Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (5) : 5     https://doi.org/10.1007/s11783-016-0833-2
RESEARCH ARTICLE
Key features of new particle formation events at background sites in China and their influence on cloud condensation nuclei
Xiaojing SHEN1,Junying SUN1,2,*(),Xiaoye ZHANG1,Yangmei ZHANG1,Lu ZHANG1,3,Ruxia FAN1
1. State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA,Chinese Academy of Meteorological Sciences, Beijing 100081, China
2. State Key Laboratory of Cryospheric Sciences, Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
3. College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(955 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Guide   
Abstract

New particle formation (NPF) event at multi rural sites in China

Identifying the characteristics of NPF event

Comparing NPF event between clean and polluted conditions

Quantifying contribution to the cloud condensation nuclei

Implication of climate and air quality

Long-term continuous measurements of particle number size distributions with mobility diameter sizes ranging from 3 to 800 nm were performed to study new particle formation (NPF) events at Shangdianzi (SDZ), Mt. Tai (TS), and Lin’an (LAN) stations representing the background atmospheric conditions in the North China Plain (NCP), Central East China (CEC), and Yangtze River Delta (YRD) regions, respectively. The mean formation rate of 3-nm particles was 6.3, 3.7, and 5.8 cm−3·s−1, and the mean particle growth rate was 3.6, 6.0, and 6.2 nm·h−1 at SDZ, TS, and LAN, respectively. The NPF event characteristics at the three sites indicate that there may be a stronger source of low volatile vapors and higher condensational sink of pre-existing particles in the YRD region. The formation rate of NPF events at these sites, as well as the condensation sink, is approximately 10 times higher than some results reported at rural/urban sites in western countries. However, the growth rates appear to be 1–2 times higher. Approximately 12%–17% of all NPF events with nucleated particles grow to a climate-relevant size (>50 nm). These kinds of NPF events were normally observed with higher growth rate than the other NPF cases. Generally, the cloud condensation nuclei (CCN) number concentration can be enhanced by approximately a factor of 2–6 on these event days. The mean value of the enhancement factor is lowest at LAN (2–3) and highest at SDZ (~4). NPF events have also been found to have greater impact on CCN production in China at the regional scale than in the other background sites worldwide.

Keywords New particle formation      Regional background      Cloud condensation nuclei      Growth rate      Formation rate     
This article is part of themed collection: Understanding the processes of air pollution formation (Responsible Editors: Min SHAO, Shuxiao WANG & Armistead G. RUSSELL)
Corresponding Author(s): Junying SUN   
Issue Date: 09 May 2016
 Cite this article:   
Xiaojing SHEN,Junying SUN,Xiaoye ZHANG, et al. Key features of new particle formation events at background sites in China and their influence on cloud condensation nuclei[J]. Front. Environ. Sci. Eng., 2016, 10(5): 5.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-016-0833-2
http://journal.hep.com.cn/fese/EN/Y2016/V10/I5/5
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaojing SHEN
Junying SUN
Xiaoye ZHANG
Yangmei ZHANG
Lu ZHANG
Ruxia FAN
Fig.1  Location of the SDZ, TS and LAN stations (circles) and China’s megacities Beijing and Shanghai in China
Fig.2  Data of the NPF parameters for each year at the SDZ site, and data for the entire study period at all three sites (SDZ, LAN, and TS). In the box plots, the upper and lower boundaries of the boxes are the 75th and the 25th percentiles, respectively. The line within the box marks the median, and the whiskers above and below the box indicate the 90th and 10th percentiles, respectively. The Star symbols representing the arithmetic means
station measurement period environment type size range/nm NPF frequency /% FR/(cm3·s1) GR/(nm·h1)
Hyytiälä, Finland [29] 1996.1–2004 Rural 3–500 46 0.8 (J3) 3.0
Värriö, Finland [29] 1998.1–2004 Rural 8–460 27 0.2 (J8) 2.7
Aspvreten, Finland [29] 2000.4–2004 Rural 10–450 54 0.4 (J10) 3.9
Pallas, Finland [29] 2000.5–2004 Rural 10–490 27 0.1 (J10) 2.5
Melpitz, Germany [30] 1996.3–1997.8 Rural 3–800 20 4.1
Hohenpeissenberg, Germany [25] 1998.4–2000.8 Rural 3–800 18 1.0 (J3) 2.6
South African Savannah [20] 2006.7–2008.2 Rural 10–840 69 3.8 (J10) 8.9
Jungfraujoch, Switzerland [24] 2008.4–2009.4 Rural 0.5–49 18 5.7 (J2) 2.6
Himalayas, Nepal [31] 2006.3–2007.8 Rural 10–700 35 0.2 (J10) 1.8
Puy de Dôme, France [21] 2006.1–2007.12 Rural 10–500 50 5.1
Storm Peak Laboratory, US [32] 2001–2009 Rural 8–333 52 0.7 (J8) 7.5
Egbert, Canada [22] 2007.5–2008.5 Rural 10–420 30 0.84 (J10) 3.1
St. Louis, US [23] 2001.4–2003.5 Urban 3–2000 30 17.0 (J3) 5.9
Po Valley, Italy [33] 2002.4–2005.3 Urban 3–600 36 5.9 (J3) 6.8
Helsinki, Finland [34] 1997.5–2006.12 Urban 3–950 2.4 (J3/J7) 3.8
Beijing, China [8] 2004.3–2005.2 Urban 3–800 40 3.3–81.4 (J3) 0.1–11.2
Nanjing, China [10] 2011.11–2012.3 Suburban 0.8–800 19 8.5 (J6) 6.7
Hongkong, China [35] 2003.2–2004.1 Coastal 3.2–106 13* 4.1 (J3)* 4.7*
SDZ, China# 2008.3–2013.12 Rural 3–850 36 6.3 (J3) 3.6
TS, China# 2011.1–2011.12 Rural 3–850 32 3.7(J3) 6.0
LAN, China# 2013.1–2013.12 Rural 3–850 28 5.8 (J3) 6.2
Tab.1  Summary of NPF event studies at different locations in China and worldwide
Fig.3  A case study of the NPF event on Jan 14–15, 2009 at SDZ, including: (a) the wind speed and direction; (b) evolution of PNSD, circles representing geometric mean diameter; (c) variation of CS and PM1 mass concentrations; and (d) potential CCN concentrations, CN50, CN80, and CN100
station totalNPF class 1 class 2 climate-relevant NPF event CN50 EF CN80 EF CN100 EF
SDZ 503 415 (85%) 88 (15%) 84(17%) 4.7±2.6 4.3±2.9 3.9±2.8
TS 109 82 (75%) 27 (25%) 13(12%) 3.8±2.2 3.7±2.0 3.0±1.6
LAN 99 81 (82%) 18 (18%) 15(15%) 3.2±1.6 3.0±1.6 2.6±1.3
Tab.2  Classification statistics for events at SDZ, TS, and LAN. Count (%): count is the number of each class, and the value in the bracket indicates the percentage accounting for the total NPF event. The enhancement factor (EF) of the CCN number concentration at different critical diameters, Dp,c = 50, 80, 100 nm
1 Spracklen D V, Carslaw K S, Kulmala M, Kerminen V M, Mann G W, Sihto S L. The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales. Atmospheric Chemistry and Physics, 2006, 6(12): 5631–5648
https://doi.org/10.5194/acp-6-5631-2006
2 Asmi A, Wiedensohler A, Laj P, Fjaeraa A M, Sellegri K, Birmili W, Weingartner E, Baltensperger U, Zdimal V, Zikova N, Putaud J P, Marinoni A, Tunved P, Hansson H C, Fiebig M, Kivekäs N, Lihavainen H, Asmi E, Ulevicius V, Aalto P P, Swietlicki E, Kristensson A, Mihalopoulos N, Kalivitis N, Kalapov I, Kiss G, de Leeuw G, Henzing B, Harrison R M, Beddows D, O C' S GDowd H, Jennings K, Flentje F, Weinhold L, Meinhardt M, Ries, Kulmala. Number size distributions and seasonality of submicron particles in Europe 2008–2009. Atmospheric Chemistry and Physics, 2011, 11(11): 5505–5538
https://doi.org/10.5194/acp-11-5505-2011
3 Kulmala M, Kerminen V M. On the formation and growth of atmospheric nanoparticles. Atmospheric Research, 2008, 90(2–4): 132–150
https://doi.org/10.1016/j.atmosres.2008.01.005
4 Kerminen V M, Paramonov M, Anttila T, Riipinen I, Fountoukis C, Korhonen H, Asmi E, Laakso L, Lihavainen H, Swietlicki E, Svenningsson B, Asmi A, Pandis S N, Kulmala M, Petäjä T. Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results. Atmospheric Chemistry and Physics, 2012, 12(24): 12037–12059
https://doi.org/10.5194/acp-12-12037-2012
5 Pierce J R, Adams P J. Efficiency of cloud condensation nuclei formation from ultrafine particles. Atmospheric Chemistry and Physics, 2007, 7(5): 1367–1379
https://doi.org/10.5194/acp-7-1367-2007
6 Peng J F, Hu M, Wang Z B, Huang X F, Kumar P, Wu Z J, Guo S, Yue D L, Shang D J, Zheng Z, He L Y. Submicron aerosols at thirteen diversified sites in China: size distribution, new particle formation and corresponding contribution to cloud condensation nuclei production. Atmospheric Chemistry and Physics, 2014, 14(18): 10249–10265
https://doi.org/10.5194/acp-14-10249-2014
7 Yue D L, Hu M, Zhang R Y, Wu Z J, Su H, Wang Z B, Peng J F, He L Y, Huang X F, Gong Y G, Wiedensohler A. Potential contribution of new particle formation to cloud condensation nuclei in Beijing. Atmospheric Environment, 2011, 45(33): 6070–6077
https://doi.org/10.1016/j.atmosenv.2011.07.037
8 Wu Z, Hu M, Liu S, Wehner B, Bauer S, Ma ßling A, Wiedensohler A, Petäjä T, Dal Maso M, Kulmala M,Ma ßlingA,WiedensohlerA,PetäjäT,Dal MasoM,KulmalaM. New particle formation in Beijing, China: Statistical analysis of a 1-year data set. Journal of Geophysical Research, 2007, 112(D9): D09209
https://doi.org/10.1029/2006JD007406
9 Shen X J, Sun J Y, Zhang Y M, Wehner B, Nowak A, Tuch T, Zhang X C, Wang T T, Zhou H G, Zhang X L, Dong F, Birmili W, Wiedensohler A. First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain. Atmospheric Chemistry and Physics, 2011, 11(4): 1565–1580
https://doi.org/10.5194/acp-11-1565-2011
10 Herrmann E, Ding A J, Kerminen V M, Petäjä T, Yang X Q, Sun J N, Qi X M, Manninen H, Hakala J, Nieminen T, Aalto P P, Kulmala M, Fu C B. Aerosols and nucleation in eastern China: first insights from the new SORPES-NJU station. Atmospheric Chemistry and Physics, 2014, 14(4): 2169–2183
https://doi.org/10.5194/acp-14-2169-2014
11 Wang Z B, Hu M, Sun J Y, Wu Z J, Yue D L, Shen X J, Zhang Y M, Pei X Y, Cheng Y F, Wiedensohler A. Characteristics of regional new particle formation in urban and regional background environments in the North China Plain. Atmospheric Chemistry and Physics, 2013, 13(24): 12495–12506
https://doi.org/10.5194/acp-13-12495-2013
12 Zhang X Y, Wang Y Q, Niu T, Zhang X C, Gong S L, Zhang Y M, Sun J Y. Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmospheric Chemistry and Physics, 2012, 12(2): 779–799
https://doi.org/10.5194/acp-12-779-2012
13 Wiedensohler A, Birmili W, Nowak A, Sonntag A, Weinhold K, Merkel M, Wehner B, Tuch T, Pfeifer S, Fiebig M, Fjäraa A M, Asmi E, Sellegri K, Depuy R, Venzac H, Villani P, Laj P, Aalto P, Ogren J A, Swietlicki E, Williams P, Roldin P, Quincey P, Hüglin C, Fierz-Schmidhauser R, Gysel M, Weingartner E, Riccobono F, Santos S, Grüning C, Faloon K, Beddows D, Harrison R, Monahan C, Jennings S G, O'Dowd C D, Marinoni A, Horn H G, Keck L, Jiang J, Scheckman J, McMurry P H, Deng Z, Zhao C S, Moerman M, Henzing B, de Leeuw G, Löschau G, Bastian S. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmospheric Measurement Techniques, 2012, 5(3): 657–685
https://doi.org/10.5194/amt-5-657-2012
14 Dal Maso M, Kulmala M, Riipinen I, Wagner R, Hussein T, Aalto P P, Lehtinen K E J. Formation and growth of fresh atmospheeric aerosol eight years of aerosol size distribution data from SMEAR Hyytiala,Finland. Boreal Environment Research, 2005, 10: 323–336
15 Kulmala M, Vehkamäki H, Petäjä T, Dal Maso M, Lauri A, Kerminen V M, Birmili W, McMurry P H. Formation and growth rates of ultrafine atmospheric particles: a review of observations. Journal of Aerosol Science, 2004, 35(2): 143–176
https://doi.org/10.1016/j.jaerosci.2003.10.003
16 Hussein T, Dal Maso M, Petaja T, Koponen I K, Paatero P, Aalto P P, Hameri K, Kulmala M. Evaluation of an automatic algorithm for fitting the particle number size distributions. Boreal Environmet Research, 2005, 10(5): 337
17 Fuchs N A, Sutugin A G. Highly dispersed aerosols. Michigan: Ann Arbor Science Publishers, Inc, Ann Arbor, 1970.
18 Kulmala M, Kontkanen J, Junninen H, Lehtipalo K, Manninen H E, Nieminen T, Petäjä T, Sipilä M, Schobesberger S, Rantala P, Franchin A, Jokinen T, Järvinen E, Äijälä M, Kangasluoma J, Hakala J, Aalto P P, Paasonen P, Mikkilä J, Vanhanen J, Aalto J, Hakola H, Makkonen U, Ruuskanen T, Mauldin R L 3rd, Duplissy J, Vehkamäki H, Bäck J, Kortelainen A, Riipinen I, Kurtén T, Johnston M V, Smith J N, Ehn M, Mentel T F, Lehtinen K E J, Laaksonen A, Kerminen V M, Worsnop D R. Direct observations of atmospheric aerosol nucleation. Science, 2013, 339(6122): 943–946
https://doi.org/10.1126/science.1227385 pmid: 23430652
19 Kulmala M. Nucleation as an aerosol physical problem. Dissertation for the Doctoral Degree. Helsinki : University of Helsinki, 1988
20 Vakkari V, Laakso H, Kulmala M, Laaksonen A, Mabaso D, Molefe M, Kgabi N, Laakso L. New particle formation events in semi-clean South African savannah. Atmospheric Chemistry and Physics, 2011, 11(7): 3333–3346
https://doi.org/10.5194/acp-11-3333-2011
21 Venzac H, Sellegri K, Villani P, Picard D, Laj P. Seasonal variation of aerosol size distributions in the free troposphere and residual layer at the puy de Dôme station, France. Atmospheric Chemistry and Physics, 2009, 9(4): 1465–1478
https://doi.org/10.5194/acp-9-1465-2009
22 Pierce J R, Westervelt D M, Atwood S A, Barnes E A, Leaitch W R. New-particle formation, growth and climate-relevant particle production in Egbert, Canada: analysis from 1 year of size-distribution observations. Atmospheric Chemistry and Physics, 2014, 14(16): 8647–8663
https://doi.org/10.5194/acp-14-8647-2014
23 Qian S, Sakurai H, McMurry P H. Characteristics of regional nucleation events in urban East St. Louis. Atmospheric Environment, 2007, 41(19): 4119–4127
https://doi.org/10.1016/j.atmosenv.2007.01.011
24 Boulon J, Sellegri K, Venzac H, Picard D, Weingartner E, Wehrle G, Collaud Coen M, Bütikofer R, Flückiger E, Baltensperger U, Laj P. New particle formation and ultrafine charged aerosol climatology at a high altitude site in the Alps (Jungfraujoch, 3580 m a.s.l., Switzerland). Atmospheric Chemistry and Physics, 2010, 10(19): 9333–9349
https://doi.org/10.5194/acp-10-9333-2010
25 Mönkkönen P, Koponen I K, Lehtinen K E J, Hämeri K, Uma R, Kulmala M. Measurements in a highly polluted Asian mega city: observations of aerosol number size distribution, modal parameters and nucleation events. Atmospheric Chemistry and Physics, 2005, 5(1): 57–66
https://doi.org/10.5194/acp-5-57-2005
26 Birmili W, Berresheim H, Plass-Dülmer C, Elste T, Gilge S, Wiedensohler A, Uhrner U. The Hohenpeissenberg aerosol formation experiment (HAFEX): a long-term study including size-resolved aerosol, H2SO4, OH, and monoterpenes measurements. Atmospheric Chemistry and Physics, 2003, 3(2): 361–376
https://doi.org/10.5194/acp-3-361-2003
27 Wiedensohler A, Cheng Y F, Nowak A, Wehner B, Achtert P, Berghof M, Birmili W, Wu Z J, Hu M, Zhu T, Takegawa N, Kita K, Kondo Y, Lou S R, Hofzumahaus A, Holland F, Wahner A, Gunthe S S, Rose D, Su H, Pöschl U. Rapid aerosol particle growth and increase of cloud condensation nucleus activity by secondary aerosol formation and condensation: A case study for regional air pollution in northeastern China. Journal of Geophysical Research, 2009, 114(D2): D00G08
https://doi.org/10.1029/2008JD010884
28 Kuang C, McMurry P H, McCormick A V. Determination of cloud condensation nuclei production from measured new particle formation events. Geophysical Research Letters, 2009, 36(9): L09822
https://doi.org/10.1029/2009GL037584
29 Dal Maso M, Sogacheva L, Aalto P, Riipinen I, Komppula M, Tunved P, Korhonen L, Suur-Uski V, Hirsikko A, Kurten T, Kerminen V M, Lihavainen H, Viisanen Y, Hansson H C, Kulmala M. Aerosol size distribution measurements at four Nordic field stations: identification, analysis and trajectory analysis of new particle formation bursts. Tellus. Series B, Chemical and Physical Meteorology, 2007, 59B(3): 350–361
https://doi.org/10.1111/j.1600-0889.2007.00267.x
30 Birmili W, Wiedensohler A. New particle formation in the continental boundary layer: Meteorological and gas phase parameter influence. Geophysical Research Letters, 2000, 27(20): 3325–3328
https://doi.org/10.1029/1999GL011221
31 Venzac H, Sellegri K, Laj P, Villani P, Bonasoni P, Marinoni A, Cristofanelli P, Calzolari F, Fuzzi S, Decesari S, Facchini M C, Vuillermoz E, Verza G P. High frequency new particle formation in the Himalayas. Proceedings of the National Acadamy of Science, 2008, 105(41): 15666–15671
https://doi.org/10.1073/pnas.0801355105 pmid: 18852453
32 Hallar A G, Lowenthal D H, Chirokova G, Borys R D, Wiedinmyer C. Persistent daily new particle formation at a mountain-top location. Atmospheric Environment, 2011, 45(24): 4111–4115
https://doi.org/10.1016/j.atmosenv.2011.04.044
33 Hamed A, Joutsensaari J, Mikkonen S, Sogacheva L, Dal Maso M, Kulmala M, Cavalli F, Fuzzi S, Facchini M C, Decesari S, Mircea M, Lehtinen K E J, Laaksonen A. Nucleation and growth of new particles in Po Valley, Italy. Atmospheric Chemistry and Physics, 2007, 7(2): 355–376
https://doi.org/10.5194/acp-7-355-2007
34 Hussein T, Martikainen J, Junninen H, Sogacheva L, Wagner R, Dal Maso M, Riipinen I, Aalto P P, Kulmala M. Observation of regional new particle formation in the urban atmosphere. Tellus. Series B, Chemical and Physical Meteorology, 2008, 60(4): 509–521
https://doi.org/10.1111/j.1600-0889.2008.00365.x
35 Yao X H, Choi M Y, Lau N T, Lau A P S, Chan C K, Fang M. Growth and shrinkage of new particles in the atmosphere in Hong Kong. Aerosol Science and Technology, 2010, 44(8): 639–650
https://doi.org/10.1080/02786826.2010.482576
[1] FSE-15060-OF-SXJ_suppl_1 Download
Related articles from Frontiers Journals
[1] Feng Wang, Xueqiu Zhao, Cynthia Gerlein-Safdi, Yue Mu, Dongfang Wang, Qi Lu. Global sources, emissions, transport and deposition of dust and sand and their effects on the climate and environment: a review[J]. Front. Environ. Sci. Eng., 2017, 11(1): 13-.
[2] Qiao ZHANG,Yu HONG. Comparison of growth and lipid accumulation properties of two oleaginous microalgae under different nutrient conditions[J]. Front.Environ.Sci.Eng., 2014, 8(5): 703-709.
[3] Mikyung PARK, Jinkwan OH, Kihong PARK. Development of a cloud condensation nuclei (CCN) counter using a laser and charge-coupled device (CCD) camera[J]. Front Envir Sci Eng Chin, 2011, 5(3): 313-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed