Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (3) : 3     https://doi.org/10.1007/s11783-018-1019-x
RESEARCH ARTICLE |
End-of-life batteries management and material flow analysis in South Korea
Hyunhee Kim1, Yong-Chul Jang1(), Yeonjung Hwang1, Youngjae Ko2, Hyunmyeong Yun1,3
1. Department of Environmental Engineering, Chungnam National University, Daejeon 34134, South Korea
2. Waste to Energy Research Division, Environmental Resources Research Department, National Institute of Environmental Research, Incheon 22689, South Korea
3. Daejeon Green Environment Center, Daejeon 34134, South Korea
Download: PDF(660 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Analysis of collection and recycling system of end-of-life batteries was examined.

Relatively limited fractions of portable batteries were collected by EPR system.

More effective and diverse collection pathways should be developed.

Consumers increasingly have worn-out batteries as electrical and electronic equipment with new technical developments are introduced into the market and quickly replace older models. As a result, large amounts of end-of-life (EOL) or waste batteries are generated. Such batteries may contain a variety of materials that includes valuable resources as well as toxic elements. Thus, the proper recycling and management of batteries is very important from the perspective of resource conservation and environmental effect. The collection and recycling of EOL batteries is relatively low in South Korea compared to other countries, although an extended producer responsibility (EPR) policy was adopted for battery recycling in 2003. In this study, the management and material flow of EOL batteries is presented to determine potential problems and quantitative flow, based on literature review, site visits to battery recycling facilities, and interviews with experts in the Korea Battery Recycling Association (KBRA), manufacturers, and regulators in government. The results show that approximately 558 tons of manganese-alkaline batteries, the largest fraction among recycling target items, was disposed in landfills or incinerators in 2015, while approximately 2,000 tons of batteries were recovered at a recycling facility by simple sorting and crushing processes. By raising environmental awareness, more diverse and effective collection systems could be established for consumers to easily dispose of EOL batteries in many places. Producers, retailers and distributors in South Korea should also play an important role in the collection of EOL batteries from consumers. Lithium-ion batteries from many electronic devices must be included in the EPR system for resource recovery.

Keywords End-of-life battery      Recycling      Material flow analysis (MFA)      Extended producer responsibility (EPR)      Resource recovery     
This article is part of themed collection: Recycling Materials from WEEE (Responsible Editors: Jinhui Li & Eric David Williams)
Corresponding Authors: Yong-Chul Jang   
Issue Date: 25 June 2018
 Cite this article:   
Hyunhee Kim,Yong-Chul Jang,Yeonjung Hwang, et al. End-of-life batteries management and material flow analysis in South Korea[J]. Front. Environ. Sci. Eng., 2018, 12(3): 3.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-018-1019-x
http://journal.hep.com.cn/fese/EN/Y2018/V12/I3/3
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hyunhee Kim
Yong-Chul Jang
Yeonjung Hwang
Youngjae Ko
Hyunmyeong Yun
Battery 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
Total
Battery
POM* 721 859 1121 897 1198 15,270 13,387 12,955 14,605 14,212 13,431 12,834 14,634
Target amount 145 214 277 227 344 3,233 2,903 3,257 3,058 3,366 3,216 2,977 4,093
Collected amount 135 206 365 353 304 1,066 1,520 1,983 2,222 2,390 1,547 2,945 2,906
Collection rate(%) 18.78 24.01 32.58 39.37 25.4 6.98 11.35 15.31 15.21 16.82 11.52 22.95 19.86
Silver
Oxide
Battery
POM* 0.8 1.8 4.9 4.4 4.2 3.7 3.3 3.5 4.8 3.7 3.7 3.8 3.9
Target amount 0.7 1.6 1.2 1.1 1.3 1.4 1.3 1.5 2.4 2.1 2.1 2.1 2.3
Collected amount 0.4 1.2 2.2 2.3 2.4 1 1.1 1.3 1.9 1 1.2 1.1 1
Collection rate(%) 50 66.67 44.9 52.27 57.14 27.03 33.33 37.14 39.58 27.03 32.43 28.95 25.64
Lithium
Primary
Battery
POM* 205 222 287 137 289 252 205 307 366 414 372 378 506
Target amount 41 65 72 40 110 124 107 177 213 269 242 246 329
Collected amount 55 101 208 153 102 83 178 162 167 218 189 151 173
Collection rate(%) 26.83 45.5 72.47 111.68 35.29 32.94 86.83 52.77 45.63 52.66 50.81 39.95 34.19
Nickel
Cadmium
Battery
POM* 515 635 829 756 905 859 776 808 644 647 843 616 534
Target amount 103 147 204 186 233 250 241 268 246 259 337 246 215
Collected amount 80 104 155 198 200 181 210 206 255 251 301 358 213
Collection rate(%) 15.53 16.38 18.7 26.19 22.1 21.07 27.06 25.5 39.6 38.79 35.71 58.12 39.89
Manganese
/Alkaline
Battery
POM* Pre-implementation 13,615 12,148 11,515 13,321 12,860 12,025 11,515 13,321
Target amount 2,723 2,490 2,717 2,558 2,778 2,597 2,421 3,489
Collected amount 781 1,127 1,603 1,774 1,897 1,038 2,421 2,488
Collection rate(%) 5.74 9.28 13.92 13.32 14.75 8.63 21.6 15.4
Nickel
Metal
Hybride
Battery
POM* Pre-implementation 540 255 321 269 287 187 321 269
Target amount 135 64 93 39 58 38 62 58
Collected amount 20 4 11 24 23 18 14 31
Collection rate(%) 3.7 1.57 3.43 8.92 8.01 9.63 4.58 10.84
Tab.1  Recycling rates of EOL batteries by EPR in South Korea

(Unit: tons)

Life cycle Data Methods for data collection
Statistics Literature Site visit/
Survey/
Interview
Import Import of battery X
production Manufacturing of battery X
Market for rechargeable battery X
Use and generation Use for households X
Use for industrial sectors X
Storage in households and industrial sectors X
Generation from households and industrial sectors X
Collection Collection by municipality X
Collection by producer responsibility organization X
Storage/stock X
Recycling Battery recycled X
Recyclables recovered after recycling X
Disposal Incineration X
Landfilling X
Tab.2  Methods for data collection and acquisition for this study
Fig.1  EPR system of batteries for recycling in South Korea
Fig.2  Recycling process of EOL batteries in South Korea (a, b), Japan (c), and Germany (d)
Fig.3  Material flow analysis of MnAl (top) and NiCd (bottom) batteries in South Korea (2015)
Fig.4  EOL batteries management system in Japan
Fig.5  EOL batteries management system in Germany
Korea Japan Germany
Population 51,529,338 127,103,388 80,996,685
Country area 99,720 km2 377,915 km2 357,022 km2
EPR system Yes
(only 6 types)
Yes
(only secondary batteries)
Yes
(all batteries)
Take-back system No Yes Yes
POM/(tons) 14,634 [33] 87,806 [41,43] 43,979 [44]
Collection amount/(tons) 2906 [33] 22,855 [41,43] 19,142 [44]
Collection rate 19.86 % 26.03 % 44.20 % [44]
Basic Unit Collection
Rate/(g/capita/yr)
283.99 690.82 542.97
Recycling amount/(tons) 2906 [33] 13,599 [40] 42,256 [45]
Collection sites 36,000 [32] 41,730 [43] 171,000 [7]
Tab.3  Comparison of EOL batteries management system and statistics (2015)
1 Vassura I, Morselli  L, Bernardi E,  Passarini F. Chemical characterisation of spent rechargeable batteries. Waste Management (New York, N.Y.), 2009, 29(8): 2332–2335
https://doi.org/10.1016/j.wasman.2009.03.033
2 Wang R, Lin  C, Wu S. A novel recovery process of metal values from cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy, 2009, 99(3–4): 194–201
https://doi.org/10.1016/j.hydromet.2009.08.005
3 Liu X, Wu  Z, Stoliarov I S,  Denlinger M,  Masias A,  Snyder K. Heat release during thermally-induced failure of a lithium ion battery: Impact of cathode composition. Fire Safety Journal, 2016, 85: 10–22
https://doi.org/10.1016/j.firesaf.2016.08.001
4 European Commission-DG Environment. Comparative life-cycle assessment of nickel-cadmium (NiCd) batteries used in cordless power tools (CPTs) vs. their alternative nickel-metal hydride (NiMH) and lithium-ion (Li-ion) batteries. 2011, 7, 0307/2012/63269/ETU/C2
5 European Parliament Council of the European Union. Directive 2006/66/EC of the European Parliament and of the Council of 6 September 2006 on batteries and accumulators and waste batteries and accumulators, and repealing Directive 9/157/EEC. 2006. Available online at . ( accessed May 26, 2017)
6 European Commission-DG Environment. Development of Guidance on Extended Producer Responsibility., 2014, 0307(20) doi:10/573669/ETU/C2
7 European Portable Battery Association (EPBA). Collection of waste portable batteries in Europe in view of the achievability of the collection targets set by Battery Directive 2006/66EC, 2014
8 Asari M, Sakai  S. Li-ion battery recycling and cobalt flow analysis in Japan. Resources, Conservation and Recycling, 2013, 81: 52–59
https://doi.org/10.1016/j.resconrec.2013.09.011
9 Terazono A, Oguchi  M, Iino S,  Mogi S. Battery collection in municipal waste management in Japan: challenges for hazardous substance control and safety. Waste Management (New York, N.Y.), 2015, 39: 246–257
https://doi.org/10.1016/j.wasman.2015.01.038
10 China Ministry of Environmental Protection. Law on Prevention of Environmental Pollution Caused by Solid Wastes. 2003, Available online at  ( accessed September 26, 2017)
11 Bigum M, Damgaard  A, Scheutz C,  Christensen T H. Environmental impacts and resource losses of incinerating misplaced household special wastes (WEEE, batteries, ink cartridges and cables). Resources, Conservation and Recycling, 2017, 122: 251–260
https://doi.org/10.1016/j.resconrec.2017.02.013
12 Rogulski Z, Czerwinski  A. Used batteries collection and recycling in Poland. Journal of Power Sources, 2006, 159(1): 454–458
https://doi.org/10.1016/j.jpowsour.2006.02.034
13 Chang T C, You  S J, Yu  B S, Yao  K F. A material flow of lithium batteries in Taiwan. Journal of Hazardous Materials, 2009, 163(2-3): 910–915
https://doi.org/10.1016/j.jhazmat.2008.07.043
14 Lin S, Chiu  K. An evaluation of recycling schemes for waste dry batteries—A simulation approach. Journal of Cleaner Production, 2015, 93: 330–338
https://doi.org/10.1016/j.jclepro.2015.01.045
15 Müller T, Friedrich  B. Development of a recycling process for nickel-metal hydride batteries. Journal of Power Sources, 2006, 158(2): 1498–1509
https://doi.org/10.1016/j.jpowsour.2005.10.046
16 Xu J, Thomas  H, Francis R,  Lum K, Wang  J, Liang B. A review of processes and technologies for the recycling of lithium-ion secondary batteries. Journal of Power Sources, 2008, 177(2): 512–527
https://doi.org/10.1016/j.jpowsour.2007.11.074
17 Mishra D, Kim  D J, Ralph  D E, Ahn  J G, Rhee  Y H. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Management (New York, N.Y.), 2008, 28(2): 333–338
https://doi.org/10.1016/j.wasman.2007.01.010
18 Yang X, Zhang  J, Fang X. Rare earth element recycling from waste nickel-metal hydride batteries. Journal of Hazardous Materials, 2014, 279: 384–388
https://doi.org/10.1016/j.jhazmat.2014.07.027
19 Ordoñez J, Gago  E, Girard A. Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renewable & Sustainable Energy Reviews, 2016, 60: 195–205
https://doi.org/10.1016/j.rser.2015.12.363
20 Wang M M, Zhang  C C, Zhang  F S. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach. Waste Management (New York, N.Y.), 2016, 51: 239–244
https://doi.org/10.1016/j.wasman.2016.03.006
21 Barik S P, Prabaharan  G, Kumar B. An innovative approach to recover the metal values from spent lithium-ion batteries. Waste Management (New York, N.Y.), 2016, 51: 222–226
https://doi.org/10.1016/j.wasman.2015.11.004
22 Prabaharan G, Barik  S P, Kumar  N, Kumar L. Electrochemical process for electrode material of spent lithium ion batteries. Waste Management (New York, N.Y.), 2017, 68: 527–533
https://doi.org/10.1016/j.wasman.2017.07.007
23 Zeng X, Li  J. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries. Journal of Hazardous Materials, 2014, 271: 50–56
https://doi.org/10.1016/j.jhazmat.2014.02.001
24 Zeng X, Li  J, Shen B. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid. Journal of Hazardous Materials, 2015, 295: 112–118
https://doi.org/10.1016/j.jhazmat.2015.02.064
25 Mason-Jones K, von Blottnitz  H. Flows and fates of nickel-cadmium batteries in the City of Cape Town. Minerals Engineering, 2010, 23(3): 211–218
https://doi.org/10.1016/j.mineng.2009.09.010
26 Ziemann S, Weil  M, Schebek L. Tracing the fate of lithium – The development of a material flow model. Resources, Conservation and Recycling, 2012, 63: 26–34
https://doi.org/10.1016/j.resconrec.2012.04.002
27 Sun X, Hao  H, Zhao F,  Liu Z. Tracing global lithium flow: A trade-linked material flow analysis. Resources, Conservation and Recycling, 2017, 124: 50–61
https://doi.org/10.1016/j.resconrec.2017.04.012
28 Hao H, Liu  Z, Zhao F,  Geng Y, Sarkis  J. Material flow analysis of lithium in China. Resources Policy, 2017, 51: 100–106
https://doi.org/10.1016/j.resourpol.2016.12.005
29 Lu B, Liu  J, Yang J. Substance flow analysis of lithium for sustainable management in mainland China: 2007–2014. Resources, Conservation and Recycling, 2017, 119: 109–116
https://doi.org/10.1016/j.resconrec.2016.05.015
30 Sakai S, Yano  J, Hirai Y,  Asari M,  Yanagawa R,  Matsuda T,  Yoshida H,  Yamada T,  Kajiwara N,  Suzuki G,  Kunisue T,  Takahashi S,  Tomoda K,  Wuttke J,  Mählitz P,  Rotter S V,  Grosso M,  Astrup F T,  Cleary J,  Oh G, Liu  L, Li J,  Ma H, Chi  K N, Moore  S. Waste prevention for sustainable resource and waste management. Journal of Material Cycles and Waste Management, 2017, 19(4): 1–19
https://doi.org/10.1007/s10163-017-0586-4
31 Bureau of Statistics. Available online at  ( accessed May 15, 2017)
32 Korea Ministry of Environment (Korea MOE). Available online at  ( accessed May 15, 2017)
33 Korea Battery Recycling Association (KBRA). Available online at  ( accessed May 15, 2017)
34 Extended Producer Responsibility system (in Korean), Available online at  ( accessed September 29, 2017)
35 Brunner H P, Rechberger  H. Practical handbook of material flow analysis. Boca Raton, Florida: Lewis, 2004
36 Bonnin M, Azzaro-Pantel  C, Pibouleau L,  Domenech S,  Villeneuve J. Development and validation of a dynamic material flow analysis model for French copper cycle. Chemical Engineering Research & Design, 2013, 91(8): 1390–1402
https://doi.org/10.1016/j.cherd.2013.03.016
37 Jang Y. Study on the actual situation of hazardous waste in the Daejeon metropolitan city and its effective management plan. Daejeon Green Environment Center, 2012 (in Korean)
38 Korea Environment Corporation (KECO). Available online at  ( accessed April 26, 2017)
39 KOBAR Co. Ltd., Available online at  ( accessed September 29, 2017)
40 Nomura Kohsan Co. Ltd., Available online at  ( accessed September 29, 2017)
41 Japan Portable Rechargeable Battery Recycling Center (JBRC). Available online at  ( accessed May 21, 2017)
42 Terazono A, Oguchi  M, Iino S,  Mogi S. Battery collection in municipal waste management in Japan: challenges for hazardous substance control and safety. Waste Management (New York, N.Y.), 2015, 39: 246–257
https://doi.org/10.1016/j.wasman.2015.01.038
43 Battery Association of Japan (BAJ). Available online at  ( accessed May 26, 2017)
44 Germany Federal Ministry for the Environment. Nature Conservation, Building and Nuclear Safety (Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit). Available online at  ( accessed May 26, 2017)
45 Gemeinsames Rücknahme System (GRS) Batterien. Available online at (accessed May 29, 2017)
46 CCR REBAT Germany. Available online at  ( accessed May 29, 2017)
47 European Recycling Platform (ERP) Deutschland GmbH. Available online at  ( accessed September 26, 2017)
48 Peng P, Jiang  F. Thermal safety of lithium-ion batteries with various cathode materials: A numerical study. International Journal of Heat and Mass Transfer, 2016, 103: 1008–1016
https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.088
49 Liu X, Wu  Z, Stoliarov S I,  Denlinger M,  Masias A,  Snyder K. Heat release during thermally-induced failure of a lithium ion battery: Impact of cathode composition. Fire Safety Journal, 2016, 85: 10–22
https://doi.org/10.1016/j.firesaf.2016.08.001
Related articles from Frontiers Journals
[1] Abhishek Kumar, Veena Choudhary, Rita Khanna, Romina Cayumil, Muhammad Ikram-ul-Haq, Veena Sahajwalla, Shiva Kumar I. Angadi, Ganapathy E. Paruthy, Partha S. Mukherjee, Miles Park. Recycling polymeric waste from electronic and automotive sectors into value added products[J]. Front. Environ. Sci. Eng., 2017, 11(5): 4-.
[2] Mengmeng Wang, Quanyin Tan, Joseph F. Chiang, Jinhui Li. Recovery of rare and precious metals from urban mines—A review[J]. Front. Environ. Sci. Eng., 2017, 11(5): 1-.
[3] Evangelia C. Vouvoudi, Aristea T. Rousi, Dimitris S. Achilias. Thermal degradation characteristics and products obtained after pyrolysis of specific polymers found in Waste Electrical and Electronic Equipment[J]. Front. Environ. Sci. Eng., 2017, 11(5): 9-.
[4] Zebing Wu, Wenyi Yuan, Jinhui Li, Xiaoyan Wang, Lili Liu, Jingwei Wang. A critical review on the recycling of copper and precious metals from waste printed circuit boards using hydrometallurgy[J]. Front. Environ. Sci. Eng., 2017, 11(5): 8-.
[5] Paul Vanegas, Jef R. Peeters, Dirk Cattrysse, Wim Dewulf, Joost R. Duflou. Improvement potential of today’s WEEE recycling performance: The case of LCD TVs in Belgium[J]. Front. Environ. Sci. Eng., 2017, 11(5): 13-.
[6] John C. Radcliffe, Declan Page, Bruce Naumann, Peter Dillon. Fifty Years of Water Sensitive Urban Design, Salisbury, South Australia[J]. Front. Environ. Sci. Eng., 2017, 11(4): 7-.
[7] Liangliang WEI,Kun WANG,Xiangjuan KONG,Guangyi LIU,Shuang CUI,Qingliang ZHAO,Fuyi CUI. Application of ultra-sonication, acid precipitation and membrane filtration for co-recovery of protein and humic acid from sewage sludge[J]. Front. Environ. Sci. Eng., 2016, 10(2): 327-335.
[8] Hua GUO,Tianzhu ZHANG. Sinks of steel in China–addition to in-use stock, export and loss[J]. Front. Environ. Sci. Eng., 2016, 10(1): 141-149.
[9] Dongdong MA,Hongwen GAO. Reuse of heavy metal-accumulating Cynondon dactylon in remediation of water contaminated by heavy metals[J]. Front. Environ. Sci. Eng., 2014, 8(6): 952-959.
[10] Xianlai ZENG,Jinhui LI. Spent rechargeable lithium batteries in e-waste: composition and its implications[J]. Front.Environ.Sci.Eng., 2014, 8(5): 792-796.
[11] Lili QU,Tianzhu ZHANG,Wei LU. Assessing the potential of crop residue recycling in China and technology options based on a bottom-up model[J]. Front.Environ.Sci.Eng., 2014, 8(4): 570-579.
[12] Amin Mohammad Mehdi,Bina Bijan,Majd Amir Masoud Samani,Pourzamani Hamidreza. Benzene removal by nano magnetic particles under continuous condition from aqueous solutions[J]. Front.Environ.Sci.Eng., 2014, 8(3): 345-356.
[13] Ken USHIJIMA, Mitsuteru IRIE, Neni SINTAWARDANI, Jovita TRIASTUTI, Umi HAMIDAH, Tadaharu ISHIKAWA, Naoyuki FUNAMIZU. Sustainable design of sanitation system based on material and value flow analysis for urban slum in Indonesia[J]. Front Envir Sci Eng, 2013, 7(1): 120-126.
[14] Rodrigo VILLARROEL WALKER, Michael Bruce BECK, Jim W. HALL. Water---- and nutrient and energy---- systems in urbanizing watersheds[J]. Front Envir Sci Eng, 2012, 6(5): 596-611.
[15] Pinjing HE, Min LI, Suyun XU, Liming SHAO, . Anaerobic treatment of fresh leachate from a municipal solid waste incinerator by upflow blanket filter reactor[J]. Front.Environ.Sci.Eng., 2009, 3(4): 404-411.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed