Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (3) : 1     https://doi.org/10.1007/s11783-018-1018-y
RESEARCH ARTICLE |
Energy reduction of a submerged membrane bioreactor using a polytetrafluoroethylene (PTFE) hollow-fiber membrane
Taro Miyoshi1(), Thanh Phong Nguyen1, Terumi Tsumuraya1, Hiromu Tanaka2, Toru Morita2, Hiroki Itokawa3, Toshikazu Hashimoto3
1. Maezawa Industries, Inc., 5-11, Naka-cho, Kawaguchi City, Saitama 332-8556, Japan
2. Sumitomo Electric Industries, LTD., 1-950, Asashironishi, Kumatori-cho, Sennan-gun, Osaka 590-0458, Japan
3. Japan Sewage Works Agency, 2-31-27, Yushima, Bunkyo City, Tokyo 113-0034, Japan
Download: PDF(958 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The fiber length and packing density of the PTFE membrane element were increased.

The MBR was stably operated under an SADm of 0.13 m3·m-2·hr-1.

Specific energy consumption was estimated to be less than 0.4 kWh·m-3.

In this study, we modified a polytetrafluoroethylene (PTFE) hollow-fiber membrane element used for submerged membrane bioreactors (MBRs) to reduce the energy consumption during MBR processes. The high mechanical strength of the PTFE membrane made it possible to increase the effective length of the membrane fiber from 2 to 3 m. In addition, the packing density was increased by 20% by optimizing the membrane element configuration. These modifications improve the efficiency of membrane cleaning associated with aeration. The target of specific energy consumption was less than 0.4 kWh·m-3 in this study. The continuous operation of a pilot MBR treating real municipal wastewater revealed that the MBR utilizing the modified membrane element can be stably operated under a specific air demand per membrane surface area (SADm) of 0.13 m3·m-2·hr-1 when the daily-averaged membrane fluxes for the constant flow rate and flow rate fluctuating modes of operation were set to 0.6 and 0.5 m3·m-2·d-1, respectively. The specific energy consumption under these operating conditions was estimated to be less than 0.37 kWh·m-3. These results strongly suggest that operating an MBR equipped with the modified membrane element with a specific energy consumption of less than 0.4 kWh·m-3 is highly possible.

Keywords Energy-saving      Membrane bioreactor      Polytetrafluoroethylene (PTFE) membrane      Hollow fiber      Power consumption     
Corresponding Authors: Taro Miyoshi   
Issue Date: 10 June 2018
 Cite this article:   
Taro Miyoshi,Thanh Phong Nguyen,Terumi Tsumuraya, et al. Energy reduction of a submerged membrane bioreactor using a polytetrafluoroethylene (PTFE) hollow-fiber membrane[J]. Front. Environ. Sci. Eng., 2018, 12(3): 1.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-018-1018-y
http://journal.hep.com.cn/fese/EN/Y2018/V12/I3/1
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Taro Miyoshi
Thanh Phong Nguyen
Terumi Tsumuraya
Hiromu Tanaka
Toru Morita
Hiroki Itokawa
Toshikazu Hashimoto
Fig.1  Schematic description of the pilot MBR with modified PTFE membrane
Fig.2  Diurnal flux fluctuation pattern of the flow rate fluctuation experiment
Item Value Basis
Minimum temperature (°C) 15
Net flux
(Constant flow rate operation; m3·m-2·d-1)
0.6 Results of the pilot test performed in this study
Daily averaged flux
(flow rate fluctuation operation; m3·m-2·d-1)
0.5 Results of the pilot test performed in this study
HRT (hr) 6 Aerobic tank: 3 h, Anoxic tank: 3 h
MLSS concentration (mg·L-1) 9000 In the aerobic tank
MLVSS concentration (mg·L-1) 7200 In the aerobic tank
Recirculation ratio 2.0
DO concentration in aerobic tank (mg·L-1) 1.5
Oxygen transfer efficiency
(membrane aeration; %)
8 Results of the aeration test using well water
Oxygen transfer efficiency
(biology aeration; %)
25 Information obtained from the manufacturer
a factor 0.65 Typically in the range of 0.6–0.7
BOD concentration (feed water; mg·L-1) 200 Typical concentration of Japanese municipal wastewater
SS concentration(feed water; mg·L-1) 200 Typical concentration of Japanese municipal wastewater
T–N concentration (feed water; mg·L-1) 35 Typical concentration of Japanese municipal wastewater
T–Pa concentration (feed water; mg·L-1) 4.0 Typical concentration of Japanese municipal wastewater
BOD concentration (treated water; mg·L-1) 3.0 Typical treated water quality of MBRs in Japan
SS concentration (treated water) N.D.
T–N concentration (treated water; mg·L-1) 10 Japanese standard for the MLE-MBR process
T–Pa concentration (treated water; mg·L-1) 0.5 Japanese standard for the MLE-MBR process with coagulant dose
Tab.1  Specifications used for the estimation of the energy consumption
Fig.3  Apparatuses considered for the estimation of the specific energy consumption
Item Constant flow experiment
(August 8–December 8)
Flow rate fluctuation experiment
(December 8–January 9)
Raw water Treated water Raw water Treated water
BOD (mg·L-1) 138 0.5 102 0.4
T–N (mg·L-1) 26.6 6.9 19.8 7.5
NH4+–N (mg·L-1) 17.6 1.5 13.2 1.1
SS (mg·L-1) 152 N.D. 124 N.D.
Tab.2  Average water quality of raw wastewater and treated water in each experiment
Fig.4  Changes in TMP and membrane flux during constant flow rate operation
Fig.5  Changes in TMP and membrane flux during flow rate fluctuation operation
Membrane element Conventional Modified
Conventional-1 Conventional-2 Modified-1 Modified-2
SADm (m3·m-2·hr-1) 0.30 0.24 0.13a 0.13a
Membrane flux
(m3·m-2·d-1)
0.6 0.6 0.6 0.5
(daily averaged)
Air-flow rate
(membrane aeration; m3·hr-1)
1909 1527 846 976
Air-flow rate
(biology aeration; m3·hr-1)
2010 2392 3073 2943
Oxygen demandb
(kg O2·d-1)
3919 3919 3919 3919
Flow equalization tank ×
Tab.3  Operating conditions of the hypothetical MBR used for the estimation of the energy consumption
Fig.6  Specific energy consumption for each operating condition
1 Judd S. The MBR Book: Principles and Applications of Membrane Bioreactors in Water and Wastewater Treatment. Oxford: Elsevier, 2006
2 Fenu A, Roels  J, Wambecq T,  De Gussem K,  Thoeye C,  De Gueldre G,  Van De Steene B. Energy audit of a full scale MBR system. Desalination, 2010, 262(1–3): 121–128
https://doi.org/10.1016/j.desal.2010.05.057
3 Krzeminski P, van der Graaf  J H J M, van Lier  J B. Specific energy consumption of membrane bioreactor (MBR) for sewage treatment. Water Science and Technology, 2012, 65(2): 380–392
https://doi.org/10.2166/wst.2012.861 pmid: 22233918
4 Barillon B, Martin Ruel  S, Langlais C,  Lazarova V. Energy efficiency in membrane bioreactors. Water Science and Technology, 2013, 67(12): 2685–2691
https://doi.org/10.2166/wst.2013.163 pmid: 23787304
5 Buer T, Cumin  J. MBR module design and operation. Desalination, 2010, 262(1–3): 1073–1077
https://doi.org/10.1016/j.desal.2009.09.111
6 Xiao K, Xu  Y, Liang S,  Lei T, Sun  J, Wen X,  Zhang H,  Chen C, Huang  X. Engineering application of membrane bioreactor for wastewater treatment in China: Current state and future prospect. Frontiers of Environmental Science & Engineering, 2014, 8(6): 805–819
https://doi.org/10.1007/s11783-014-0756-8
7 Krzeminski P, Leverette  L, Malamis S,  Katsou E. Membrane bioreactors—A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. Journal of Membrane Science, 2017, 527: 207–227
https://doi.org/10.1016/j.memsci.2016.12.010
8 Tao G, Kekre  K, Oo M H,  Viswanath B,  Aliman M D Y,  Seah H. Energy reduction and optimisation in membrane bioreactors systems. Water Practice and Technology, 2010, 5(4): 88–93
9 Itokawa H, Tsuji  K, Yamashita K,  Hashimoto T. Design and operating experiences of full-scale municipal membrane bioreactors in Japan. Water Science and Technology, 2014, 69(5): 1088–1093
https://doi.org/10.2166/wst.2014.020 pmid: 24622560
10 Hoque A, Kimura  K, Miyoshi T,  Yamato N,  Watanabe Y. Characteristics of foulants in air-sparged side-stream tubular membranes used in a municipal wastewater membrane bioreactor. Separation and Purification Technology, 2012, 93: 83–91
https://doi.org/10.1016/j.seppur.2012.03.027
11 Gil J A, Túa  L, Rueda A,  Montaño B,  Rodríguez M,  Prats D. Monitoring and analysis of the energy cost of an MBR. Desalination, 2010, 250(3): 997–1001
https://doi.org/10.1016/j.desal.2009.09.089
12 Verrecht B, Maere  T, Nopens I,  Brepols C,  Judd S. The cost of a large-scale hollow fibre MBR. Water Research, 2010, 44(18): 5274–5283
https://doi.org/10.1016/j.watres.2010.06.054 pmid: 20633917
13 Verrecht B, James  C, Germain E,  Ma W, Judd  S. Experimental evaluation of intermittent aeration of a hollow fibre membrane bioreactor. Water Science and Technology, 2011, 63(6): 1217–1223
https://doi.org/10.2166/wst.2011.361 pmid: 21436559
14 Ho J, Smith  S, Roh H K. Alternative energy efficient membrane bioreactor using reciprocating submerged membrane. Water Science and Technology, 2014, 70(12): 1998–2003
https://doi.org/10.2166/wst.2014.447 pmid: 25521136
15 Kurita T, Kimura  K, Watanabe Y. Energy saving in the operation of submerged MBRs by the insertion of baffles and the introduction of granular materials. Separation and Purification Technology, 2015, 141(12): 207–213
https://doi.org/10.1016/j.seppur.2014.11.025
16 Monclús H, Dalmau  M, Gabarrón S,  Ferrero G,  Rodríguez-Roda I,  Comas J. Full-scale validation of an air scour control system for energy savings in membrane bioreactors. Water Research, 2015, 79(1): 1–9
https://doi.org/10.1016/j.watres.2015.03.032 pmid: 25965883
17 Yan X, Wu  Q, Sun J,  Liang P,  Zhang X,  Xiao K, Huang  X. Hydrodynamic optimization of membrane bioreactor by horizontal geometry modification using computational fluid dynamics. Bioresource Technology, 2016, 200: 328–334
https://doi.org/10.1016/j.biortech.2015.10.050 pmid: 26512855
18 Miyoshi T, Yamamura  H, Morita T,  Watanabe Y. Effect of intensive membrane aeration and membrane flux on membrane fouling in submerged membrane bioreactors: Reducing specific air demand per permeate (SADp). Separation and Purification Technology, 2015, 148(25): 1–9
https://doi.org/10.1016/j.seppur.2015.04.030
19 Judd S. The status of industrial and municipal effluent treatment with membrane bioreactor technology. Chemical Engineering Journal, 2015, 305(1): 37–45
20 Japan Sewage Works Association. Standard Methods for the Examination of Wastewater. Japan Sewage Works Association, Tokyo, Japan (in Japanese)
21 Cornel P, Wagner  M, Krause S. Investigation of oxygen transfer rates in full scale membrane bioreactors. Water Science and Technology, 2003, 47(11): 313–319
pmid: 12906305
22 Krampe J, Krauth  K. Oxygen transfer into activated sludge with high MLSS concentrations. Water Science and Technology, 2003, 47(11): 297–303
pmid: 12906303
23 Germain E, Nelles  F, Drews A,  Pearce P,  Kraume M,  Reid E, Judd  S J, Stephenson  T. Biomass effects on oxygen transfer in membrane bioreactors. Water Research, 2007, 41(5): 1038–1044
https://doi.org/10.1016/j.watres.2006.10.020 pmid: 17217981
Related articles from Frontiers Journals
[1] Yulun Nie, Xike Tian, Zhaoxin Zhou, Yu-You Li. Impact of food to microorganism ratio and alcohol ethoxylate dosage on methane production in treatment of low-strength wastewater by a submerged anaerobic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2017, 11(6): 6-.
[2] Xiaoyan Song, Rui Liu, Lujun Chen, Tomoki Kawagishi. Comparative experiment on treating digested piggery wastewater with a biofilm MBR and conventional MBR: simultaneous removal of nitrogen and antibiotics[J]. Front. Environ. Sci. Eng., 2017, 11(2): 11-.
[3] Qingbin Guo, Sheng Chang. Tetra-detector size exclusion chromatography characterization of molecular and solution properties of soluble microbial polysaccharides from an anaerobic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2017, 11(2): 16-.
[4] Kang XIAO, Ying XU, Shuai LIANG, Ting LEI, Jianyu SUN, Xianghua WEN, Hongxun ZHANG, Chunsheng CHEN, Xia HUANG. Engineering application of membrane bioreactor for wastewater treatment in China: Current state and future prospect[J]. Front. Environ. Sci. Eng., 2014, 8(6): 805-819.
[5] Hongtao ZHU, Wenna LI. Bisphenol A removal from synthetic municipal wastewater by a bioreactor coupled with either a forward osmotic membrane or a microfiltration membrane unit[J]. Front Envir Sci Eng, 2013, 7(2): 294-300.
[6] Xinhua WANG, Jingmei LI, Xiufen LI, Guocheng DU. Influence of aeration intensity on the performance of A/O-type sequencing batch MBR system treating azo dye wastewater[J]. Front Envir Sci Eng Chin, 2011, 5(4): 615-622.
[7] Lihui ZHANG, Guomin CAO, Yulei FEI, Hong DING, Mei SHENG, Yongdi LIU. Preliminary study of groundwater denitrification using a composite membrane bioreactor[J]. Front Envir Sci Eng Chin, 2011, 5(4): 604-609.
[8] Xia HUANG, Kang XIAO, Yuexiao SHEN. Recent advances in membrane bioreactor technology for wastewater treatment in China[J]. Front.Environ.Sci.Eng., 2010, 4(3): 245-271.
[9] Longli BO, Taro URASE, Xiaochang WANG. Biodegradation of trace pharmaceutical substances in wastewater by a membrane bioreactor[J]. Front Envir Sci Eng Chin, 2009, 3(2): 236-240.
[10] Fangyue LI, Joachim BEHRENDT, Knut WICHMANN, Ralf OTTERPOHL. Evaluation of factors influencing soluble microbial product in submerged MBR through hybrid ASM model[J]. Front Envir Sci Eng Chin, 2009, 3(2): 226-235.
[11] LIU Chun, HUANG Xia. Enhanced atrazine removal using membrane bioreactor bioaugmented with genetically engineered microorganism[J]. Front.Environ.Sci.Eng., 2008, 2(4): 452-460.
[12] SUI Pengzhe, WEN Xianghua, HUANG Xia. Membrane fouling control by ultrasound in an anaerobic membrane bioreactor[J]. Front.Environ.Sci.Eng., 2007, 1(3): 362-367.
[13] ZOU Haiyan, XI Danli. Performance of bioferric-submerged membrane bioreactor for dyeing wastewater treatment[J]. Front.Environ.Sci.Eng., 2007, 1(3): 374-380.
[14] SUN Yujiao, WANG Yong, HUANG Xia. Relationship between sludge settleability and membrane fouling in a membrane bioreactor[J]. Front.Environ.Sci.Eng., 2007, 1(2): 221-225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed