Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (1) : 3-15     https://doi.org/10.1007/s11783-014-0734-1
FEATURE ARTICLE |
Disinfection byproducts in drinking water and regulatory compliance: A critical review
Xiaomao WANG1,Yuqin MAO1,Shun TANG1,Hongwei YANG1,*(),Yuefeng F. XIE1,2
1. State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
2. Environmental Engineering Programs, The Pennsylvania State University, Middletown, PA 17057, USA
Download: PDF(178 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Disinfection by-products (DBPs) are regulated in drinking water in a number of countries. This critical review focuses on the issues associated with DBP regulatory compliance, including methods for DBP analysis, occurrence levels, the regulation comparison among various countries, DBP compliance strategies, and emerging DBPs. The regulation comparison between China and the United States (US) indicated that the DBP regulations in China are more stringent based on the number of regulated compounds and maximum levels. The comparison assessment using the Information Collection Rule (ICR) database indicated that the compliance rate of 500 large US water plants under the China regulations is much lower than that under the US regulations (e.g. 62.2% versus 89.6% for total trihalomethanes). Precursor removal and alternative disinfectants are common practices for DBP regulatory compliance. DBP removal after formation, including air stripping for trihalomethane removal and biodegradation for haloacetic acid removal, have gained more acceptance in DBP control. Formation of emerging DBPs, including iodinated DBPs and nitrogenous DBPs, is one of unintended consequences of precursor removal and alternative disinfection. At much lower levels than carbonaceous DBPs, however, emerging DBPs have posed higher health risks.

Keywords Disinfection byproducts (DBPs)      drinking water standards      regulatory compliance      alternative disinfection      information collection rule (ICR)      emerging DBPs     
Corresponding Authors: Hongwei YANG   
Online First Date: 26 June 2014    Issue Date: 31 December 2014
 Cite this article:   
Xiaomao WANG,Yuqin MAO,Shun TANG, et al. Disinfection byproducts in drinking water and regulatory compliance: A critical review[J]. Front. Environ. Sci. Eng., 2015, 9(1): 3-15.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-014-0734-1
http://journal.hep.com.cn/fese/EN/Y2015/V9/I1/3
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaomao WANG
Yuqin MAO
Shun TANG
Hongwei YANG
Yuefeng F. XIE
ethods issued by the US.EPA methods in GB/T 5750.10?2006
THMs Method 502.2 (P&T-GC-PID-ELCD), Method 524.2 (P&T-GC-MS), Method 551.1 (LLE-GC-ECD) HS-GC(packed column)-ECD, HS-GC(capillary column)-ECD
HAAs Method 552.1 (SPE-derivatization-GC-ECD), Method 552.2 (LLE-derivatization-GC-ECD), Method 552.3 (LLE-derivatization-GC-ECD) LLE-derivatization-GC-ECD
CH Method 551.1 (LLE-GC-ECD) Hydrolysis-HS-GC-ECD
bromate Method 300.1 (IC-CD), Method 317.0 (IC-PCR-UV/VIS), Method 321.8 (IC-ICP-MS) IC-CD
formaldehyde Method 554 (LSE-HPLC-UV), Method 556 (LLE-derivatization-GC-ECD) Colorimetry
chlorite Method 300.0 (IC-CD), Method 300.1 (IC-CD), Method 317.0 (IC-CD), Method 326.0 (IC-CD), Method 327.0 (colorimetry) Titrimetric,IC-CD
chlorate Method 300.0 (IC-CD), Method 300.1 (IC-CD), Method 317.0 (IC-CD) Titrimetric,IC-CD
CNCl ? Colorimetry
2,4,6-trichlorophenol ? LLE-derivatization-GC-ECD,HS-GC-ECD
Tab.1  Comparison of the approved methods for the measurement of regulated DBPs in the US and China
Krasner et al., 1989 [29] ICR Krasner et al., 2006 [30] Mitch et al., 2009 [35]
THM4 37 29.7 31 36
HAAs 1814.4 (HAA5) 22.6 *17.7 (HAA5) 34
haloacetaldehydes 2.2 (CH) 2.3 (CH) 4 4.5 (THA)
haloacetonitriles 3.2 2.8 (HAN4) 3 4 (DHAN)
haloketones 1.3 (DCP&TCP) 1.1 (DCP&TCP) 2
haloacetamides 1.4
halonitromethanes 0.12 (TCNM) 0 (TCNM) 1 0.5 (TCNM)
halogenated furanones 0.31
CNCl 0.6 2
bromate 0
formaldehyde 2.7 0
acetaldehyde 1.8
chlorite 170
chlorate 66
Tab.2  The occurrence levels of the commonly measured DBPs obtained by the several nationwide surveys in the United States (unit: μg?L-1)
DBP species Chinese standards WHO guidelines US regulations Canadian guidelines EU directive Japanese standards Australian guidelines
TTHM 1a 1a 0.08 0.1 LRAA 0.1 0.1 0.25
chloroform 0.06 0.3 ? ? ? 0.06 ?
BDCM 0.06 0.06 ? ? ? 0.03 ?
DBCM 0.1 0.1 ? ? ? 0.1 ?
bromoform 0.1 0.1 ? ? ? 0.09 ?
HAA5 ? ? 0.06 0.08 LRAA ? ? ?
MCAA ? 0.02 ? ? ? 0.02 0.15
DCAA 0.05 0.05 ? ? ? 0.04 0.1
TCAA 0.1 0.2 ? ? ? 0.2 0.1
CH 0.01 ? ? ? ? ? 0.02
bromate 0.01 0.01 0.01 0.01 0.01 0.01 0.02
formaldehyde 0.9 ? ? None required ? 0.08 0.5
chlorite 0.7 0.7 1 1 ? ? 0.8
chlorate 0.7 0.7 ? 1 ? N.D.
CNCl (as CN-) 0.07 ? ? ? ? 0.01 0.08
DCAN ? 0.02 ? ? ? ? N.D.
DBAN ? 0.07 ? ? ? ? N.D.
2-chlorophenol ? ? ? ? ? ? 0.0001
2,4-dichlorophenol ? ? ? ? ? ? 0.0003
2,4,6-trichlorophenol 0.2 0.2 ? ? ? ? 0.002
NDMA ? 0.0001 ? 0.000 04 ? ? 0.0001
Tab.3  A comparison of the maximum contaminant levels for the various disinfection by-products regulated by the Chinese and US drinking water standards, and suggested by the WHO guidelines (unit: mg?L-1)
DBP species Chinese regulations US regulations
5% method RAA RAA LRAA
TTHM 37.8% 13.8% 3.8% 10.4%
chloroform 18.1% 3.5% ? ?
BDCM 0 0 ? ?
DBCM 0 0
bromoform 0 0
HAA5 3.6% 5.1%
MCAA
DCAA 2.7% 0.4%
TCAA 0.5% 0
CH 24.5% 4.0% ?
bromateb 9.8% 0 0 N.A.
formaldehyde 0 0
chloritec 39.5% 38.1% 19.0% N.A.
chloratec 4.2% 4.2%
CNCl (as CN-) 0 0
Tab.4  The regulation violence rates of the ICR plants based on the China standards and the US standards
1 Sadiq R, Rodriguez M J. Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review. Science of the Total Environment, 2004, 321(1–3): 21–46
https://doi.org/10.1016/j.scitotenv.2003.05.001 pmid: 15050383
2 Xie Y F. Disinfection Byproducts in Drinking Water—Formation, Analysis, and Control. Washington, DC: Lewis Publishers, 2004
3 Richardson S D, Plewa M J, Wagner E D, Schoeny R, Demarini D M. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutation Research, 2007, 636(1–3): 178–242
https://doi.org/10.1016/j.mrrev.2007.09.001 pmid: 17980649
4 Karanfil T, Krasner S W, Westerhoff P, Xie Y F. Recent advances in Disinfection by-product: Formation, occurrence, health effects, and regulations. In: Karanfil T, Krasner S W, Westerhoff P, Xie Y F, editors, Disinfection By-Products in Drinking Water – Occurrence, Formation, Health Effects, and Control. Washington, DC: American Chemical Society, 2008, 2–19
5 Krasner S W. The formation and control of emerging disinfection by-products of health concern. Philosophical Transactions of the Royal Society A—Mathematical Physical and Engineering Sciences, 2009, 367(1904): 4077–4095
https://doi.org/10.1098/rsta.2009.0108 pmid: 19736234
6 Bond T, Templeton M R, Graham N. Precursors of nitrogenous disinfection by-products in drinking water—a critical review and analysis. Journal of Hazardous Materials, 2012, 235-236: 1–16
https://doi.org/10.1016/j.jhazmat.2012.07.017 pmid: 22846217
7 Shah A D, Mitch W A. Halonitroalkanes, halonitriles, haloamides, and N-nitrosamines: a critical review of nitrogenous disinfection byproduct formation pathways. Environmental Science & Technology, 2012, 46(1): 119–131
https://doi.org/10.1021/es203312s pmid: 22112205
8 GB5749–2006. P.R. China Standards for Drinking Water Quality. Beijing: Department of Health, P.R. China, 2006 (in Chinese)
9 Xie Y F. Disinfection by-product analysis in drinking water. American Laboratory, 2000, 32(22): 50–54
10 GB/T 5750.10–2006. P.R. China Standards Examination Methods for Drinking Water – Disinfection By-products Parameters. Beijing: Department of Health, P.R. China, 2006 (in Chinese)
11 Wang X M, Zhang X L, Yang H W, Zhang J S, Liu L J, Liu B, Xie Y F. Comparison of methods for chloral hydrate analysis in drinking water. Water & Wastewater Engineering, 2013, 39 (supplementary): 125–128 (in Chinese)
12 Xie Y F, Hwang C J. Cyanogen chloride and cyanogen bromide analysis in drinking water. In: Meyers R A, ed. Encyclopedia of Analytical Chemistry. Hoboken: John Wiley & Sons, 2006
13 Xie Y F, Reckhow D A. A rapid and simple analytical method for cyanogen chloride and cyanogen-bromide in drinking water. Water Research, 1993, 27(3): 507–511
https://doi.org/10.1016/0043-1354(93)90051-I
14 Richardson S D. Disinfection by-products and other emerging contaminants in drinking water. Trace-Trends in Analytical Chemistry, 2003, 22(10): 666–684
https://doi.org/10.1016/S0165-9936(03)01003-3
15 Weinberg H S. Modern approaches to the analysis of disinfection by-products in drinking water. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 2009, 367(1904): 4097–4118
https://doi.org/10.1098/rsta.2009.0130 pmid: 19736235
16 Loos R, Barcel? D. Determination of haloacetic acids in aqueous environments by solid-phase extraction followed by ion-pair liquid chromatography-electrospray ionization mass spectrometric detection. Journal of Chromatography. A, 2001, 938(1–2): 45–55
https://doi.org/10.1016/S0021-9673(01)01092-5 pmid: 11771846
17 Meng L, Wu S, Ma F, Jia A, Hu J. Trace determination of nine haloacetic acids in drinking water by liquid chromatography-electrospray tandem mass spectrometry. Journal of Chromatography. A, 2010, 1217(29): 4873–4876
https://doi.org/10.1016/j.chroma.2010.04.074 pmid: 20538280
18 Richardson S D. The role of GC-MS and LC-MS in the discovery of drinking water disinfection by-products. Journal of Environmental Monitoring, 2002, 4(1): 1–9
https://doi.org/10.1039/b105578j pmid: 11871687
19 Richardson S D. Environmental mass spectrometry: emerging contaminants and current issues. Analytical Chemistry, 2008, 80(12): 4373–4402
https://doi.org/10.1021/ac800660d pmid: 18498180
20 Zhang X, Minear R A, Guo Y, Hwang C J, Barrett S E, Ikeda K, Shimizu Y, Matsui S. An electrospray ionization-tandem mass spectrometry method for identifying chlorinated drinking water disinfection byproducts. Water Research, 2004, 38(18): 3920–3930
https://doi.org/10.1016/j.watres.2004.06.022 pmid: 15380982
21 Zhang X, Talley J W, Boggess B, Ding G, Birdsell D. Fast selective detection of polar brominated disinfection byproducts in drinking water using precursor ion scans. Environmental Science & Technology, 2008, 42(17): 6598–6603
https://doi.org/10.1021/es800855b pmid: 18800536
22 Zhang X, Minear R A, Barrett S E. Characterization of high molecular weight disinfection byproducts from chlorination of humic substances with/without coagulation pretreatment using UF-SEC-ESI-MS/MS. Environmental Science & Technology, 2005, 39(4): 963–972
https://doi.org/10.1021/es0490727 pmid: 15773467
23 Xie Y, Zhou H J. Biologically active carbon for HAA removal: part II, column study. Journal—American Water Works Association, 2002, 94(5): 126–134
24 Urbansky E T. Techniques and methods for the determination of haloacetic acids in potable water. Journal of Environmental Monitoring, 2000, 2(4): 285–291
https://doi.org/10.1039/b002977g pmid: 11249781
25 Kubáň P, Makar?t?eva N, Kiplagat I K, Kaljurand M. Determination of five priority haloacetic acids by capillary electrophoresis with contactless conductivity detection and solid phase extraction preconcentration. Journal of Separation Science, 2012, 35(5–6): 666–673
https://doi.org/10.1002/jssc.201100944 pmid: 22517640
26 Zwierner C, Richardson S D. Analysis of disinfection by-products in drinking water by LC–MS and related MS techniques. Trace-Trends in Analytical Chemistry, 2005, 24(7): 613–621
https://doi.org/10.1016/j.trac.2005.03.014
27 Zwiener C, Frimmel F H. LC-MS analysis in the aquatic environment and in water treatment technology—A critical review. Part II: Applications for emerging contaminants and related pollutants, microorganisms and humic acids. Analytical and Bioanalytical Chemistry, 2004, 378(4): 862–874
https://doi.org/10.1007/s00216-003-2412-1 pmid: 14673565
28 Liu Y, Mou S. Determination of bromate and chlorinated haloacetic acids in bottled drinking water with chromatographic methods. Chemosphere, 2004, 55(9): 1253–1258
https://doi.org/10.1016/j.chemosphere.2003.12.023 pmid: 15081766
29 Krasner S W, McGuire M J, Jacangelo J G, Patania N L, Reagan K M, Aieta E M. The occurrence of disinfection by-products in United-States drinking-water. Journal—American Water Works Association, 1989, 81(8): 41–53
30 Krasner S W, Weinberg H S, Richardson S D, Pastor S J, Chinn R, Sclimenti M J, Onstad G D, Thruston A D Jr, Thruston A D. Occurrence of a new generation of disinfection byproducts. Environmental Science & Technology, 2006, 40(23): 7175–7185
https://doi.org/10.1021/es060353j pmid: 17180964
31 Pressman J G, Richardson S D, Speth T F, Miltner R J, Narotsky M G, Hunter E S 3rd, Rice G E, Teuschler L K, McDonald A, Parvez S, Krasner S W, Weinberg H S, McKague A B, Parrett C J, Bodin N, Chinn R, Lee C F, Simmons J E. Concentration, chlorination, and chemical analysis of drinking water for disinfection byproduct mixtures health effects research: U.S.EPA’s Four Lab Study. Environmental Science & Technology, 2010, 44(19): 7184–7192
https://doi.org/10.1021/es9039314 pmid: 20496936
32 McGuire M J, McLain J L, Obolensky A. Information collection rule data analysis. Denver: American Water Works Association Research Foundation, 2002
33 Obolensky A, Singer P C. Halogen substitution patterns among disinfection byproducts in the information collection rule database. Environmental Science & Technology, 2005, 39(8): 2719–2730
https://doi.org/10.1021/es0489339 pmid: 15884369
34 Obolensky A, Singer P C, Shukairy H M. Information collection rule data evaluation and analysis to support impacts on disinfection by-product formation. Journal of Environmental Engineering, 2007, 39(8): 53–63
https://doi.org/10.1061/(ASCE)0733-9372(2007)133:1(53)
35 Mitch W A, Krasner S W, Westerhoff P, Dotson A. Occurrence and formation of nitrogenous disinfection by-products. Denver: Water Research Foundation, 2009
36 McGuire M J, Meadow R G. AWWARF trihalomethane survey. Journal—American Water Works Association, 1988, 80(1): 61–68
37 Williams D T, LeBel G L, Benoit F M. Disinfection by-products in Canadian drinking water. Chemosphere, 1997, 34(2): 299–316
https://doi.org/10.1016/S0045-6535(96)00378-5
38 Simpson K L, Hayes K P. Drinking water disinfection by-products: an Australian perspective. Water Research, 1998, 32(5): 1522–1528
https://doi.org/10.1016/S0043-1354(97)00341-2
39 Nissinen T K, Miettinen I T, Martikainen P J, Vartiainen T. Disinfection by-products in Finnish drinking waters. Chemosphere, 2002, 48(1): 9–20
https://doi.org/10.1016/S0045-6535(02)00034-6 pmid: 12137063
40 Lee K J, Kim B H, Hong J E, Pyo H S, Park S J, Lee D W. A study on the distribution of chlorination by-products (CBPs) in treated water in Korea. Water Research, 2001, 35(12): 2861–2872
https://doi.org/10.1016/S0043-1354(00)00583-2 pmid: 11471686
41 Yoon J, Choi Y, Cho S, Lee D. Low trihalomethane formation in Korean drinking water. Science of the Total Environment, 2003, 302(1–3): 157–166
https://doi.org/10.1016/S0048-9697(01)01097-X pmid: 12526906
42 Ding H, Meng L, Zhang H, Yu J, An W, Hu J, Yang M. Occurrence, profiling and prioritization of halogenated disinfection by-products in drinking water of China. Environmental Science—Processes & Impacts, 2013, 15(7): 1424–1429
https://doi.org/10.1039/c3em00110e pmid: 23743579
43 US Environmental Protection Agency. National primary drinking water regulations: disinfectants and disinfection byproducts. Federal Register, 1998, 63: 69390–69476
44 US Environmental Protection Agency. National primary drinking water regulations: stage 2 disinfectants and disinfection byproducts rule. Federal Register, 2006, 71: 388–493
45 CDW. Guidelines for Canadian Drinking Water Quality Summary Table. Committee on Drinking Water of the of the Federal-Provincial-Territorial Committee on Health and the Environment, Canada, 2012
46 EU. Council directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption, 1998
47 Golfinopoulos S K, Nikolaou A D. Survey of disinfection by-products in drinking water in Athens, Greece. Desalination, 2005, 176(1–3): 13–24
https://doi.org/10.1016/j.desal.2004.10.029
48 WHO. Guidelines for Drinking-water Quality. 4th edition. World Health Organization, 2011
49 MHLW. http://www.mhlw.go.jp/english/policy/health/water_supply/4.html. Ministry of Health, Labour and Welfare, Japan
50 NHMRC, NRMMC. Australian Drinking Water Guidelines 6. Commonwealth of Australia, 2011
51 Bond T, Huang J, Templeton M R, Graham N. Occurrence and control of nitrogenous disinfection by-products in drinking water—a review. Water Research, 2011, 45(15): 4341–4354
https://doi.org/10.1016/j.watres.2011.05.034 pmid: 21705040
52 Nawrocki J, Andrzejewski P. Nitrosamines and water. Journal of Hazardous Materials, 2011, 189(1–2): 1–18
https://doi.org/10.1016/j.jhazmat.2011.02.005 pmid: 21353742
53 Gopal K, Tripathy S S, Bersillon J L, Dubey S P. Chlorination byproducts, their toxicodynamics and removal from drinking water. Journal of Hazardous Materials, 2007, 140(1–2): 1–6
https://doi.org/10.1016/j.jhazmat.2006.10.063 pmid: 17129670
54 Watson K, Farr? M J, Knight N. Strategies for the removal of halides from drinking water sources, and their applicability in disinfection by-product minimisation: a critical review. Journal of Environmental Management, 2012, 110: 276–298
https://doi.org/10.1016/j.jenvman.2012.05.023 pmid: 22810000
55 Mitch W A, Sharp J O, Trussell R P, Valentine R L, Alvarez-Cohen L, Sedlak D L. N-nitrosodimethylamine (NDMA) as a drinking water contaminant: a review. Environmental Engineering Science, 2003, 20(5): 389–404
https://doi.org/10.1089/109287503768335896
56 Schreiber I M, Mitch W A. Influence of the order of reagent addition on NDMA formation during chloramination. Environmental Science & Technology, 2005, 39(10): 3811–3818
https://doi.org/10.1021/es0483286 pmid: 15952390
57 Hua G H, Reckhow D A. DBP formation during chlorination and chloramination: Effect of reaction time, pH, dosage, and temperature. Journal—American Water Works Association, 2008, 100(8): 82–95
58 Tung H H, Unz R F, Xie Y F. Haloacetic acid removal by granular activated carbon adsorption. Journal—American Water Works Association, 2006, 98(6): 107–112
59 Xie Y F, Zhou H J, Romano J P. Development of a capillary electrophoresis method for haloacetic acids. Abstracts of Papers of the American Chemical Society, 1999, 217: 742–742
60 Wu H W, Xie Y F. Effects of EBCT and water temperature on HAA removal using BAC. Journal—American Water Works Association, 2005, 97(11): 94–101
61 Tung H H, Xie Y F. Association between haloacetic acid degradation and heterotrophic bacteria in water distribution systems. Water Research, 2009, 43(4): 971–978
https://doi.org/10.1016/j.watres.2008.11.041 pmid: 19070347
62 Rodriguez M J, S?rodes J B, Levallois P. Behavior of trihalomethanes and haloacetic acids in a drinking water distribution system. Water Research, 2004, 38(20): 4367–4382
https://doi.org/10.1016/j.watres.2004.08.018 pmid: 15556212
63 Boyden B H, Banh D T, Huckabay H K, Fernandes J B. Using inclined cascade aeration to strip chlorinated VOCs from drinking-water. Journal—American Water Works Association, 1992, 84(5): 62–69
64 Velazquez C, Estevez L A. Stripping of trihalomethanes from drinking-water in a bubble-column aerator. American Institute of Chemical Engineers Journal, 1992, 38(2): 211–218
https://doi.org/10.1002/aic.690380206
65 Sherant S R. Trihalomethane Control by Aeration. Dissertation for the Master Degree. Pennsylvania: The Pennsylvania State University, 2008
66 Sherant S R, Hardin Y D, Xie Y F. A simple technology for THM control in consecutive systems. In: Proceedings of the American Water Works Association Water Quality Technology Conference, 2007
67 Brooke E, Collins M R. Post treatment aeration to reduce THMs. Journal—American Water Works Association, 2011, 103(10): 84–96
68 Hozalski R M, Zhang L, Arnold W A. Reduction of haloacetic acids by Fe0: implications for treatment and fate. Environmental Science & Technology, 2001, 35(11): 2258–2263
https://doi.org/10.1021/es001785b pmid: 11414027
69 Zhang L, Arnold W A, Hozalski R M. Kinetics of haloacetic acid reactions with Fe(0). Environmental Science & Technology, 2004, 38(24): 6881–6889
https://doi.org/10.1021/es049267e pmid: 15669353
70 Pearson C R, Hozalski R M, Arnold W A. Degradation of chloropicrin in the presence of zero-valent iron. Environmental Toxicology and Chemistry, 2005, 24(12): 3037–3042
https://doi.org/10.1897/04-614Ra.1 pmid: 16445082
71 Chen C, Wang X, Chang Y, Liu H. Dechlorination of disinfection by-product monochloroacetic acid in drinking water by nanoscale palladized iron bimetallic particle. Journal of Environmental Sciences (China), 2008, 20(8): 945–951
https://doi.org/10.1016/S1001-0742(08)62191-9 pmid: 18817073
72 Li T, Chen Y, Wan P, Fan M, Yang X J. Chemical degradation of drinking water disinfection byproducts by millimeter-sized particles of iron-silicon and magnesium-aluminum alloys. Journal of the American Chemical Society, 2010, 132(8): 2500–2501
https://doi.org/10.1021/ja908821d pmid: 20143771
73 Wang X Y, Ning P, Liu H L, Ma J. Dechlorination of chloroacetic acids by Pd/Fe nanoparticles: Effect of dying method on metallic activity and the parameter optimization. Applied Catalysis B: Environmental, 2010, 94(1–2): 55–63
https://doi.org/10.1016/j.apcatb.2009.10.020
74 Tang S, Wang X M, Yang H W, Xie Y F. Haloacetic acid removal by sequential zero-valent iron reduction and biologically active carbon degradation. Chemosphere, 2013, 90(4): 1563–1567
https://doi.org/10.1016/j.chemosphere.2012.09.046 pmid: 23079162
75 Woo Y T, Lai D, McLain J L, Manibusan M K, Dellarco V. Use of mechanism-based structure-activity relationships analysis in carcinogenic potential ranking for drinking water disinfection by-products. Environmental Health Perspectives, 2002, 110(Suppl 1): 75–87
https://doi.org/10.1289/ehp.02110s175 pmid: 11834465
76 Cancho B, Ventura F, Galceran M, Diaz A, Ricart S. Determination, synthesis and survey of iodinated trihalomethanes in water treatment processes. Water Research, 2000, 34(13): 3380–3390
https://doi.org/10.1016/S0043-1354(00)00079-8
77 Chen P H, Richardson S D, Krasner S W, Majetich G, Glish G L. Hydrogen abstraction and decomposition of bromopicrin and other trihalogenated disinfection byproducts by GC/MS. Environmental Science & Technology, 2002, 36(15): 3362–3371
https://doi.org/10.1021/es0205582 pmid: 12188366
78 Wang C K, Zhang X J, Wang J, Chen C. Detecting N-nitrosamines in water treatment plants and distribution systems in China using ultra-performance liquid chromatography-tadenm mass spectrometry. Frontiers of Environmental Science & Engineering, 2012, 6(6): 770–777
79 Zhao Y Y, Boyd J, Hrudey S E, Li X F. Characterization of new nitrosamines in drinking water using liquid chromatography tandem mass spectrometry. Environmental Science & Technology, 2006, 40(24): 7636–7641
https://doi.org/10.1021/es061332s pmid: 17256506
80 Egorov A I, Tereschenko A A, Altshul L M, Vartiainen T, Samsonov D, LaBrecque B, M?ki-Paakkanen J, Drizhd N L, Ford T E. Exposures to drinking water chlorination by-products in a Russian city. International Journal of Hygiene and Environmental Health, 2003, 206(6): 539–551
https://doi.org/10.1078/1438-4639-00244 pmid: 14626901
81 Boyd J M, Hrudey S E, Richardson S D, Li X F. Solid-phase extraction and high-performance liquid chromatography mass spectrometry analysis of nitrosamines in treated drinking water and wastewater. Trace-Trends in Analytical Chemistry, 2011, 30(9): 1410–1421
https://doi.org/10.1016/j.trac.2011.06.009
82 Krasner S W, Mitch W A, McCurry D L, Hanigan D, Westerhoff P. Formation, precursors, control, and occurrence of nitrosamines in drinking water: a review. Water Research, 2013, 47(13): 4433–4450
https://doi.org/10.1016/j.watres.2013.04.050 pmid: 23764594
83 Zhao H, Liu H, Hu C, Qu J. Effect of aluminum speciation and structure characterization on preferential removal of disinfection byproduct precursors by aluminum hydroxide coagulation. Environmental Science & Technology, 2009, 43(13): 5067–5072
https://doi.org/10.1021/es8034347 pmid: 19673308
84 Uyak V, Yavuz S, Toroz I, Ozaydin A, Genceli E A. Disinfection by-products precursors removal by enhanced coagulation and PAC adsorption. Desalination, 2007, 216(1–3): 334–344
https://doi.org/10.1016/j.desal.2006.11.026
85 Hua G, Reckhow D A. Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size. Environmental Science & Technology, 2007, 41(9): 3309–3315
https://doi.org/10.1021/es062178c pmid: 17539542
86 Liang L, Singer P C. Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water. Environmental Science & Technology, 2003, 37(13): 2920–2928
https://doi.org/10.1021/es026230q pmid: 12875395
87 Ates N, Yilmaz L, Kitis M, Yetis U. Removal of disinfection by-product precursors by UF and NF membranes in low-SUVA waters. Journal of Membrane Science, 2009, 328(1–2): 104–112
https://doi.org/10.1016/j.memsci.2008.11.044
88 Chellam S. Effects of nanofiltration on trihalomethane and haloacetic acid precursor removal and speciation in waters containing low concentrations of bromide ion. Environmental Science & Technology, 2000, 34(9): 1813–1820
https://doi.org/10.1021/es991153t
89 Chellam S, Sharma R R, Shetty G R, Wei Y. Nanofiltration of pretreated Lake Houston water- Disinfection by-product speciation, relationships, and control. Separation and Purification Technology, 2008, 64(2): 160–169
https://doi.org/10.1016/j.seppur.2008.09.007
90 Harrison C J, Le Gouellec Y A, Cheng R C, Childress A E. Bench-scale testing of nanofiltration for seawater desalination. Journal of Environmental Engineering, 2007, 133(11): 1004–1014
https://doi.org/10.1061/(ASCE)0733-9372(2007)133:11(1004)
91 Wang C K, Zhang X J, Chen C, Wang J. Factors controlling N-nitrosodimethylamine (NDMA) formation from dissolved organic matter. Frontiers of Environmental Science & Engineering, 2013, 7(2): 151–157
https://doi.org/10.1007/s11783-013-0482-7
92 Park S H, Wei S, Mizaikoff B, Taylor A E, Favero C, Huang C H, Huang C H. Degradation of amine-based water treatment polymers during chloramination as N-nitrosodimethylamine (NDMA) precursors. Environmental Science & Technology, 2009, 43(5): 1360–1366
https://doi.org/10.1021/es802732z pmid: 19350904
93 Mitch W A, Sedlak D L. Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination. Environmental Science & Technology, 2002, 36(4): 588–595
https://doi.org/10.1021/es010684q pmid: 11878371
94 Kohut K D, Andrews S A. Polyelectrolyte age and N-nitrosodimethylamine formation in drinking water treatment. Water Quality Research Journal of Canada, 2003, 38(4): 719–735
95 Bichsel Y, von Gunten U. Formation of iodo-trihalomethanes during disinfection and oxidation of iodide containing waters. Environmental Science & Technology, 2000, 34(13): 2784–2791
https://doi.org/10.1021/es9914590
96 Richardson S D, Fasano F, Ellington J J, Crumley F G, Buettner K M, Evans J J, Blount B C, Silva L K, Waite T J, Luther G W, Mckague A B, Miltner R J, Wagner E D, Plewa M J. Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water. Environmental Science & Technology, 2008, 42(22): 8330–8338
https://doi.org/10.1021/es801169k pmid: 19068814
97 Chen Z, Valentine R L. The influence of the pre-oxidation of natural organic matter on the formation of N-nitrosodimethylamine (NDMA). Environmental Science & Technology, 2008, 42(14): 5062–5067
https://doi.org/10.1021/es8006673 pmid: 18754348
98 Shah A D, Krasner S W, Lee C F T, von Gunten U, Mitch W A. Trade-offs in disinfection byproduct formation associated with precursor preoxidation for control of N-nitrosodimethylamine formation. Environmental Science & Technology, 2012, 46(9): 4809–4818
https://doi.org/10.1021/es204717j pmid: 22463122
99 Padhye L, Luzinova Y, Cho M, Mizaikoff B, Kim J H, Huang C H. PolyDADMAC and dimethylamine as precursors of N-nitrosodimethylamine during ozonation: reaction kinetics and mechanisms. Environmental Science & Technology, 2011, 45(10): 4353–4359
https://doi.org/10.1021/es104255e pmid: 21504218
100 Hoigne J, Bader H. The formation of trichloronitromethane (chloropicrin) and chloroform in a combined ozonation chlorination treatment of drinking-water. Water Research, 1988, 22(3): 313–319
https://doi.org/10.1016/S0043-1354(88)90120-0
101 Bond T, Goslan E H, Parsons S A, Jefferson B. Treatment of disinfection by-product precursors. Environmental Technology, 2011, 32(1–2): 1–25
https://doi.org/10.1080/09593330.2010.495138 pmid: 21473265
102 Reckhow D A, Linden K G, Kim J, Shemer H, Makdissy G. Effect of UV treatment on DBP formation. Journal—American Water Works Association, 2010, 102(6): 100–113
103 Shah A D, Dotson A D, Linden K G, Mitch W A. Impact of UV disinfection combined with chlorination/chloramination on the formation of halonitromethanes and haloacetonitriles in drinking water. Environmental Science & Technology, 2011, 45(8): 3657–3664
https://doi.org/10.1021/es104240v pmid: 21417331
Related articles from Frontiers Journals
[1] Yang PAN,Xiangru ZHANG,Jianping ZHAI. Whole pictures of halogenated disinfection byproducts in tap water from China’s cities[J]. Front. Environ. Sci. Eng., 2015, 9(1): 121-130.
[2] Hsin-hsin TUNG, Yuefeng F. XIE. Evaluate HAA removal in biologically active carbon filters using the ICR database[J]. Front Envir Sci Eng Chin, 2011, 5(4): 489-496.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed