Please wait a minute...

Frontiers of Computer Science

Front. Comput. Sci.    2018, Vol. 12 Issue (5) : 1035-1037     https://doi.org/10.1007/s11704-018-7285-8
LETTER |
GL-RF: a reconciliation framework for label-free entity resolution
Yaoli XU1,2, Zhanhuai LI1,2, Qun CHEN1,2(), Fengfeng FAN1,2
1. School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
2. Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi’an 710129, China
Download: PDF(219 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Authors: Qun CHEN   
Just Accepted Date: 30 March 2018   Online First Date: 04 September 2018    Issue Date: 21 September 2018
 Cite this article:   
Yaoli XU,Zhanhuai LI,Qun CHEN, et al. GL-RF: a reconciliation framework for label-free entity resolution[J]. Front. Comput. Sci., 2018, 12(5): 1035-1037.
 URL:  
http://journal.hep.com.cn/fcs/EN/10.1007/s11704-018-7285-8
http://journal.hep.com.cn/fcs/EN/Y2018/V12/I5/1035
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yaoli XU
Zhanhuai LI
Qun CHEN
Fengfeng FAN
1 Konda P, Das S, Suganthan G C P, Doan A, Ardalan A, Ballard J R, Li H, Panahi F, Zhang H J, Naughton J F, Prasad S, Krishnan G, Deep R, Raghavendra V. Magellan: toward building entity matching management systems. Proceedings of the VLDB Endowment, 2016, 9(12): 1197–1208
https://doi.org/10.14778/2994509.2994535
2 Li L L, Li J Z, Gao H. Rule-based method for entity resolution. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(1): 250–263
https://doi.org/10.1109/TKDE.2014.2320713
3 Fan F F, Li Z H, Chen Q, Liu H L. An outlier-detection based approach for automatic entity matching. Chinese Journal of Computers, 2017, 40(10): 2197–2211
4 Guha S, Koudas N, Marathe A, Srivastava D. Merging the results of approximate match operations. In: Proceedings of the 30th International Conference on Very Large Data Bases. 2004, 636–647
https://doi.org/10.1016/B978-012088469-8.50057-7
5 Dey D, Sarkar S, De P. Entity matching in heterogeneous databases: a distance based decision model. In: Proceedings of the 31st Annual Hawaii International Conference on System Sciences. 1998, 305–313
https://doi.org/10.1109/HICSS.1998.649225
6 Rajaraman A, Ullman J D. Mining of Massive Datasets. Cambridge: Cambridge University Press, 2011
https://doi.org/10.1017/CBO9781139058452
7 Schölkopf B, Platt J C, Shawe-Taylor J, Smola A J, Williamson R C. Estimating the support of a high-dimensional distribution. Neural Computation, 2001, 13(7): 1443–1471
https://doi.org/10.1162/089976601750264965
8 Papadakis G, Koutrika G, Palpanas T, Nejdl W. Meta-blocking: taking entity resolution to the next level. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8): 1946–1960
https://doi.org/10.1109/TKDE.2013.54
9 Christen P. Febrl: a freely available record linkage system with a graphical user interface. In: Proceedings of the 2nd Australasian Workshop on Health Data and Knowledge Management. 2008, 17–25
https://doi.org/10.1145/1401890.1402020
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed