Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2020, Vol. 14 Issue (4) : 58     https://doi.org/10.1007/s11783-020-1237-x
RESEARCH ARTICLE
Diphenylarsinic acid sorption mechanisms in soils using batch experiments and EXAFS spectroscopy
Meng Zhu1,3,4, Yongming Luo2,3,4(), Ruyi Yang1,4, Shoubiao Zhou1,4, Juqin Zhang1, Mengyun Zhang1, Peter Christie2, Elizabeth L. Rylott5
1. College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China
2. Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
3. Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
4. Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China
5. Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
Download: PDF(980 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• DPAA sorption data was found to fit the Freundlich equation.

Kf was significantly positive correlated with oxalate-extractable Fe2O3.

• Ligand exchange was the main mechanism for DPAA sorption on soils.

• Bidentate binuclear and monodentate mononuclear DPAA bonds were identified.

Diphenylarsinic acid (DPAA) is a phenyl arsenic compound derived from chemical warfare weapons. Macroscopic and microscopic work on DPAA sorption will provide useful information in predicting the partitioning and mobility of DPAA in the soil-water environment. Here, batch experiments and extended X-ray absorption fine structure (EXAFS) spectroscopy were used to investigate the sorption mechanisms of DPAA. The DPAA sorption data from 11 soil types was found to fit the Freundlich equation, and the sorption capacity, Kf, was significantly and positively correlated with oxalate-extractable Fe2O3. The Kf values of eight of the 11 untreated soils (1.51–113.04) significantly decreased upon removal of amorphous metal (hydr)oxides (0.51–13.37). When both amorphous and crystalline metal (hydr)oxides were removed from the untreated soils, the Kf values either decreased or slightly increased (0.65–3.09). Subsequent removal of soil organic matter from these amorphous and crystalline metal (hydr)oxide-depleted samples led to further decreases in Kf to 0.02–1.38, with only one exception (Sulfic Aquic-Orthic Halosols). These findings strongly suggest that ligand exchange reactions with amorphous metal (hydr)oxides contribute most to DPAA sorption on soils. EXAFS data provide further evidence that DPAA primarily formed bidentate binuclear (2C) and monodentate mononuclear (1V) coring-sharing complexes with As-Fe distances of 3.34 and 3.66 Å, respectively, on Fe (hydr)oxides. Comparison of these results with earlier studies suggests that 2C and 1V complexes of DPAA may be favored under low and high surface coverages, respectively, with the formation of 1V bonds possibly conserving the sorption sites or decreasing the steric hindrance derived from phenyl substituents.

Keywords Diphenylarsinic acid      EXAFS      Fe (hydr)oxide      Soil organic matter      Sorption mechanism     
Corresponding Author(s): Yongming Luo   
Issue Date: 01 April 2020
 Cite this article:   
Meng Zhu,Yongming Luo,Ruyi Yang, et al. Diphenylarsinic acid sorption mechanisms in soils using batch experiments and EXAFS spectroscopy[J]. Front. Environ. Sci. Eng., 2020, 14(4): 58.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-020-1237-x
http://journal.hep.com.cn/fese/EN/Y2020/V14/I4/58
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Meng Zhu
Yongming Luo
Ruyi Yang
Shoubiao Zhou
Juqin Zhang
Mengyun Zhang
Peter Christie
Elizabeth L. Rylott
Code Chinese soils taxonomy
(subgroup)
Location pH SOM
(%)
CEC
(cmol/kg)
DCB
-Fe2O3
(g/kg)
DCB
-Al2O3
(g/kg)
Oxalate-Fe2O3
(g/kg)
Total Fe
(g/kg)
Total Al
(g/kg)
Total
P (g/kg)
Total As
(mg/kg)
S1 Agri-Udic Ferrosols Yingtang, Jiangxi 4.94 1.23 13.70 37.3 7.35 0.87 55.1 58.3 0.598 16.1
S2 Gleyi-Stagnic Anthrosols Yingtang, Jiangxi 4.85 3.86 10.48 20.5 6.11 1.17 31.7 48.2 0.631 11.2
S3 Hapli-Udic Andosols Beihai, Guangxi 5.40 1.61 17.83 84.5 1.52 6.59 137.6 123.2 0.778 8.5
S4 Sulfic Aqui-Orthic Halosols Haikou, Hainan 5.55 6.93 29.30 23.5 0.31 11.3 42.1 69.1 0.376 7.9
S5 Rhodi-Udic Ferralosols Wenchang, Hainan 4.97 5.71 17.15 86.5 1.85 3.30 151.5 127.2 0.300 2.6
S6 Rhodi-Udic Ferralosols Wenchang, Hainan 5.37 1.94 1.89 28.3 1.89 0.39 25.2 27.3 0.084 14.9
S7 Hapli-Udic Ferralosols Dingan, Hainan 5.39 2.87 7.02 17.6 0.07 1.47 28.7 79.7 0.062 3.4
S8 Ochri-Aquic Cambosols Binzhou, Shandong 8.57 2.06 14.76 13.8 0.02 1.34 24.7 62.6 0.846 10.1
S9 Hapli-Udic Argosols Yantai, Shandong 4.99 3.03 14.25 14.7 0.15 2.07 18.7 52.1 1.826 8.7
S10 Hapli-Udic Argosols Dalian, Liaoning 5.43 1.37 9.05 20.6 0.15 0.99 22.3 53.0 0.052 12.4
S11 Hapli-Udic Isohumosols Changchun, Jilin 7.65 2.75 39.20 7.35 2.50 0.89 35.2 71.6 0.659 12.8
Tab.1  The selected physicochemical properties of soils used for batch sorption experiments
Fig.1  Comparison of DPAA sorption isotherms between untreated and treated soils for 11 soil types.
Code Untreated soil Soil deficient of amorphous metal (hydr)oxides Soil deficient of amorphous and crystalline metal (hydr)oxides Soil deficient of amorphous and crystalline metal (hydr)oxides and SOM
Kf n R2 Kf n R2 Kf n R2 Kf n R2
S1 7.432 0.712 0.997 3.020 0.962 0.959 1.619 1.062 0.965 1.114 1.096 0.923
S2 42.292 0.567 0.970 1.132 1.054 0.955 0.984 1.161 0.969 1.377 1.130 0.995
S3 39.737 0.800 0.950 13.370 0.675 0.966 2.679 0.708 0.986 0.205 1.561 0.981
S4 113.042 0.634 0.984 3.682 1.102 0.999 84.256 0.373 0.913 0.742 1.330 0.997
S5 30.694 0.762 0.936 1.780 1.523 0.962 2.649 0.956 0.983 1.214 0.857 0.975
S6 2.754 0.816 0.986 3.225 1.184 0.997 0.989 1.104 0.998 0.024 2.334 0.981
S7 3.701 0.758 0.954 0.505 1.372 0.976 0.744 1.117 0.974 0.819 1.331 0.988
S8 1.046 0.988 0.984 1.070 1.124 0.987 3.092 0.902 0.961 0.798 0.897 0.877
S9 3.636 0.736 0.982 1.249 1.088 0.978 1.745 0.940 0.960 1.324 1.131 0.974
S10 1.512 1.207 0.931 0.724 1.223 0.989 0.777 1.223 0.967 0.890 1.301 0.988
S11 0.323 0.916 0.972 2.006 1.039 0.982 0.649 1.226 0.998 0.123 1.175 0.979
Tab.2  Freundlich equation parameters for DPAA sorption on 11 types of soilsa)
Kf pH SOM CEC DCB-Fe2O3 DCB-Al2O3 Oxalate-Fe2O3 Total Fe Total Al Total As Total P
Kf 1
pH -0.277 1
SOM 0.770** -0.216 1
CEC 0.367 0.369 0.394 1
DCB-Fe2O3 0.226 -0.122 0.138 -0.056 1
DCB-Al2O3 -0.021 -0.550 -0.158 -0.036 0.097 1
Oxalate-Fe2O3 0.911** 0.030 0.643* 0.436 0.326 -0.285 1
Total Fe 0.257 -0.047 0.231 0.151 0.970** 0.088 0.361 1
Total Al 0.243 0.135 0.282 0.317 0.803** -0.155 0.417 0.898** 1
Total As -0.279 0.006 -0.577 -0.044 -0.378 0.505 -0.373 -0.451 -0.679* 1
Total P -0.098 0.028 -0.064 0.219 -0.119 -0.013 0.008 -0.079 -0.036 0.032 1
Tab.3  Pearson correlation matrix (r = Pearson correlation coefficient) of DPAA sorption with selected physicochemical properties of soils (n = 11)a)
Fig.2  (a) The normalized As K-edge XANES spectra of the highly DPAA-contaminated soil and As-containing reference compounds, and (b) linear combination fit for the highly DPAA-contaminated soil, spectra denoting the fractional contributions of the components were used to generate the fitted spectra.
Fig.3  (a) The As K-edge EXAFS spectra and (b) k3-weighted Fourier-transformed (FT) spectra of the highly DPAA-contaminated soil.
Fig.4  The partial k3-weighted c(k) EXAFS functions of (a) first, (b) second and third neighboring shells of As for the highly DPAA-contaminated soil.
Sample Shell CN Atomic distance
(Å)
s2
2)
R-factor Reference
DPAA As-O 2.00 1.70(0.02) 0.0030 0.009 Zhu et al. (2019a)
As-C1 2.00 1.99(0.03) 0.0010
As-C2 4.00 2.87(0.06) 0.0010
Highly DPAA-
contaminated soil
As-O 2.00 1.69(0.03) 0.0040 0.017 This study
As-C1 2.00 1.89(0.13) 0.0030
As-C2 4.00 2.79(0.13) 0.0030
As-Fe1 2.15(0.27) 3.34(0.16) 0.0030
As-Fe2 1.43(0.32) 3.66(0.17) 0.0030
Tab.4  Structural data on molecular environment of As derived from EXAFS dataa)
1 A Adamescu, I P Hamilton, H A Al-Abadleh (2014). Density functional theory calculations on the complexation of p-arsanilic acid with hydrated iron oxide clusters: Structures, reaction energies, and transition states. Journal of Physical Chemistry A, 118(30): 5667–5679
https://doi.org/10.1021/jp504710b
2 A Adamescu, W Mitchell, I P Hamilton, H A Al-Abadleh (2010). Insights into the surface complexation of dimethylarsinic acid on iron (oxyhydr)oxides from ATR-FTIR studies and quantum chemical calculations. Environmental Science & Technology, 44(20): 7802–7807
https://doi.org/10.1021/es1011516
3 T Arao, Y Maejima, K Baba (2009). Uptake of aromatic arsenicals from soil contaminated with diphenylarsinic acid by rice. Environmental Science & Technology, 43(4): 1097–1101
https://doi.org/10.1021/es8023397
4 U Arroyo-Abad, M P Elizalde-Gonzállez, C M Hidalgo-Moreno, J Mattusch, R Wennrich (2011). Retention of phenylarsenicals in soils derived from volcanic materials. Journal of Hazardous Materials, 186(2–3): 1328–1334
https://doi.org/10.1016/j.jhazmat.2010.12.005
5 B Cancès, F Juillot, G Morin, V Laperche, L Alvarez, O Proux, J H Hazemann, G E Brown Jr, G Calas (2005). XAS evidence of As(V) association with iron oxyhydroxides in a contaminated soil at a former arsenical pesticide processing plant. Environmental Science & Technology, 39(24): 9398–9405
https://doi.org/10.1021/es050920n
6 B Cancès, F Juillot, G Morin, V Laperche, D Polya, D J Vaughan, J L Hazemann, O Proux, G E Brown Jr, G Calas (2008). Changes in arsenic speciation through a contaminated soil profile: A XAS based study. Science of the Total Environment, 397(1–3): 178–189
https://doi.org/10.1016/j.scitotenv.2008.02.023
7 H Deng, P O M Evans (1997). Social and environmental aspects of abandoned chemical weapons in China. Nonproliferation Review, 4(3): 101–108
https://doi.org/10.1080/10736709708436684
8 S Depalma, S Cowen, T Hoang, H A Al-Abadleh (2008). Adsorption thermodynamics of p-arsanilic acid on iron (oxyhydr) oxides: In-situ ATR-FTIR studies. Environmental Science & Technology, 42(6): 1922–1927
https://doi.org/10.1021/es071752x
9 S Dixit, J G Hering (2003). Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environmental Science & Technology, 37(18): 4182–4189
https://doi.org/10.1021/es030309t
10 S Fendorf, M J Eick, P Grossl, D L Sparks (1997). Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environmental Science & Technology, 31(2): 315–320
https://doi.org/10.1021/es950653t
11 Q L Fu, J Z He, L Blaney, D M Zhou (2016). Sorption of roxarsone onto soils with different physicochemical properties. Chemosphere, 159: 103–112
https://doi.org/10.1016/j.chemosphere.2016.05.081
12 Z T Gong, G L Zhang, Z L Chen (2007).Pedogenesis and Soil Taxonomy. Beijing: Science Press (in Chinese)
13 M Hempel, B Daus, C Vogt, H Weiss (2009). Natural attenuation potential of phenylarsenicals in anoxic groundwaters. Environmental Science & Technology, 43(18): 6989–6995
https://doi.org/10.1021/es9006788
14 S Hiradate, N Uchida (2004). Effects of soil organic matter on pH-dependent phosphate sorption by soils. Soil Science and Plant Nutrition, 50(5): 665–675
https://doi.org/10.1080/00380768.2004.10408523
15 K Ishii, A Tamaoka, F Otsuka, N Iwasaki, K Shin, A Matsui, G Endo, Y Kumagai, T Ishii, S Shoji, T Ogata, M Ishizaki, M Doi, N Shimojo (2004). Diphenylarsinic acid poisoning from chemical weapons in Kamisu, Japan. Annals of Neurology, 56(5): 741–745
https://doi.org/10.1002/ana.20290
16 T Kasperek (1999). Chemical Weapons Dumped in the Baltic Sea. Lysomice: Europejskie Centrum Edukacyjne
17 S D Kelly, D Hesterberg, B Ravel (2008). Part 5—Mineralogical methods. In: Ulery A L, Drees L R, eds. Methods of Soil Analysis. Madison: American Society of Agronomy Press, 387–463
18 Y Li, H B Zhang, X B Chen, C Tu, Y M Luo, P Christie (2014). Distribution of heavy metals in soils of the Yellow River Delta: Concentrations in different soil horizons and source identification. Journal of Soils and Sediments, 14(6): 1158–1168
https://doi.org/10.1007/s11368-014-0861-0
19 Y Li, H B Zhang, C Tu, C C Fu, Y Xue, Y M Luo (2016). Sources and fate of organic carbon and nitrogen from land to ocean: Identified by coupling stable isotopes with C/N ratio. Estuarine, Coastal and Shelf Science, 181: 114–122
https://doi.org/10.1016/j.ecss.2016.08.024
20 R K Lu (2000).Analysis Methods of Soil Agricultural Chemistry. Beijing: China Agricultural Science and Technology Press (in Chinese)
21 Y Maejima, H Murano, T Iwafune, T Arao, K Baba (2011). Adsorption and mobility of aromatic arsenicals in Japanese agricultural soils. Soil Science and Plant Nutrition, 57(3): 429–435
https://doi.org/10.1080/00380768.2011.587202
22 J A McKeague, J E Brydon, N M Miles (1971). Differentiation of forms of extractable iron and aluminum in soils. Soil Science Society of America Journal, 35(1): 33–38
https://doi.org/10.2136/sssaj1971.03615995003500010016x
23 J A McKeague, J Day (1966). Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Canadian Journal of Soil Science, 46(1): 13–22
https://doi.org/10.4141/cjss66-003
24 G Morin, G Ona-Nguema, Y H Wang, N Menguy, F Juillot, O Proux, F Guyot, G Calas, G E Brown Jr (2008). Extended X-ray absorption fine structure analysis of arsenite and arsenate adsorption on maghemite. Environmental Science & Technology, 42(7): 2361–2366
https://doi.org/10.1021/es072057s
25 T Ochi, T Suzuki, H Isono, T Kaise (2004). In vitro cytotoxic and genotoxic effects of diphenylarsinic acid, a degradation product of chemical warfare agents. Toxicology and Applied Pharmacology, 200(1): 64–72
https://doi.org/10.1016/j.taap.2004.03.014
26 G S Pearson, R S Magee (2002). Critical evaluation of proven chemical weapon destruction technologies (IUPAC Technical Report). Pure and Applied Chemistry, 74(2): 187–316
https://doi.org/10.1351/pac200274020187
27 Y Peng, W Wei, H Zhou, S Ge, S Y Li, G X Wang, Y Zhang (2016). Iron humate as a novel adsorbent for p-arsanilic acid removal from aqueous solution. Journal of Dispersion Science and Technology, 37(11): 1590–1598
https://doi.org/10.1080/01932691.2015.1120219
28 G Petruzzelli, G Guidi, L Lubrano (1985). Ionic strength effect on heavy metal adsorption by soil. Communications in Soil Science and Plant Analysis, 16(9): 971–986
https://doi.org/10.1080/00103628509367659
29 W Pretorius, D Weis, G Williams, D Hanano, B Kieffer, J Scoates (2006). Complete trace elemental characterisation of granitoid (USGS G-2, GSP-2) reference materials by high resolution inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 30(1): 39–54
https://doi.org/10.1111/j.1751-908X.2006.tb00910.x
30 J Prietzel, J Thieme, K Eusterhues, D Eichert (2007). Iron speciation in soils and soil aggregates by synchrotron-based X-ray microspectroscopy (XANES, m-XANES). European Journal of Soil Science, 58(5): 1027–1041
https://doi.org/10.1111/j.1365-2389.2006.00882.x
31 B Radke, L Jewell, S Piketh, J Namieśnik (2014). Arsenic-based warfare agents: Production, use, and destruction. Critical Reviews in Environmental Science and Technology, 44(14): 1525–1576
https://doi.org/10.1080/10643389.2013.782170
32 I C Regelink, A Voegelin, L Weng, G F Koopmans, R N Comans (2014). Characterization of colloidal Fe from soils using field-flow fractionation and Fe K-edge X-ray absorption spectroscopy. Environmental Science & Technology, 48(8): 4307–4316
https://doi.org/10.1021/es405330x
33 U Schwertmann (1966). Inhibitory effect of soil organic matter on the crystallization of amorphous ferric hydroxide. Nature, 212(5062): 645–646
https://doi.org/10.1038/212645b0
34 D M Sherman, S R Randall (2003). Surface complexation of arsenic(V) to iron(III) (hydr)oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 67(22): 4223–4230
https://doi.org/10.1016/S0016-7037(03)00237-0
35 M Shimizu, Y Arai, D L Sparks (2011). Multiscale assessment of methylarsenic reactivity in soil. 1. Sorption and desorption on soils. Environmental Science & Technology, 45(10): 4293–4299
https://doi.org/10.1021/es103576p
36 M Tanaka, Y S Togo, N Yamaguchi, Y Takahashi (2014). An EXAFS study on the adsorption structure of phenyl-substituted organoarsenic compounds on ferrihydrite. Journal of Colloid and Interface Science, 415: 13–17
https://doi.org/10.1016/j.jcis.2013.10.006
37 L K ThomasArrigo, J M Byrne, A Kappler, R Kretzschmar (2018). Impact of organic matter on iron(II)-catalyzed mineral transformations in ferrihydrite-organic matter coprecipitates. Environmental Science & Technology, 52(21): 12316–12326
https://doi.org/10.1021/acs.est.8b03206
38 K Wada, T Higashi (1976). The categories of aluminium- and iron-humus complexes in Ando soils determined by selective dissolution. Journal of Soil Science, 27(3): 357–368
https://doi.org/10.1111/j.1365-2389.1976.tb02007.x
39 A N Wang, S X Li, Y Teng, W X Liu, L H Wu, H B Zhang, Y J Huang, Y M Luo, P Christie (2013). Adsorption and desorption characteristics of diphenylarsenicals in two contrasting soils. Journal of Environmental Sciences (China), 25(6): 1172–1179
https://doi.org/10.1016/S1001-0742(12)60148-X
40 S Wang, C N Mulligan (2008). Speciation and surface structure of inorganic arsenic in solid phases: A review. Environment International, 34(6): 867–879
https://doi.org/10.1016/j.envint.2007.11.005
41 F A Weber, A F Hofacker, A Voegelin, R Kretzschmar (2010). Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil. Environmental Science & Technology, 44(1): 116–122
https://doi.org/10.1021/es902100h
42 M Zhu, X F Hu, C Tu, Y M Luo, R Y Yang, S B Zhou, N N Cheng, E L Rylott (2019a). Speciation and sorption structure of diphenylarsinic acid in soil clay mineral fractions using sequential extraction and EXAFS spectroscopy. Journal of Soils and Sediments, 20(2): 763–764
https://doi.org/10.1007/s11368-019-02431-2
43 M Zhu, X F Hu, C Tu, H B Zhang, F Song, Y M Luo, P Christie (2019b). Sorption mechanisms of diphenylarsinic acid on ferrihydrite, goethite and hematite using sequential extraction, FTIR measurement and XAFS spectroscopy. Science of the Total Environment, 669: 991–1000
https://doi.org/10.1016/j.scitotenv.2019.03.166
44 M Zhu, C Tu, X F Hu, H B Zhang, L J Zhang, J Wei, Y Li, Y M Luo, P Christie (2016a). Solid solution partitioning and thionation of diphenylarsinic acid in a flooded soil under the impact of sulfate and iron reduction. Science of the Total Environment, 569–570: 1579–1586
https://doi.org/10.1016/j.scitotenv.2016.07.001
45 M Zhu, C Tu, H B Zhang, Y M Luo, P Christie (2016b). Simultaneous determination of diphenylarsinic and phenylarsinic acids in amended soils by optimized solvent extraction coupled to HPLC-MS/MS. Geoderma, 270: 109–116
https://doi.org/10.1016/j.geoderma.2015.08.033
[1] FSE-20006-OF-ZM_suppl_1 Download
Related articles from Frontiers Journals
[1] Yao NIE,Shubo DENG,Bin WANG,Jun HUANG,Gang YU. Removal of clofibric acid from aqueous solution by polyethylenimine-modified chitosan beads[J]. Front.Environ.Sci.Eng., 2014, 8(5): 675-682.
[2] Junlian QIAO, Zimin CUI, Yuankui SUN, Qinghai HU, Xiaohong GUAN. Simultaneous removal of arsenate and fluoride from water by Al-Fe (hydr)oxides[J]. Front Envir Sci Eng, 2014, 8(2): 169-179.
[3] Farhah Amalya ISMAIL, Ahmad Zaharin ARIS. Experimental determination of Cd2+ adsorption mechanism on low-cost biological waste[J]. Front Envir Sci Eng, 2013, 7(3): 356-364.
[4] Junyi DU, Daishe WU, Huayun XIAO, Ping LI. Adsorption of fluoride on clay minerals and their mechanisms using X-ray photoelectron spectroscopy[J]. Front Envir Sci Eng Chin, 2011, 5(2): 212-226.
[5] Zhijian LI, Shubo DENG, Xueying ZHANG, Wei ZHOU, Jun HUANG, Gang YU. Removal of fluoride from water using titanium-based adsorbents[J]. Front Envir Sci Eng Chin, 2010, 4(4): 414-420.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed