Please wait a minute...

Frontiers of Chemical Science and Engineering

Front. Chem. Sci. Eng.    2020, Vol. 14 Issue (6) : 1052-1064     https://doi.org/10.1007/s11705-019-1908-y
RESEARCH ARTICLE
Mechanism of methanol decomposition on the Pd/WC(0001) surface unveiled by first-principles calculations
Jinhua Zhang1,2, Yuanbin She1()
1. College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
2. School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, China
Download: PDF(1886 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, the decomposition of methanol into the CO and H species on the Pd/tungsten carbide (WC)(0001) surface is systematically investigated using periodic density functional theory (DFT) calculations. The possible reaction pathways and intermediates are determined. The results reveal that saturated molecules, i.e., methanol and formaldehyde, adsorb weakly on the Pd/ WC(0001) surface. Both CO and H prefer three-fold sites, with adsorption energies of −1.51 and −2.67 eV, respectively. On the other hand, CH3O stably binds at three-fold and bridge sites, with an adsorption energy of −2.58 eV. However, most of the other intermediates tend to adsorb to the surface with the carbon and oxygen atoms in their sp3 and hydroxyl-like configurations, respectively. Hence, the C atom of CH2OH preferentially attaches to the top sites, CHOH and CH2O adsorb at the bridge sites, while COH and CHO occupy the three-fold sites. The DFT calculations indicate that the rupture of the initial C–H bond promotes the decomposition of CH3OH and CH2OH, whereas in the case of CHOH, O–H bond scission is favored over the C–H bond rupture. Thus, the most probable methanol decomposition pathway on the Pd/WC(0001) surface is CH3OH → CH2OH → trans-CHOH → CHO → CO. The present study demonstrates that the synergistic effect of WC (as carrier) and Pd (as catalyst) alters the CH3OH decomposition pathway and reduces the noble metal utilization.

Keywords density functional theory      methanol      direct methanol fuel cells      WC(0001)-supported Pd monolayer      decomposition mechanism     
Corresponding Author(s): Yuanbin She   
Online First Date: 23 March 2020    Issue Date: 11 September 2020
 Cite this article:   
Jinhua Zhang,Yuanbin She. Mechanism of methanol decomposition on the Pd/WC(0001) surface unveiled by first-principles calculations[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1052-1064.
 URL:  
http://journal.hep.com.cn/fcse/EN/10.1007/s11705-019-1908-y
http://journal.hep.com.cn/fcse/EN/Y2020/V14/I6/1052
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jinhua Zhang
Yuanbin She
Species Adsorption site Configuration Bond length/Å Eads/eV
CH3OH top O-bound 2.36 (O–Pd) ?0.79
CH3O fcc O-bound 2.30 (O–Pd) ?2.58
CH2OH bridge O-bound
C-bound
2.39 (O–Pd)
2.13 (C–Pd)
?2.09
CH2O top C-bound 2.15 (C–Pd) ?0.96
trans-CHOH bridge C-bound 2.12 (O–Pd) ?2.91
cis-CHOH bridge C-bound 2.02 (O–Pd) ?2.85
CHO bridge C-bound 2.04 (C–Pd) ?2.26
COH fcc C-bound 2.05 (C–Pd) ?3.59
CO fcc C-bound 2.21 (C–Pd) ?1.51
H2O top O-bound 2.36 (O–Pd) ?0.60
OH fcc O-bound 2.29 (O–Pd) ?3.15
H fcc H-bound 1.92 (H–Pd) ?2.67
Tab.1  Most stable adsorption sites, adsorption energies and key structural parameters of different intermediates of CH3OH decomposition on the Pd/WC(0001) surface
Fig.1  Structures and electronic distributions of methanol decomposition intermediates on the Pd/WC(0001) surface. The upper part of each panel shows a top view of the most stable adsorption configuration of the different reaction intermediates (with side views shown in the top-right corner) involved in the CH3OH decomposition on Pd/WC(0001), whereas the bottom part displays a side view of the electron density difference map of the corresponding intermediate. Red, orange, blue, gray and white spheres represent O, Pd, W, C and H atoms, respectively.
Fig.2  Top views of the most stable co-adsorption structures for CH3OH decomposition on the Pd/WC(0001) surface, with side views displayed in the top-right corner of each panel (top). Side views of electron density difference maps of the corresponding co-adsorption structures (bottom).
Species Corresponding adsorption sites Ecoads /eV
CH3O+ H fcc+ fcc ?4.72
CH2OH+ H bridge+ fcc ?4.56
CH2O+ H top+ fcc ?3.59
trans-CHOH+ H bridge+ fcc ?5.47
cis-CHOH+ H bridge+ fcc ?5.31
CO+ H fcc+ fcc ?4.18
HCO+ OH bridge+ fcc ?5.34
CHO+ H fcc+ fcc ?4.83
COH+ H fcc+ fcc ?6.09
Tab.2  Most stable co-adsorption structures and corresponding co-adsorption energies for CH3OH decomposition on the Pd/WC(0001) surface
Fig.3  Structures and electronic distributions of TS formed during methanol decomposition on the Pd/WC(0001) surface. The upper panels of each figure represent top views of the TS structure during the CH3OH decomposition reaction on Pd/WC(0001), with side views displayed in the top-right corner of each panel. The bottom panels of each figure show side views of the corresponding electron density difference map.
Reaction Label TS Eb/eV DH/eV
CH3OH → CH3O+ H R1 TS1 1.35 0.61
CH3OH → CH2OH+ H R2 TS2 1.07 0.52
CH3OH → CH3 + OH R3 TS3 1.73 ?0.05
CH2OH → trans-CHOH+ H R4 TS4 0.99 0.51
CH2OH → cis-CHOH+ H R5 TS5 1.06 0.81
CH2OH → CH2O+ H R6 TS6 1.13 0.03
CH3O → CH2O+ H R7 TS7 0.80 0.24
CH2O → CHO+ H R8 TS8 0.55 0.12
trans-CHOH → cis-CHOH R9 TS9 0.27 0.06
trans-CHOH → COH+ H R10 TS10 0.83 0.18
trans-CHOH → CHO+ H R11 TS11 0.81 ?0.43
cis-CHOH → COH+ H R12 TS12 0.85 0.11
cis-CHOH → CHO+ H R13 TS13 0.64 ?0.50
COH → CO+ H R14 TS14 1.06 ?1.31
CHO+ OH → CO+ H2O R15 TS15 0.23 ?1.05
Tab.3  Energy barrier and reaction energy for CH3OH decomposition on the Pd/WC(0001) surface
Fig.4  Reaction network of CH3OH decomposition on Pd/WC(0001) surface; the proposed reaction pathway is marked with red arrows.
Fig.5  Potential energy profiles for CH3OH and CH2OH decomposition on the Pd/WC(0001) surface.
Fig.6  Potential energy profiles for CH3O, CH2O, and CHOH decomposition on the Pd/WC(0001) surface.
1 J C C Gomez, R Moliner, M J Lazaro. Palladium-based catalysts as electrodes for direct methanol fuel cells: A last ten years review. Catalysts, 2016, 6(9): 1–20
2 H Y Lian, X S Li, J L Liu, A M Zhu. Methanol steam reforming by heat-insulated warm plasma catalysis for efficient hydrogen production. Catalysis Today, 2019, 337: 76–82
https://doi.org/10.1016/j.cattod.2019.03.068
3 R Garcia-Muelas, Q Li, N Lopez. Density functional theory comparison of methanol decomposition and reverse reactions on metal surfaces. ACS Catalysis, 2015, 5(2): 1027–1036
https://doi.org/10.1021/cs501698w
4 Z Jiang, B Wang, T Fang. A theoretical study on the complete dehydrogenation of methanol on Pd (100) surface. Applied Surface Science, 2016, 364: 613–619
https://doi.org/10.1016/j.apsusc.2015.12.204
5 X Q Lu, W L Wang, Z G Deng, H Y Zhu, S X Wei, S P Ng, W Y Guo, C M L Wu. Methanol oxidation on Ru(0001) for direct methanol fuel cells: Analysis of the competitive reaction mechanism. RSC Advances, 2016, 6(3): 1729–1737
https://doi.org/10.1039/C5RA21793H
6 M Zhang, X Wu, Y Yu. A comparative DFT study on the dehydrogenation of methanol on Rh(100) and Rh(110). Applied Surface Science, 2018, 436: 268–276
https://doi.org/10.1016/j.apsusc.2017.12.040
7 K C Shen, C G Jia, B X Cao, H Xu, J Wang, L C Zhang, K Kim, W M Wang. Comparison of catalytic activity between Au(110) and Au(111) for the electro-oxidation of methanol and formic acid: Experiment and density functional theory calculation. Electrochimica Acta, 2017, 256: 129–138
https://doi.org/10.1016/j.electacta.2017.10.026
8 Z Jiang, S Y Guo, T Fang. Theoretical investigation on the dehydrogenation mechanism of CH3OH on Cu(100) surface. Journal of Alloys and Compounds, 2017, 698: 617–625
https://doi.org/10.1016/j.jallcom.2016.12.220
9 L N Liu, H D Yao, Z Jiang, T Fang. Theoretical study of methanol synthesis from CO2 hydrogenation on PdCu3(111) surface. Applied Surface Science, 2018, 451: 333–345
https://doi.org/10.1016/j.apsusc.2018.04.128
10 P Du, P Wu, C X Cai. Mechanism of methanol decomposition on the Pt3Ni(111) surface: DFT study. Journal of Physical Chemistry C, 2017, 121(17): 9348–9360
https://doi.org/10.1021/acs.jpcc.7b01114
11 L N Liu, F Fan, M M Bai, F Xue, X R Ma, Z Jiang, T Fang. Mechanistic study of methanol synthesis from CO2 hydrogenation on Rh-doped Cu(111) surfaces. Molecular Catalysis, 2019, 466: 26–36
https://doi.org/10.1016/j.mcat.2019.01.009
12 L H Ou. Theoretical insights into the effect of solvation and sublayer Ru on Pt-catalytic CH3OH oxidation mechanisms in the aqueous phase. Journal of Physical Chemistry C, 2018, 122(26): 14554–14565
https://doi.org/10.1021/acs.jpcc.8b03010
13 X Jiang, X W Nie, X X Wang, H Z Wang, N Koizumi, Y G Chen, X W Guo, C S Song. Origin of Pd-Cu bimetallic effect for synergetic promotion of methanol formation from CO2 hydrogenation. Journal of Catalysis, 2019, 369: 21–32
https://doi.org/10.1016/j.jcat.2018.10.001
14 J Y Ye, C J Liu, Q F Ge. A DFT study of methanol dehydrogenation on the PdIn(110) surface. Physical Chemistry Chemical Physics, 2012, 14(48): 16660–16667
https://doi.org/10.1039/c2cp42183f
15 J H Meng, A M Carl, M B Zellner, J G Chen. Effects of bimetallic modification on the decomposition of CH3OH and H2O on Pt/W(110) bimetallic surfaces. Surface Science, 2010, 604(21-22): 1845–1853
https://doi.org/10.1016/j.susc.2010.07.015
16 J Y Damte, S L Lyu, E G Leggesse, J C Jiang. Methanol decomposition reactions over a boron-doped graphene supported Ru-Pt catalyst. Physical Chemistry Chemical Physics, 2018, 20(14): 9355–9363
https://doi.org/10.1039/C7CP07618E
17 A D Allian, K Takanabe, K L Fujdala, X Hao, T J Truex, J Cai, C Buda, M Neurock, E Iglesia. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters. Journal of the American Chemical Society, 2011, 133(12): 4498–4517
https://doi.org/10.1021/ja110073u
18 Y B Lu, J M Wang, L Yu, L Kovarik, X W Zhang, A S Hoffman, A Gallo, S R Bare, D Sokaras, T Kroll, V Dagle, H Xin, A M Karim. Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nature Catalysis, 2019, 2(2): 149–156
https://doi.org/10.1038/s41929-018-0192-4
19 M Kubler, T Jurzinsky, D Ziegenbalg, C Cremers. Methanol oxidation reaction on core-shell structured Ruthenium-Palladium nanoparticles: Relationship between structure and electrochemical behavior. Journal of Power Sources, 2018, 375: 320–334
https://doi.org/10.1016/j.jpowsour.2017.07.114
20 L M Luo, R H Zhang, D Chen, Q Y Hu, X Zhang, C Y Yang, X W Zhou. Hydrothermal synthesis of PdAu nanocatalysts with variable atom ratio for methanol oxidation. Electrochimica Acta, 2018, 259: 284–292
https://doi.org/10.1016/j.electacta.2017.10.177
21 M G Hosseini, R Mahmoodi, V Daneshvari-Esfahlan. Ni@Pd core-shell nanostructure supported on multi-walled carbon nanotubes as efficient anode nanocatalysts for direct methanol fuel cells with membrane electrode assembly prepared by catalyst coated membrane method. Energy, 2018, 161: 1074–1084
https://doi.org/10.1016/j.energy.2018.07.148
22 T Jurzinsky, R Bar, C Cremers, J Tubke, P Elsner. Highly active carbon supported palladium-rhodium PdXRh/C catalysts for methanol electrooxidation in alkaline media and their performance in anion exchange direct methanol fuel cells. Electrochimica Acta, 2015, 176: 1191–1201
https://doi.org/10.1016/j.electacta.2015.07.176
23 L N Liu, F Fan, Z Jiang, X F Gao, J J Wei, T Fang. Mechanistic study of Pd‒Cu bimetallic catalysts for methanol synthesis from CO2 hydrogenation. Journal of Physical Chemistry C, 2017, 121(47): 26287–26299
https://doi.org/10.1021/acs.jpcc.7b06166
24 P P Wu, B Yang. Theoretical insights into the promotion effect of subsurface boron for the selective hydrogenation of CO to methanol over Pd catalysts. Physical Chemistry Chemical Physics, 2016, 18(31): 21720–21729
https://doi.org/10.1039/C6CP02735K
25 X Jiang, Y Jiao, C Moran, X W Nie, Y T Gong, X W Guo, K S Walton, C S Song. CO2 hydrogenation to methanol on Pd‒Cu bimetallic catalysts with lower metal loadings. Catalysis Communications, 2019, 118: 10–14
https://doi.org/10.1016/j.catcom.2018.09.006
26 L Lu, X F Sun, J Ma, D X Yang, H H Wu, B X Zhang, J L Zhang, B X Han. Highly efficient electroreduction of CO2 to methanol on palladium-copper bimetallic aerogels. Angewandte Chemie International Edition, 2018, 57(43): 14149–14153
https://doi.org/10.1002/anie.201808964
27 X Liu, Y Men, J G Wang, R He, Y Q Wang. Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming. Journal of Power Sources, 2017, 364: 341–350
https://doi.org/10.1016/j.jpowsour.2017.08.043
28 N Kruse, M Rebholz, V Matolin, G K Chuah, J H Block. Methanol decomposition on Pd(111) single-crystal surfaces. Surface Science, 1990, 238(1-3): L457–L462
https://doi.org/10.1016/0039-6028(90)90054-C
29 R Jiang, W Guo, M Li, D Fu, H Shan. Density functional investigation of methanol dehydrogenation on Pd(111). Journal of Physical Chemistry C, 2009, 113(10): 4188–4197
https://doi.org/10.1021/jp810811b
30 V M Nikolic, D L Zugic, I M Perovic, A B Saponjic, B M Babic, I A Pasti, M P M Kaninski. Investigation of tungsten carbide supported Pd or Pt as anode catalysts for PEM fuel cells. International Journal of Hydrogen Energy, 2013, 38(26): 11340–11345
https://doi.org/10.1016/j.ijhydene.2013.06.094
31 D D Vasic, I A Pasti, S V Mentus. DFT study of platinum and palladium overlayers on tungsten carbide: Structure and electrocatalytic activity toward hydrogen oxidation/evolution reaction. International Journal of Hydrogen Energy, 2013, 38(12): 5009–5018
https://doi.org/10.1016/j.ijhydene.2013.02.020
32 N R Elezovic, P Zabinski, P Ercius, M Wytrwal, V R Radmilovic, U C Lacnjevac, N V Krstajic. High surface area Pd nanocatalyst on core-shell tungsten based support as a beneficial catalyst for low temperature fuel cells application. Electrochimica Acta, 2017, 247: 674–684
https://doi.org/10.1016/j.electacta.2017.07.066
33 J S Moon, Y W Lee, S B Han, K W Park. Pd nanoparticles on mesoporous tungsten carbide as a non-Pt electrocatalyst for methanol electrooxidation reaction in alkaline solution. International Journal of Hydrogen Energy, 2014, 39(15): 7798–7804
https://doi.org/10.1016/j.ijhydene.2014.03.154
34 Q Zhang, Z J Mellinger, Z Jiang, X Chen, B Wang, B Y Tian, Z X Liang, J G G Chen. Palladium-modified tungsten carbide for ethanol electrooxidation: From surface science studies to electrochemical evaluation. Journal of the Electrochemical Society, 2018, 165(15): J3031–J3038
https://doi.org/10.1149/2.0061815jes
35 H Y Park, I S Park, B Choi, K S Lee, T Y Jeon, Y E Sung, S J Yoo. Pd nanocrystals on WC as a synergistic electrocatalyst for hydrogen oxidation reactions. Physical Chemistry Chemical Physics, 2013, 15(6): 2125–2130
https://doi.org/10.1039/c2cp43262e
36 Z J Mellinger, T G Kelly, J G Chen. Pd-modified tungsten carbide for methanol electro-oxidation: From surface science studies to electrochemical evaluation. ACS Catalysis, 2012, 2(5): 751–758
https://doi.org/10.1021/cs200620x
37 B Delley. From molecules to solids with the DMol(3) approach. Journal of Chemical Physics, 2000, 113(18): 7756–7764
https://doi.org/10.1063/1.1316015
38 J P Perdew, K Burke, M Ernzerhof. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868
https://doi.org/10.1103/PhysRevLett.77.3865
39 X Wang, L Chen, B Li. A density functional theory study of methanol dehydrogenation on the PtPd3(111) surface. International Journal of Hydrogen Energy, 2015, 40(31): 9656–9669
https://doi.org/10.1016/j.ijhydene.2015.06.028
40 M Zhang, X Wu, Y Yu. A comparative DFT study on the dehydrogenation of methanol on Rh(100) and Rh(110). Applied Surface Science, 2018, 436: 268–276
https://doi.org/10.1016/j.apsusc.2017.12.040
41 V Orazi, P Bechthold, P V Jasen, R Faccio, M E Pronsato, E A González. DFT study of methanol adsorption on PtCo(111). Applied Surface Science, 2017, 420: 383–389
https://doi.org/10.1016/j.apsusc.2017.05.159
42 D R Lide. CRC Handbook of chemistry and physics: A ready-reference book of chemical and physical data. CRC Press, 2004, 152–155
43 X Zhang, Z Lu, Z Yang. A comparison study of oxygen reduction on the supported Pt, Pd, Au monolayer on WC(0001). Journal of Power Sources, 2016, 321: 163–173
https://doi.org/10.1016/j.jpowsour.2016.04.135
44 H Y Park, I S Park, B Choi, K S Lee, T Y Jeon, Y E Sung, S J Yoo. Pd nanocrystals on WC as a synergistic electrocatalyst for hydrogen oxidation reactions. Physical Chemistry Chemical Physics, 2013, 15(6): 2125–2130
https://doi.org/10.1039/c2cp43262e
45 J Miragliotta, R S Polizzotti, P Rabinowitz, S D Cameron, R B Hall. Ir-visible sum-frequency generation study of methanol adsorption and reaction on Ni(100). Chemical Physics, 1990, 143(1): 123–130
https://doi.org/10.1016/0301-0104(90)85012-L
46 C J Zhang, P Hu. A first principles study of methanol decomposition on Pd(111): Mechanisms for O–H bond scission and C–O bond scission. Journal of Chemical Physics, 2001, 115(15): 7182–7186
https://doi.org/10.1063/1.1405157
47 S K Desai, M Neurock, K Kourtakis. A periodic density functional theory study of the dehydrogenation of methanol over Pt(111). Journal of Physical Chemistry B, 2002, 106(10): 2559–2568
https://doi.org/10.1021/jp0132984
48 J A Gates, L L Kesmodel. Methanol adsorption and decomposition on clean and oxygen precovered palladium (111). Journal of Catalysis, 1983, 83(2): 437–445
https://doi.org/10.1016/0021-9517(83)90068-4
49 H Yang, J L Whitten. Adsorption of formyl on Ni(100). Langmuir, 1995, 11(3): 853–859
https://doi.org/10.1021/la00003a029
50 J J Chen, Z C Jiang, Y Zhou, B R Chakraborty, N Winograd. Spectroscopic studies of methanol decomposition on Pd(111). Surface Science, 1995, 328(3): 248–262
https://doi.org/10.1016/0039-6028(95)00007-0
51 R J Levis, Z C Jiang, N Winograd. Thermal-decomposition of CH3OH adsorbed on Pd(111)—a new reaction pathway involving CH3 formation. Journal of the American Chemical Society, 1989, 111: 4605–4612
https://doi.org/10.1021/ja00195a013
52 I N Remediakis, F Abild-Pedersen, J K Norskov. DFT study of formaldehyde and methanol synthesis from CO and H2 on Ni(111). Journal of Physical Chemistry B, 2004, 108(38): 14535–14540
https://doi.org/10.1021/jp0493374
53 J Kua, W A Goddard. Oxidation of methanol on 2nd and 3rd row Group VIII transition metals (Pt, Ir, Os, Pd, Rh and Ru): Application to direct methanol fuel cells. Journal of the American Chemical Society, 1999, 121(47): 10928–10941
https://doi.org/10.1021/ja9844074
54 R B Jiang, W Y Guo, M Li, X Q Lu, J Y Yuan, H H Shan. Dehydrogenation of methanol on Pd(100): Comparison with the results of Pd(111). Physical Chemistry Chemical Physics, 2010, 12(28): 7794–7803
https://doi.org/10.1039/b927050g
55 T E Felter, E C Sowa, M A Vanhove. Location of hydrogen adsorbed on palladium(111) studied by low-energy electron-diffraction. Physical Review. B, 1989, 40(2): 891–899
https://doi.org/10.1103/PhysRevB.40.891
Related articles from Frontiers Journals
[1] Shumei Wei, Yarong Xu, Zhaoyang Jin, Xuedong Zhu. Co-conversion of methanol and n-hexane into aromatics using intergrown ZSM-5/ZSM-11 as a catalyst[J]. Front. Chem. Sci. Eng., 2020, 14(5): 783-792.
[2] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
[3] Yuehua Fang, Fan Yang, Xuan He, Xuedong Zhu. Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application in methanol aromatization[J]. Front. Chem. Sci. Eng., 2019, 13(3): 543-553.
[4] Andreja Nemet, Jiří J. Klemeš, Zdravko Kravanja. Process synthesis with simultaneous consideration of inherent safety-inherent risk footprint[J]. Front. Chem. Sci. Eng., 2018, 12(4): 745-762.
[5] Dali Cai, Yu Cui, Zhao Jia, Yao Wang, Fei Wei. High-precision diffusion measurement of ethane and propane over SAPO-34 zeolites for methanol-to-olefin process[J]. Front. Chem. Sci. Eng., 2018, 12(1): 77-82.
[6] German Sastre. Confinement effects in methanol to olefins catalysed by zeolites: A computational review[J]. Front. Chem. Sci. Eng., 2016, 10(1): 76-89.
[7] Zhenhao Wei,Tengfei Xia,Minghui Liu,Qingsheng Cao,Yarong Xu,Kake Zhu,Xuedong Zhu. Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration[J]. Front. Chem. Sci. Eng., 2015, 9(4): 450-460.
[8] Mehdi SEDIGHI,Kamyar KEYVANLOO. Kinetic study of the methanol to olefin process on a SAPO-34 catalyst[J]. Front. Chem. Sci. Eng., 2014, 8(3): 306-311.
[9] Paramasivan GOMATHISANKAR,Tomoko NODA,Hideyuki KATSUMATA,Tohru SUZUKI,Satoshi KANECO. Enhanced hydrogen production from aqueous methanol solution using TiO2/Cu as photocatalysts[J]. Front. Chem. Sci. Eng., 2014, 8(2): 197-202.
[10] Jorge MEDINA-VALTIERRA, Jorge RAMIREZ-ORTIZ. Biodiesel production from waste frying oil in sub- and supercritical methanol on a zeolite Y solid acid catalyst[J]. Front Chem Sci Eng, 2013, 7(4): 401-407.
[11] Xinmei LIU, Shaofen BAI, Huidong ZHUANG, Zifeng YAN. Preparation of Cu/ZrO2 catalysts for methanol synthesis from CO2/H2[J]. Front Chem Sci Eng, 2012, 6(1): 47-52.
[12] Baowei WANG, Xu ZHANG, Haiying BAI, Yijun Lü, Shuanghui HU. Hydrogen production from methanol through dielectric barrier discharge[J]. Front Chem Sci Eng, 2011, 5(2): 209-214.
[13] Xiaomeng WANG, Mingjuan HAN, Hui WAN, Cao YANG, Guofeng GUAN. Study on extraction of thiophene from model gasoline with br?nsted acidic ionic liquids[J]. Front Chem Sci Eng, 2011, 5(1): 107-112.
[14] Qian WANG, Lei WANG, Hui WANG, Zengxi LI, Xiangping ZHANG, Suojiang ZHANG, Kebin ZHOU. Effect of SiO2/Al2O3 ratio on the conversion of methanol to olefins over molecular sieve catalysts[J]. Front Chem Sci Eng, 2011, 5(1): 79-88.
[15] Guoqiang ZHANG, Lin GAO, Hongguang JIN, Rumou LIN, Sheng LI. Sensitivity analysis of a methanol and power polygeneration system fueled with coke oven gas and coal gas[J]. Front Chem Eng Chin, 2010, 4(4): 491-497.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed