sativa Ni-Cd 0.81 12.7 [42]
Triticum aestivum Co-Zn 0.88 13.1 [42]
Triticum aestivum Cu-Al 0.86 12.9 [42]
Triticum aestivum Cu-Mn 0.70 17.7 [42]
Escherichia coli Cu-Zn, Cu-Cd, Cd-Zn 0.68 19.0 [70]
Pseudomonas fluorescens Cu-Zn, Cu-Cd, Cd-Zn 0.89 10.0 [70]
Vibrio fischeri Cd-Pb 0.81 15.0 [70]
Lemna aequinoctialis Cu-UO2 0.96 8.0 [70]
Lemna paucicostata Cu-Cd 0.76 18.0 [70]
Ceriodaphnia dubia Zn-Cd 0.77 16.0 [70]
Daphnia ambigua Zn-Cd 0.96 7.0 [70]
Daphnia magna Zn-Cd 0.84 14.0 [70]
Daphnia pulex Zn-Cd 0.88 11.0 [70]
Dreissena polymorpha Cu-Zn, Zn-Cd, Cu-Cd, Cu-Zn-Cd 0.92 11.0 [70]
Oncorhynchus mykiss Al-Cu-Zn d) 5.0 [70]
Daphnia magna Cu-Zn, Cd-Zn, Cd-Cu, Cd-Cu-Zn 0.65 25.0 [71]
Lactuca sativa Cu-Zn, Cu-Ag 0.78 14.0 [71]
Oncorhynchus clarkii lewisi Zn-Pb, Zn-Cd, Zn-Cd-Pb 0.81 17.0 [71]
Oncorhynchus mykiss Zn-Pb, Zn-Cd, Zn-Cd-Pb 0.64 24.0 [71]
Tab.1  Summary of WHAM-FTOX fitting to different mixture toxicity data sets
method and assumption Cu-Ni source method and assumption Cu-Ag source
CA-FIAM (no interaction) R2 e) = 0.49 [8] CA-FIAM (no interaction) R2 = 0.80 [71]
IA-FIAM (no interaction) R2 = 0.85 [8] extended CA-FIAM (Cu2+↔Ag+) R2 = 0.80 [31]
extended CA-FIAM (DR a) or DL b) Cu2+c)Ni2+) R2 = 0.55 [8] WHAM-FTOX
H+, Cu2+↔Ag+
R2 = 0.78 [71]
WHAM-FTOX
H+, Cu2+↔Ni2+
R2 = 0.79 [42] WHAM-FTOX
H+, Cu2+↔Ag+
R2 = 0.56 [42]
BLM-fmix
H+, Cu2+↔Ni2+
R2 = 0.82 [42] BLM-TU (H+) R2 = 0.69 [13]
BLM-TU (H+, Mg2+) R2 = 0.86 [13] BLM-fmix (H+, Cu2+↔Ag+) R2 = 0.58 [13]
BLM-fmix (H+, Mg2+, Cu2+↔Ni2+) R2 = 0.58 [13] BLM-TEF (H+, Cu2+↔Ag+) R2 = 0.74 [13]
BLM-TEF (H+, Mg2+, Cu2+↔Ni2+) R2 = 0.76 [13] BLM-TEF (H+) R2 = 0.69 [31]
d) extended CA-ETM (Cu2+↔Ag+) R2 = 0.80 [31]
Tab.2  Comparison of the predictive power of diverse modeling methods for assessing toxicity of Cu-Ni and Cu-Ag mixtures to L. sativa
1 US Environmental Protection Agency. Guidelines for the Health Risk Assessment of Chemical Mixtures, EPA/630/R-00/002. Washington D C, 2000. Available online at (accessed February 8, 2017)
2 European Commission. Questions & answers on toxic chemical mixtures. Brussels, 2012. Available online at (accessed February 8, 2017)
3 Wu X, Cobbina S, Mao G, Xu H, Zhang Z, Yang L. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environmental Science and Pollution Research International, 2016, 23(9): 8244–8259
https://doi.org/10.1007/s11356-016-6333-x
4 Lambert J C, Lipscomb J C. Mode of action as a determining factor in additivity models for chemical mixture risk assessment. Regulatory Toxicology and Pharmacology, 2007, 49(3): 183–194
https://doi.org/10.1016/j.yrtph.2007.07.002
5 Loewe S, Muischnek H. Über kombinationswirkungen. Mitteilung: hilfsmittel der fragestellung. Naunyn-Schmiedebergs Archives of Experimentelle Pathologie and Pharmacologie, 1926, 114(5–6): 313–326 (in German)
https://doi.org/10.1007/BF01952257
6 Bliss C I. The toxicity of poisons applied jointly. Annals of Applied Biology, 1939, 26(3): 585–615
https://doi.org/10.1111/j.1744-7348.1939.tb06990.x
7 Altenburger R, Nendza M, Schüürmann G. Mixture toxicity and its modeling by quantitative structure-activity relationships. Environmental Toxicology and Chemistry, 2003, 22(8): 1900–1915
https://doi.org/10.1897/01-386
8 Liu Y, Vijver M G, Qiu H, Baas J, Peijnenburg W J G M. Statistically significant deviations from additivity: what do they mean in assessing toxicity of mixtures? Ecotoxicology and Environmental Safety, 2015, 122: 37–44
https://doi.org/10.1016/j.ecoenv.2015.07.012
9 Di Toro D M, Allen H E, Bergman H L, Meyer J S, Paquin P R, Santore R C. Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environmental Toxicology and Chemistry, 2001, 20(10): 2383–2396
https://doi.org/10.1002/etc.5620201034
10 Playle R C. Using multiple metal-gill binding models and the toxic unit concept to help reconcile multiple-metal toxicity results. Aquatic Toxicology (Amsterdam, Netherlands), 2004, 67(4): 359–370
https://doi.org/10.1016/j.aquatox.2004.01.017
11 Jonker M J, Svendsen C, Bedaux J J M, Bongers M, Kammenga J E. Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis. Environmental Toxicology and Chemistry, 2005, 24(10): 2701–2713
https://doi.org/10.1897/04-431R.1
12 Balistrieri L S, Mebane C A. Predicting the toxicity of metal mixtures. Science of the Total Environment, 2014, 466–467: 788–799
13 Liu Y, Vijver M G, Peijnenburg W J G M. Comparing three approaches in extending biotic ligand models to predict the toxicity of binary metal mixtures (Cu-Ni, Cu-Zn and Cu-Ag) to lettuce (Lactuca sativa L.). Chemosphere, 2014, 112: 282–288
https://doi.org/10.1016/j.chemosphere.2014.04.077
14 Berenbaum M C. The expected effect of a combination of agents: the general solution. Journal of Theoretical Biology, 1985, 114(3): 413–431
https://doi.org/10.1016/S0022-5193(85)80176-4
15 Plackett R L, Hewlett P S. Quantal response to mixtures of poisons. Journal of the Royal Statistical Society. Series B. Methodological, 1952, 14(2): 141–163
16 Greco W R, Dembinski W E. Fundamental concepts in the assessment of the joint interaction of biological response modifiers with other agents. Canadian Journal of Infectious Diseases, 1992, 3(suppl B): 60–68
https://doi.org/10.1155/1992/895087
17 Rider C V, LeBlanc G A. An integrated addition and interaction model for assessing toxicity of chemical mixtures. Toxicological Sciences, 2005, 87(2): 520–528
https://doi.org/10.1093/toxsci/kfi247
18 Peijnenburg W J, Vijver M G. Metal-specific interactions at the interface of chemistry and biology. Pure and Applied Chemistry, 2007, 79(2): 2351–2366
19 Greco W R, Bravo G, Parsons J C. The search for synergy: a critical review from a response surface perspective. Pharmacological Reviews, 1995, 47(2): 331–385
20 Grimme L H, Faust M, Boedeker W, Altenburger R. Aquatic toxicity of chemical substances in combination: still a matter of controversy. Human and Ecological Risk Assessment: An International Journal, 1996, 2(3): 426–433
https://doi.org/10.1080/10807039609383624
21 Bödeker W, Altenburger R, Faust M, Grimme L H. Synopsis of concepts and models for the quantitative analysis of combination effects: from biometrics to ecotoxicology. Archives of Complex Environmental Studies, 1992, 4(3): 45–53
22 Cedergreen N, Christensen A M, Kamper A, Kudsk P, Mathiassen S K, Streibig J C, Sørensen H. A review of independent action compared to concentration addition as reference models for mixtures of compounds with different molecular target sites. Environmental Toxicology and Chemistry, 2008, 27(7): 1621–1632
https://doi.org/10.1897/07-474.1
23 Ashford J R. General models for the joint action of mixtures of drugs. Biometrics, 1981, 37(3): 457–474
https://doi.org/10.2307/2530559
24 Vijver M G, Peijnenburg W J G M, De Snoo G R. Toxicological mixture models are based on inadequate assumptions. Environmental Science & Technology, 2010, 44(13): 4841–4842
https://doi.org/10.1021/es1001659
25 Vijver M G, Elliott E G, Peijnenburg W J G M, De Snoo G R. Response predictions for organisms water-exposed to metal mixtures: a meta-analysis. Environmental Toxicology and Chemistry, 2011, 30(6): 1482–1487
https://doi.org/10.1002/etc.499
26 Sprague J B. Measurement of pollutant toxicity to fish. II. Utilizing and applying bioassay results. Water Research, 1970, 4(1): 3–32
https://doi.org/10.1016/0043-1354(70)90018-7
27 Sprague J B, Ramsay B A. Lethal levels of mixed copper-zinc solutions for juvenile salmon. Journal of the Fisheries Research Board of Canada, 1965, 22(2): 425–432
https://doi.org/10.1139/f65-042
28 Cassee F R, Groten J P, Bladeren P J, Feron V J. Toxicological evaluation and risk assessment of chemical mixtures. Critical Reviews in Toxicology, 1998, 28(1): 73–101
https://doi.org/10.1080/10408449891344164
29 Ahlborg U G, Becking G C, Birnbaum L S, Brouwer A A, Derks H J G M, Feeley M, Golor G, Hanberg A, Larsen J C, Liem A K D, Safe S H, Schlatter C, Waern F, Younes M, Yrjänheikki E. Toxic equivalency factors for dioxin-like PCBs: Report on WHO-ECEH and IPCS consultation. Chemosphere, 1994, 28(6): 1049–1067
https://doi.org/10.1016/0045-6535(94)90324-7
30 Van den Berg M, Birnbaum L S, Denison M, De Vito M, Farland W, Feeley M, Fiedler H, Hakansson H, Hanberg A, Haws L, Rose M, Safe S, Schrenk D, Tohyama C, Tritscher A, Tuomisto J, Tysklind M, Walker N, Peterson R E. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicological Sciences, 2006, 93(2): 223–241
https://doi.org/10.1093/toxsci/kfl055
31 Le T T Y. Modelling bioaccumulation and toxicity of metal mixtures. Dissertation for the Doctoral Degree. Nijmegen: Radboud Universiteit Nijmegen, 2012
32 Sørensen H, Cedergreen N, Skovgaard I M, Streibig J C. An isobole-based statistical model and test for synergism/antagonism in binary mixture toxicity experiments. Environmental and Ecological Statistics, 2007, 14(4): 383–397
https://doi.org/10.1007/s10651-007-0022-3
33 Bongers M. Mixture toxicity of metals to Folsomia candida related to (bio)availability in soil. Dissertation for the Doctoral Degree. Amsterdam: Vrije Universiteit, 2007
34 Sühnel J. Evaluation of synergism or antagonism for the combined action of antiviral agents. Antiviral Research, 1990, 13(1): 23–39
https://doi.org/10.1016/0166-3542(90)90042-6
35 Carter W H Jr. Relating isobolograms to response surfaces. Toxicology, 1995, 105(2–3): 181–188
https://doi.org/10.1016/0300-483X(95)03211-W
36 Haas C N, Cidambi K, Kersten S, Wright K. Quantitative description of mixture toxicity: effect of level of response on interactions. Environmental Toxicology and Chemistry, 1996, 15(8): 1429–1437
https://doi.org/10.1002/etc.5620150824
37 Cedergreen N, Kudsk P, Mathiassen S K, Sørensen H, Streibig J C. Reproducibility of binary mixture toxicity studies. Environmental Toxicology and Chemistry, 2007, 26(1): 149–156
https://doi.org/10.1897/06-196R.1
38 Box G E P, Draper N R. Empirical Model-Building and Response Surfaces. New York: John Wiley & Sons, 1987
39 Norwood W P, Borgmann U, Dixon D G, Wallace A. Effects of metal mixtures on aquatic biota: a review of observations and methods. Human and Ecological Risk Assessment: An International Journal, 2003, 9(4): 795–811
https://doi.org/10.1080/713610010
40 Fisher R A. Statistical Methods and Scientific Inference. Edinburgh: Oliver & Boyd, 1956
41 Jurkat-Rott K, Lehmann-Horn F. The patch clamp technique in ion channel research. Current Pharmaceutical Biotechnology, 2004, 5(4): 387–395
https://doi.org/10.2174/1389201043376715
42 Qiu H, Vijver M G, He E, Liu Y, Wang P, Xia B, Smolders E, Versieren L, Peijnenburg W J G M. Incorporating bioavailability into toxicity assessment of Cu-Ni, Cu-Cd, and Ni-Cd mixtures with the extended biotic ligand model and the WHAM-Ftox approach. Environmental Science and Pollution Research International, 2015, 22(23): 19213–19223
https://doi.org/10.1007/s11356-015-5130-2
43 Groh K J, Carvalho R N, Chipman J K, Denslow N D, Halder M, Murphy C A, Roelofs D, Rolaki A, Schirmer K, Watanabe K H. Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: II. A focus on growth impairment in fish. Chemosphere, 2015, 120: 778–792
https://doi.org/10.1016/j.chemosphere.2014.10.006
44 Calamari D, Alabaster J S. An approach to theoretical models in evaluating the effects of mixtures of toxicants in the aquatic environment. Chemosphere, 1980, 9(9): 533–538
https://doi.org/10.1016/0045-6535(80)90069-7
45 US Environmental Protection Agency. Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses, PB85–227049. Washington D C, 1985. Available online at (accessed February 8, 2017)
46 Lexmond T M, Vorm P D J. The effect of pH on copper toxicity to hydroponically grown maize. Netherlands Journal of Agricultural Science, 1981, 29(3): 217–238
47 Campbell P G C. Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier A, Turner D R, editors. Metal Speciation and Bioavailability in Aquatic Systems. New York: John Wiley & Sons, 1995, 45–102
48 Morel F. Principles of Aquatic Chemistry. Toronto: Wiley-Interscience, 1983
49 Paquin P R, Gorsuch J W, Apte S, Batley G E, Bowles K C, Campbell P G, Delos C G, Di Toro D M, Dwyer R L, Galvez F, Gensemer R W, Goss G G, Hostrand C, Janssen C R, McGeer J C, Naddy R B, Playle R C, Santore R C, Schneider U, Stubblefield W A, Wood C M, Wu K B. The biotic ligand model: a historical overview. Comparative Biochemistry and Physiology Part C, 2002, 133(1–2): 3–35
50 US Environmental Protection Agency. Ground water sampling for metals analyses, EPA/540/4–89/001. Ada & Las Vegas, 1989. Available online at (accessed February 8, 2017)
51 Peijnenburg W J, Zablotskaja M, Vijver M G. Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction. Ecotoxicology and Environmental Safety, 2007, 67(2): 163–179
https://doi.org/10.1016/j.ecoenv.2007.02.008
52 Singh J, Kalamdhad A S. Effect of lime on speciation of heavy metals during composting of water hyacinth. Frontiers of Environmental Science & Engineering, 2016, 10(1): 93–102
https://doi.org/10.1007/s11783-014-0704-7
53 Pagenkopf G K. Gill surface interaction model for trace-metal toxicity to fishes: role of complexation, pH, and water hardness. Environmental Science & Technology, 1983, 17(6): 342–347
https://doi.org/10.1021/es00112a007
54 Steenbergen N T T M, Iaccino F, de Winkel M, Reijnders L, Peijnenburg W J. Development of a biotic ligand model and a regression model predicting acute copper toxicity to the earthworm Aporrectodea caliginosa. Environmental Science & Technology, 2005, 39(15): 5694–5702
https://doi.org/10.1021/es0501971
55 Lock K, De Schamphelaere K A C, Becaus S, Criel P, Van Eeckhout H, Janssen C R. Development and validation of an acute biotic ligand model (BLM) predicting cobalt toxicity in soil to the potworm Enchytraeus albidus. Soil Biology & Biochemistry, 2006, 38(7): 1924–1932
https://doi.org/10.1016/j.soilbio.2005.12.014
56 Thakali S, Allen H E, Di Toro D M, Ponizovsky A A, Rooney C P, Zhao F J, McGrath S P. A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils. Environmental Science & Technology, 2006, 40(22): 7085–7093
https://doi.org/10.1021/es061171s
57 Thakali S, Allen H E, Di Toro D M, Ponizovsky A A, Rooney C P, Zhao F J, McGrath S P, Criel P, Van Eeckhout H, Janssen C R, Oorts K, Smolders E. Terrestrial biotic ligand model. 2. Application to Ni and Cu toxicities to plants, invertebrates, and microbes in soil. Environmental Science & Technology, 2006, 40(22): 7094–7100
https://doi.org/10.1021/es061173c
58 Niyogi S, Wood C M. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environmental Science & Technology, 2004, 38(23): 6177–6192
https://doi.org/10.1021/es0496524
59 Qiu H, Vijver M G, He E, Peijnenburg W J G M. Predicting copper toxicity to different earthworm species using a multi-component Freundlich model. Environmental Science & Technology, 2013, 47(9): 4796–4803
https://doi.org/10.1021/es305240n
60 Hatano A, Shoji R. Toxicity of copper and cadmium in combination to duckweed analyzed by the biotic ligand model. Environmental Toxicology, 2008, 23(3): 372–378
https://doi.org/10.1002/tox.20348
61 Jho E H, An J, Nam K. Extended biotic ligand model for prediction of mixture toxicity of Cd and Pb using single toxicity data. Environmental Toxicology and Chemistry, 2011, 30(7): 1697–1703
https://doi.org/10.1002/etc.556
62 Meyer J S, Santore R C, Bobbitt J P, De Brey L D, Boese C J, Paquin P R, Allen H E, Bergman H L, Di Toro D M. Binding of nickel and copper to fish gills predicts toxicity when water hardness varies, but free-ion activity does not. Environmental Science & Technology, 1999, 33(6): 913–916
https://doi.org/10.1021/es980715q
63 Antunes P M C, Scornaienchi M L, Roshon H D. Copper toxicity to Lemna minor modelled using humic acid as a surrogate for the plant root. Chemosphere, 2012, 88(4): 389–394
https://doi.org/10.1016/j.chemosphere.2012.02.052
64 Verschoor A. The power of biotic ligand models: site-specific impact of metals on aquatic communities. Dissertation for the Doctoral Degree. Leiden: Leiden University, 2013
65 Cloutier-Hurteau B, Sauvé S, Courchesne F. Comparing WHAM 6 and MINEQL+ 4.5 for the chemical speciation of Cu2+ in the rhizosphere of forest soils. Environmental Science & Technology, 2007, 41(23): 8104–8110
https://doi.org/10.1021/es0708464
66 De Forest D K, Van Genderen E J. Application of U.S. EPA guidelines in a bioavailability-based assessment of ambient water quality criteria for zinc in freshwater. Environmental Toxicology and Chemistry, 2012, 31(6): 1264–1272
https://doi.org/10.1002/etc.1810
67 Stockdale A, Tipping E, Lofts S, Fott J, Garmo Ø A, Hruska J, Keller B, Löfgren S, Maberly S C, Majer V, Nierzwicki-Bauer S A, Persson G, Schartau A K, Thackeray S J, Valois A, Vrba J, Walseng B, Yan N. Metal and proton toxicity to lake zooplankton: a chemical speciation based modelling approach. Environmental Pollution, 2014, 186: 115–125
https://doi.org/10.1016/j.envpol.2013.11.012
68 Lofts S, Tipping E. Assessing WHAM/Model VII against field measurements of free metal ion concentrations: model performance and the role of uncertainty in parameters and inputs. Environmental Chemistry, 2011, 8(5): 501–516
https://doi.org/10.1071/EN11049
69 Stockdale A, Tipping E, Lofts S, Ormerod S J, Clements W H, Blust R. Toxicity of proton-metal mixtures in the field: Linking stream macroinvertebrate species diversity to chemical speciation and bioavailability. Aquatic Toxicology (Amsterdam, Netherlands), 2010, 100(1): 112–119
https://doi.org/10.1016/j.aquatox.2010.07.018
70 Tipping E, Lofts S. Metal mixture toxicity to aquatic biota in laboratory experiments: Application of the WHAM-FTOX model. Aquatic Toxicology (Amsterdam, Netherlands), 2013, 142–143: 114–122
https://doi.org/10.1016/j.aquatox.2013.08.003
71 Tipping E, Lofts S. Testing WHAM-FTOX with laboratory toxicity data for mixtures of metals (Cu, Zn, Cd, Ag, Pb). Environmental Toxicology and Chemistry, 2015, 34(4): 788–798
https://doi.org/10.1002/etc.2773
72 Kinraide T B, Yermiyahu U, Rytwo G. Computation of surface electrical potentials of plant cell membranes. Correspondence to published zeta potentials from diverse plant sources. Plant Physiology, 1998, 118(2): 505–512
https://doi.org/10.1104/pp.118.2.505
73 Wang P, Kopittke P M, De Schamphelaere K A C, Zhao F J, Zhou D M, Lock K, Ma Y B, Peijnenburg W J G M, McGrath S P. Evaluation of an electrostatic toxicity model for predicting Ni2+ toxicity to barley root elongation in hydroponic cultures and in soils. New Phytologist, 2011, 192(2): 414–427
https://doi.org/10.1111/j.1469-8137.2011.03806.x
74 Wang P, Zhou D, Kinraide T B, Luo X, Li L, Li D, Zhang H. Cell membrane surface potential (y0) plays a dominant role in the phytotoxicity of copper and arsenate. Plant Physiology, 2008, 148(4): 2134–2143
https://doi.org/10.1104/pp.108.127464
75 Delgado Á V, González-Caballero F, Hunter R J, Koopal L K, Lyklema J. Measurement and interpretation of electrokinetic phenomena. Journal of Colloid and Interface Science, 2007, 309(2): 194–224
https://doi.org/10.1016/j.jcis.2006.12.075
76 Wang P, Zhou D, Peijnenburg W J G M, Li L, Weng N. Evaluating mechanisms for plant-ion (Ca2+, Cu2+, Cd2+ or Ni2+) interactions and their effectiveness on rhizotoxicity. Plant and Soil, 2010, 334(1): 277–288
https://doi.org/10.1007/s11104-010-0381-7
77 Baas J, van Houte B P P, van Gestel C A M, Kooijman S A L M. Modeling the effects of binary mixtures on survival in time. Environmental Toxicology and Chemistry, 2007, 26(6): 1320–1327
https://doi.org/10.1897/06-437R.1
78 Iwasaki Y, Brinkman S F. Application of a generalized linear mixed model to analyze mixture toxicity: survival of brown trout affected by copper and zin. Environmental Toxicology and Chemistry, 2015, 34(4): 816–820
https://doi.org/10.1002/etc.2862
79 Farley K J, Meyer J S, Balistrieri L S, De Schamphelaere K A C, Iwasaki Y, Janssen C R, Kamo M, Lofts S, Mebane C A, Naito W, Ryan A C, Santore R C, Tipping E. Metal mixture modeling evaluation project: 2. Comparison of four modeling approaches. Environmental Toxicology and Chemistry, 2015, 34(4): 741–753
https://doi.org/10.1002/etc.2820
80 Yen Le T T, Vijver M G, Jan Hendriks A, Peijnenburg W J G M. Modeling toxicity of binary metal mixtures (Cu2+-Ag+, Cu2+-Zn2+) to lettuce, Lactuca sativa, with the biotic ligand model. Environmental Toxicology and Chemistry, 2013, 32(1): 137–143
https://doi.org/10.1002/etc.2039
Related articles from Frontiers Journals
[1] Biswajit Debnath, Ranjana Chowdhury, Sadhan Kumar Ghosh. Sustainability of metal recovery from E-waste[J]. Front. Environ. Sci. Eng., 2018, 12(6): 2-.
[2] Xin Xing, Yin Yu, Hongbo Xi, Guangqing Song, Yajiao Wang, Jiane Zuo, Yuexi Zhou. Reduction of wastewater toxicity and change of microbial community in a hydrolysis acidification reactor pre-treating trimethylolpropane wastewater[J]. Front. Environ. Sci. Eng., 2018, 12(6): 12-.
[3] Daoud Ali, Huma Ali, Saud Alifiri, Saad Alkahtani, Abdullah A Alkahtane, Shaik Althaf Huasain. Detection of oxidative stress and DNA damage in freshwater snail Lymnea leuteola exposed to profenofos[J]. Front. Environ. Sci. Eng., 2018, 12(5): 1-.
[4] Mothe Gopi Kiran, Kannan Pakshirajan, Gopal Das. Metallic wastewater treatment by sulfate reduction using anaerobic rotating biological contactor reactor under high metal loading conditions[J]. Front. Environ. Sci. Eng., 2018, 12(4): 12-.
[5] Xu Zhang, Huanhuan Yang, Xinlei Wang, Wen Song, Zhaojie Cui. An extraction- assay system: Evaluation on flavonols in plant resistance to Pb and Cd by supercritical extraction- gas chromatography[J]. Front. Environ. Sci. Eng., 2018, 12(4): 6-.
[6] Siyi Lu, Naiyu Wang, Can Wang. Oxidation and biotoxicity assessment of microcystin-LR using different AOPs based on UV, O3 and H2O2[J]. Front. Environ. Sci. Eng., 2018, 12(3): 12-.
[7] Dawen Gao, Xiaolong Wang, Hong Liang, Qihang Wei, Yuan Dou, Longwei Li. Anaerobic ammonia oxidizing bacteria: ecological distribution, metabolism, and microbial interactions[J]. Front. Environ. Sci. Eng., 2018, 12(3): 10-.
[8] Weiqi Luo, Yanping Ji, Lu Qu, Zhi Dang, Yingying Xie, Chengfang Yang, Xueqin Tao, Jianmin Zhou, Guining Lu. Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals[J]. Front. Environ. Sci. Eng., 2018, 12(3): 4-.
[9] Zhengtao Shen, Zhen Li, Daniel S. Alessi. Stabilization-based soil remediation should consider long-term challenges[J]. Front. Environ. Sci. Eng., 2018, 12(2): 16-.
[10] Teza Mwamulima, Xiaolin Zhang, Yongmei Wang, Shaoxian Song, Changsheng Peng. Novel approach to control adsorbent aggregation: iron fixed bentonite-fly ash for Lead (Pb) and Cadmium (Cd) removal from aqueous media[J]. Front. Environ. Sci. Eng., 2018, 12(2): 2-.
[11] Mengqian Lu, Bin-Le Lin, Kazuya Inoue, Zhongfang Lei, Zhenya Zhang, Kiyotaka Tsunemi. PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan[J]. Front. Environ. Sci. Eng., 2018, 12(2): 13-.
[12] Jie Ren, Zhuo Zhang, Mei Wang, Guanlin Guo, Ping Du, Fasheng Li. Phosphate-induced differences in stabilization efficiency for soils contaminated with lead, zinc, and cadmium[J]. Front. Environ. Sci. Eng., 2018, 12(2): 10-.
[13] Naiyu Wang, Kai Wang, Can Wang. Comparison of different algicides on growth of Microcystis aeruginosa and microcystin release, as well as its removal pathway in riverways[J]. Front. Environ. Sci. Eng., 2017, 11(6): 3-.
[14] Mengmeng Wang, Quanyin Tan, Joseph F. Chiang, Jinhui Li. Recovery of rare and precious metals from urban mines—A review[J]. Front. Environ. Sci. Eng., 2017, 11(5): 1-.
[15] Zebing Wu, Wenyi Yuan, Jinhui Li, Xiaoyan Wang, Lili Liu, Jingwei Wang. A critical review on the recycling of copper and precious metals from waste printed circuit boards using hydrometallurgy[J]. Front. Environ. Sci. Eng., 2017, 11(5): 8-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed