Please wait a minute...

Frontiers of Chemical Science and Engineering

Front Chem Sci Eng    2011, Vol. 5 Issue (3) : 392-400     DOI: 10.1007/s11705-011-1202-0
RESEARCH ARTICLE |
Hemocompatible polyurethane/gelatin-heparin nanofibrous scaffolds formed by a bi-layer electrospinning technique as potential artificial blood vessels
Heyun WANG1, Yakai FENG1,2, Marc BEHL2,3, Andreas LENDLEIN2,3, Haiyang ZHAO1, Ruofang XIAO1, Jian LU1, Li ZHANG1, Jintang GUO1,2()
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; 2. Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072, China; Kantstr. 55, 14513 Teltow, Germany; 3. Helmholtz-Zentrum Geesthacht, Center for Biomaterial Development and Berlin Brandenburg Center for Regenerative Therapies (BCRT), Institute of Polymer Research, Kantstr. 55, 14513 Teltow, Germany
Download: PDF(512 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, a scaffold, which mimics the morphology and mechanical properties of a native blood vessel is reported. The scaffold was prepared by sequential bi-layer electrospinning on a rotating mandrel-type collector. The tubular scaffolds (inner diameter 4 mm, length 3 cm) are composed of a polyurethane (PU) fibrous outer-layer and a gelatin-heparin fibrous inner-layer. They were fabricated by electrospinning technology, which enables control of the composition, structure, and mechanical properties of the scaffolds. The microstructure, fiber morphology and mechanical properties of the scaffolds were examined by means of scanning electron microscopy (SEM) and tensile tests. The PU/gelatin-heparin tubular scaffolds have a porous structure. The scaffolds achieved a breaking strength (3.7±0.13 MPa) and an elongation at break (110±8%) that are appropriate for artificial blood vessels. When the scaffolds were immersed in water for 1 h, the breaking strength decreased slightly to 2.2±0.3 MPa, but the elongation at break increased to 145±21%. In platelet adhesion tests the gelatin-heparin fibrous scaffolds showed a significant suppression of platelet adhesion. Heparin was released from the scaffolds at a fairly uniform rate during the period of 2nd day to 9th day. The scaffolds are expected to mimic the complex matrix structure of native arteries, and to have good biocompatibility as an artificial blood vessel owing to the heparin release.

Keywords electrospinning      artificial blood vessels      scaffold      polyurethane      gelatin      nanofiber      hemocompatibility     
Corresponding Authors: GUO Jintang,Email:yakaifeng@tju.edu.cn   
Issue Date: 05 September 2011
 Cite this article:   
Heyun WANG,Yakai FENG,Marc BEHL, et al. Hemocompatible polyurethane/gelatin-heparin nanofibrous scaffolds formed by a bi-layer electrospinning technique as potential artificial blood vessels[J]. Front Chem Sci Eng, 2011, 5(3): 392-400.
 URL:  
http://journal.hep.com.cn/fcse/EN/10.1007/s11705-011-1202-0
http://journal.hep.com.cn/fcse/EN/Y2011/V5/I3/392
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Heyun WANG
Yakai FENG
Marc BEHL
Andreas LENDLEIN
Haiyang ZHAO
Ruofang XIAO
Jian LU
Li ZHANG
Jintang GUO
Fig.1  Schematic illustration of the electrospinning equipment
Heparin content /wt-%Properties of gelatin-heparin solutionsFiber diameter /nm
Viscosity /mPa·sConductivity /μs·cm-1Surface tension /mN·m-1
030015028.4440±180
1105129029.2140±30
353143029.7130±60
540149030.0190±30
Tab.1  Effect of heparin content on the properties of gelatin/heparin solutions and the diameter of electrospun gelatin-heparin fibers
Fig.2  SEM images of gelatin fibers, gelatin-heparin blended fibers and crosslinked gelatin-heparin fibers (a) gelatin fibers; (b) gelatin-heparin blended fibers with 1 wt-% heparin; (c) with 3 wt-% heparin; (d) with 5 wt-% heparin; (e) crosslinked gelatin-heparin fibers with 1 wt-% heparin
Fig.3  The weight loss of uncrosslinked and crosslinked gelatin-heparin fibrous scaffolds (heparin, 1 wt-%) in vitro at 37°C for 14 days ( = 3) □: uncrosslinked gelatin-heparin fibrous scaffolds; ○: crosslinked gelatin-heparin fibrous scaffolds
Fig.4  Macroscopic view and SEM images of the PU/gelatin-heparin tubular scaffolds (a) and( b) photos of the tubular scaffolds; (c) and (d) photos of the cross section of the tubular scaffolds; (e) SEM image of gelatin-heparin (inner-layer of scaffold, heparin 1 wt-%); (f) SEM image of PU (outer-layer of scaffold)
Scaffold IDStress at break /MPaElongation at break /%Elastic modulus /MPa
Gelatin-heparin2.8±0.219±3122±18
PU10±1400±200.9±0.01
PU/gelatin-heparin3.7±0.1110±82±1
Gelatin-heparin (wetted)0.7±0.178±71.2±0.2
PU (wetted)8.4±0.2418±351.4±0.2
PU/gelatin-heparin (wetted)2.2±0.3145±211.2±0.2
Tab.2  Mechanical properties of electrospun scaffolds (heparin, 1 wt-%)
Fig.5  The heparin release curve of gelatin-heparin fibrous scaffolds in PBS at 37°C (heparin, 1 wt-%)
Fig.6  SEM images of platelet adhesion on fibrous scaffolds (a) PU scaffold; (b) crosslinked gelatin scaffold; (c) crosslinked gelatin-heparin scaffold (heparin, 1 wt-%)
1 Barron V, Lyons E, Stenson-Cox C, McHugh P E, Pandit A. Bioreactors for cardiovascular cell and tissue growth: a review. Annals of Biomedical Engineering , 2003, 31(9): 1017–1030
doi: 10.1114/1.1603260
2 Hoenig M R, Campbell G R, Rolfe B E, Campbell J H. Tissue-engineered blood vessels: alternative to autologous grafts? Arteriosclerosis, Thrombosis, and Vascular Biology , 2005, 25(6): 1128–1134
doi: 10.1161/01.ATV.0000158996.03867.72
3 Tiwari A, Salacinski H J, Punshon G, Hamilton G, Seifalian A M. Development of a hybrid cardiovascular graft using a tissue engineering approach. The FASEB Journal , 2002, 16(8): 791–796
doi: 10.1096/fj.01-0826com
4 Jeong S I, Kim S Y, Cho S K, Chong M S, Kim K S, Kim H, Lee S B, Lee Y M. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Biomaterials , 2007, 28(6): 1115–1122
doi: 10.1016/j.biomaterials.2006.10.025
5 Buttafoco L, Engbers-Buijtenhuijs P, Poot A A, Dijkstra P J, Vermes I, Feijen J. Physical characterization of vascular grafts cultured in a bioreactor. Biomaterials , 2006, 27(11): 2380–2389
doi: 10.1016/j.biomaterials.2005.10.017
6 Couet F, Rajan N, Mantovani D. Macromolecular biomaterials for scaffold-based vascular tissue engineering. Macromolecular Bioscience , 2007, 7(5): 701–718
doi: 10.1002/mabi.200700002
7 Jung F, Wischke C, Lendlein A. Degradable, multifunctional cardiovascular implants: challenges and hurdles. MRS Bulletin , 2010, 35(08): 607–613
doi: 10.1557/mrs2010.529
8 Baguneid M S, Seifalian A M, Salacinski H J, Murray D, Hamilton G, Walker M G. Tissue engineering of blood vessels. The British Journal of Surgery , 2006, 93(3): 282–290
doi: 10.1002/bjs.5256
9 Ko J H, Yin H, An J, Chung D J, Kim J H, Lee S B, Pyun D G. Characterization of cross-linked gelatin nanofibers through electrospinning. Macromolecular Research, 2010, 18(2): 137–143
doi: 10.1007/s13233-009-0103-2
10 Feng Y K, Meng F R, Xiao R F, Zhao H Y, Guo J T. Electrospinning of polycarbonate urethane biomaterials. Frontiers of Chemical Science and Engineering , 2011, 5(1): 11–18
doi: 10.1007/s11705-010-1011-x
11 Kidoaki S, Kwon I K, Matsuda T. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials , 2005, 26(1): 37–46
doi: 10.1016/j.biomaterials.2004.01.063
12 Thomas V, Dean D R, Jose M V, Mathew B, Chowdhury S, Vohra Y K. Nanostructured biocomposite scaffolds based on collagen coelectrospun with nanohydroxyapatite. Biomacromolecules , 2007, 8(2): 631–637
doi: 10.1021/bm060879w
13 Thomas V, Zhang X, Vohra Y K. A biomimetic tubular scaffold with spatially designed nanofibers of protein/PDS bio-blends. Biotechnology and Bioengineering , 2009, 104(5): 1025–1033
doi: 10.1002/bit.22467
14 Thomas V, Zhang X, Catledge S A, Vohra Y K. Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration. Biomedical Materials (Bristol, England) , 2007, 2(4): 224–232
doi: 10.1088/1748-6041/2/4/004
15 Zhang S, Feng Y, Zhang L, Guo J, Xu Y. Biodegradable polyesterurethane networks for controlled release of aspirin. Journal of Applied Polymer Science , 2010, 116(2): 861–867
16 Feng Y, Xue Y, Guo J, Cheng L, Jiao L, Zhang Y, Yue J. Synthesis and characterization of Poly(carbonate urethane) networks with shape-memory properties. Journal of Applied Polymer Science , 2009, 112(1): 473–478
doi: 10.1002/app.29426
17 Ma Z, Kotaki M, Inai R, Ramakrishna S. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Engineering , 2005, 11(1-2): 101–109
doi: 10.1089/ten.2005.11.101
18 Koh H S, Yong T, Chan C K, Ramakrishna S. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials , 2008, 29(26): 3574–3582
doi: 10.1016/j.biomaterials.2008.05.014
19 Lee K Y, Jeong L, Kang Y O, Lee S J, Park W H. Electrospinning of polysaccharides for regenerative medicine. Advanced Drug Delivery Reviews , 2009, 61(12): 1020–1032
doi: 10.1016/j.addr.2009.07.006
20 Luong-Van E, Gr?ndahl L, Chua K N, Leong K W, Nurcombe V, Cool S M. Controlled release of heparin from poly(?-caprolactone) electrospun fibers. Biomaterials , 2006, 27(9): 2042–2050
doi: 10.1016/j.biomaterials.2005.10.028
21 Smith P K, Mallia A K, Hermanson G T. Colorimetric method for the assay of heparin content in immobilized heparin preparations. Analytical Biochemistry , 1980, 109(2): 466–473
doi: 10.1016/0003-2697(80)90679-X
22 Courtney T, Sacks M S, Stankus J, Guan J J, Wagner W R. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials , 2006, 27(19): 3631–3638
23 Fong H, Chun I, Reneker D H. Beaded nanofibers formed during electrospinning. Polymer , 1999, 40(16): 4585–4592
doi: 10.1016/S0032-3861(99)00068-3
24 Zong X, Kim K, Fang D, Ran S, Hsiao B S, Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer , 2002, 43(16): 4403–4412
doi: 10.1016/S0032-3861(02)00275-6
25 Huang Z M, Zhang Y Z, Ramakrishna S, Lim C T. Electrospinning and mechanical characterization of gelatin nanofibers. Polymer , 2004, 45(15): 5361–5368
doi: 10.1016/j.polymer.2004.04.005
26 Clowes A W, Clowes M M. Kinetics of cellular proliferation after arterial injury. II. Inhibition of smooth muscle growth by heparin. Lab Invest , 1985, 52(6): 611–616
27 Kannan R Y, Salacinski H J, Butler P E, Hamilton G, Seifalian A M. Current status of prosthetic bypass grafts: a review. Journal of biomedical materials research. Part B: Applied Biomaterials, 2005, 74B(1): 570–581
doi: 10.1002/jbm.b.30247
28 Kuchulakanti P K, Chu W W, Torguson R, Ohlmann P, Rha S W, Clavijo L C, Kim S W, Bui A, Gevorkian N, Xue Z Y, Smith K, Fournadjieva J, Suddath W O, Satler L F, Pichard A D, Kent K M, Waksman R. Correlates and long-term outcomes of angiographically proven stent thrombosis with sirolimus- and paclitaxel-eluting stents. Circulation , 2006, 113(8): 1108–1113
doi: 10.1161/CIRCULATIONAHA.105.600155
29 Zeng J, Chen X, Xu X, Liang Q, Bian X, Yang L, Jing X. Ultrafine fibers electrospun from biodegradable polymers. Journal of Applied Polymer Science , 2003, 89(4): 1085–1092
doi: 10.1002/app.12260
Related articles from Frontiers Journals
[1] Juichen YANG,Hong CHEN,Yuan YUAN,Debanjan SARKAR,Jie ZHENG. Synthesis and characterization of biocompatible polyurethanes for controlled release of hydrophobic and hydrophilic drugs[J]. Front. Chem. Sci. Eng., 2014, 8(4): 498-510.
[2] Lijun JI, Yunfeng SI, Ailing LI, Wenjun WANG, Dong QIU, Aiping ZHU. Progress of three-dimensional macroporous bioactive glass for bone regeneration[J]. Front Chem Sci Eng, 2012, 6(4): 470-483.
[3] Dongjiao ZHOU, Shaochuan SHEN, Junxian YUN, Kejian YAO, Dong-Qiang LIN. Cryo-copolymerization preparation of dextran-hyaluronate based supermacroporous cryogel scaffolds for tissue engineering applications[J]. Front Chem Sci Eng, 2012, 6(3): 339-347.
[4] Yakai FENG, Fanru MENG, Ruofang XIAO, Haiyang ZHAO, Jintang GUO. Electrospinning of polycarbonate urethane biomaterials[J]. Front Chem Sci Eng, 2011, 5(1): 11-18.
[5] CHE Pengchao, HE Yaning, WANG Xiaogong. Hyperbranched azo polyurethane synthesized through A + B scheme[J]. Front. Chem. Sci. Eng., 2008, 2(1): 123-126.
[6] ZHANG Aifei, LIU Jiping, L? Guangshu. Large-scale synthesis of isolated Mn2O3 nanotube/fiber with ferric nitrate as catalyst[J]. Front. Chem. Sci. Eng., 2007, 1(1): 55-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed