Please wait a minute...

Frontiers of Computer Science

Front. Comput. Sci.    2018, Vol. 12 Issue (6) : 1173-1191     https://doi.org/10.1007/s11704-017-6275-6
RESEARCH ARTICLE |
Fusing magnitude and phase features with multiple face models for robust face recognition
Yan LI1,2(), Shiguang SHAN1,2(), Ruiping WANG1,2(), Zhen CUI3(), Xilin CHEN1,2()
1. Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology (ICT), CAS, Beijing 100190, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Download: PDF(1401 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

High accuracy face recognition is of great importance for a wide variety of real-world applications. Although significant progress has been made in the last decades, fully automatic face recognition systems have not yet approached the goal of surpassing the human vision system, even in controlled conditions. In this paper, we propose an approach for robust face recognition by fusing two complementary features: one is Gabor magnitude of multiple scales and orientations and the other is Fourier phase encoded by spatial pyramid based local phase quantization (SPLPQ). To reduce the high dimensionality of both features, block-wise fisher discriminant analysis (BFDA) is applied and further combined by score-level fusion. Moreover, inspired by the biological cognitive mechanism, multiple face models are exploited to further boost the robustness of the proposed approach. We evaluate the proposed approach on three challenging databases, i.e., FRGC ver2.0, LFW, and CFW-p, that address two face classification scenarios, i.e., verification and identification. Experimental results consistently exhibit the complementarity of the two features and the performance boost gained by the multiple face models. The proposed approach achieved approximately 96% verification rate when FAR was 0.1% on FRGC ver2.0 Exp.4, impressively surpassing all the best known results.

Keywords face recognition      fisher discriminant analysis      fusion      Gabor magnitude feature      multiple face models      spatial pyramid based local phase quantization     
Corresponding Authors: Shiguang SHAN   
Just Accepted Date: 01 March 2017   Online First Date: 06 July 2018    Issue Date: 04 December 2018
 Cite this article:   
Yan LI,Shiguang SHAN,Ruiping WANG, et al. Fusing magnitude and phase features with multiple face models for robust face recognition[J]. Front. Comput. Sci., 2018, 12(6): 1173-1191.
 URL:  
http://journal.hep.com.cn/fcs/EN/10.1007/s11704-017-6275-6
http://journal.hep.com.cn/fcs/EN/Y2018/V12/I6/1173
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yan LI
Shiguang SHAN
Ruiping WANG
Zhen CUI
Xilin CHEN
1 Zhao W Y, Chellappa R, Phillips P J, Rosenfeld A. Face recognition: a literature survey. ACM Computing Surveys, 2003, 35(4): 399–458
https://doi.org/10.1145/954339.954342
2 Liu C J, Wechsler H. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Transactions on Image Processing, 2002, 11(4): 467–476
https://doi.org/10.1109/TIP.2002.999679
3 Zhang W C, Shan S G, Gao W, Chen X L, Zhang H M. Local gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition. In: Proceedings of the 10th IEEE International Conference on Computer Vision. 2005, 786–791
4 Su Y, Shan S G, Chen X L, Gao W. Hierarchical ensemble of global and local classifiers for face recognition. IEEE Transactions on Image Processing, 2009, 18(8): 1885–1896
https://doi.org/10.1109/TIP.2009.2021737
5 Xie S F, Shan S G, Chen X L, Chen J. Fusing local patterns of gabor magnitude and phase for face recognition. IEEE Transactions on Image Processing, 2010, 19(5): 1349–1361
https://doi.org/10.1109/TIP.2010.2041397
6 Li Y, Shan S G, Zhang H H, Lao S H, Chen X L. Fusing magnitude and phase features for robust face recognition. In: Proceedings of Asian Conference on Computer Vision. 2013, 601–612
https://doi.org/10.1007/978-3-642-37444-9_47
7 Tan X Y, Triggs B. Fusing gabor and lbp feature sets for kernel-based face recognition. In: Proceedings of International Conference on Automatic Face and Gesture Recognition. 2007, 235–249
https://doi.org/10.1007/978-3-540-75690-3_18
8 Chan C H, Kittler J, Tahir M A. Kernel fusion of multiple histogram descriptors for robust face recognition. In: Proceedings of Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition and Structural, Syntactic, and Statistical Pattern Recognition. 2010, 718–727
https://doi.org/10.1007/978-3-642-14980-1_71
9 Cai D, He X F, Han J W. Efficient kernel discriminant analysis via spectral regression. In: Proceedings of the 7th IEEE International Conference on Data Mining. 2007, 427–432
https://doi.org/10.1109/ICDM.2007.88
10 Deng W H, Hu J N, Guo J, Cai W, Feng D G. Emulating biological strategies for uncontrolled face recognition. Pattern Recognition, 2010, 43(6): 2210–2223
https://doi.org/10.1016/j.patcog.2009.12.026
11 Deng W H, Hu J N, Lu J W, Guo J. Transform-invariant PCA: a unified approach to fully automatic facealignment, representation, and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(6): 1275–1284
https://doi.org/10.1109/TPAMI.2013.194
12 Gabor D. Theory of communication. Part 1: the analysis of information. Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 1946, 93(26): 429–441
https://doi.org/10.1049/ji-3-2.1946.0074
13 Ojansivu V, Heikkilä J. Blur insensitive texture classification using local phase quantization. In: Proceedings of International Conference on Image and Signal Processing. 2008, 236–243
https://doi.org/10.1007/978-3-540-69905-7_27
14 Ojala T, Pietikäinen M, Harwood D. A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 1996, 29(1): 51–59
https://doi.org/10.1016/0031-3203(95)00067-4
15 Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91–110
https://doi.org/10.1023/B:VISI.0000029664.99615.94
16 Bicego M, Lagorio A, Grosso E, Tistarelli M. On the use of sift features for face authentication. In: Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop. 2006
https://doi.org/10.1109/CVPRW.2006.149
17 Luo J, Ma Y, Takikawa E, Lao S, Kawade M, Lu B L. Person-specific sift features for face recognition. In: Proceedings of International Conference on Acoustics, Speech and Signal Processing. 2007
https://doi.org/10.1109/ICASSP.2007.366305
18 Mian A S, Bennamoun M, Owens R. An efficient multimodal 2D-3D hybrid approach to automatic face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(11): 1927–1943
https://doi.org/10.1109/TPAMI.2007.1105
19 Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 886–893
https://doi.org/10.1109/CVPR.2005.177
20 Cao Z M, Yin Q, Tang X O, Sun J. Face recognition with learningbased descriptor. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2010, 2707–2714
21 Albiol A, Monzo D, Martin A, Sastre J, Albiol A. Face recognition using HOG-EBGM. Pattern Recognition Letters, 2008, 29(10): 1537–1543
https://doi.org/10.1016/j.patrec.2008.03.017
22 Liu Z M, Liu C J. Robust face recognition using color information. In: Proceedings of International Conference on Biometrics. 2009, 122–131
https://doi.org/10.1007/978-3-642-01793-3_13
23 Shan S G, Zhang W C, Su Y, Chen X L, Gao W. Ensemble of piecewise FDA based on spatial histograms of local (Gabor) binary patterns for face recognition. In: Proceedings of International Conference on Pattern Recognition. 2006, 606–609
https://doi.org/10.1109/ICPR.2006.163
24 Sinha P, Poggio T. I think I know that face. Nature, 1996, 384(6608): 404
https://doi.org/10.1038/384404a0
25 Davies G. Perceiving and Remembering Faces. London: Academic Press, 1981
26 Ellis H D. Aspects of Face Processing. Boston: Martinus Nijhoff Publishers, 1986
https://doi.org/10.1007/978-94-009-4420-6
27 Phillips P J, Flynn P J, Scruggs T, Bowyer K W, Chang J, Hoffman K, Marques J, Min J, Worek W. Overview of the face recognition grand challenge. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 947–954
https://doi.org/10.1109/CVPR.2005.268
28 Huang G B, Mattar M, Berg T, Learned-Miller E. Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical Report 07-49, 2007
29 Zhang X, Zhang L, Wang X J, Shum H Y. Finding celebrities in billions of Web images. IEEE Transactions on Multimedia, 2012, 14(4): 995–1007
https://doi.org/10.1109/TMM.2012.2186121
30 Lades M, Vorbruggen J C, Buhmann J, Lange J, Malsburg V D C, Wurtz R P, Konen W. Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on Computers, 1993, 42(3): 300–311
https://doi.org/10.1109/12.210173
31 Zhang B C, Shan S G, Chen X L, Gao W. Histogram of Gabor phase patterns (HGPP): a novel object representation approach for face recognition. IEEE Transactions on Image Processing, 2007, 16(1): 57–68
https://doi.org/10.1109/TIP.2006.884956
32 Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramidmatching for recognizing natural scene categories. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2006, 2169–2178
https://doi.org/10.1109/CVPR.2006.68
33 Grauman K, Darrell T. The pyramid match kernel: discriminative classification with sets of image features. In: Proceedings of International Conference on Computer Vision. 2005, 1458–1465
https://doi.org/10.1109/ICCV.2005.239
34 Hadjidemetriou E, Grossberg M D, Nayar S K. Multiresolution histograms and their use for recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(7): 831–847
https://doi.org/10.1109/TPAMI.2004.32
35 Fisher R A. The use of multiple measurements in taxonomic problems. Annals of Human Genetics, 1936, 7(2): 179–188
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
36 Kumar N, Berg A C, Belhumeur P N, Nayar S K. Attribute and simile classifiers for face verification. In: Proceedings of International Conference on Computer Vision. 2009, 365–372
https://doi.org/10.1109/ICCV.2009.5459250
37 Tan X Y, Triggs B. Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: Proceedings of International Conference on Automatic Face and Gesture Recognition. 2007, 168–182
https://doi.org/10.1007/978-3-540-75690-3_13
38 Yang J, Liu C J. Color image discriminant models and algorithms for face recognition. IEEE Transactions on Neural Networks, 2008, 19(12): 2088–2098
https://doi.org/10.1109/TNN.2008.2003187
39 Yang J, Liu C J. Horizontal and vertical 2DPCA-based discriminant analysis for face verification on a large-scale database. IEEE Transactions on Information Forensics and Security, 2007, 2(4): 781–792
https://doi.org/10.1109/TIFS.2007.910239
40 Shih P, Liu C J. Improving the face recognition grand challenge baseline performance using color configurations across color spaces. In: Proceedings of International Conference on Image Processing. 2006, 1001–1004
https://doi.org/10.1109/ICIP.2006.312668
41 Taigman Y, Wolf L, Hassner T. Multiple one-shots for utilizing class label information. In: Proceedings of British Machine Vision Conference. 2009, 1–12
https://doi.org/10.5244/C.23.77
42 Yang Y, Song J K, Huang Z, Ma Z G, Sebe N, Hauptmann A G. Multi-feature fusion via hierarchical regression for multimedia analysis. IEEE Transaction on Multimedia, 2013, 15(3): 572–581
https://doi.org/10.1109/TMM.2012.2234731
43 Ma Z G, Yang Y, Sebe N, Hauptmann A G. Multiple features but few labels? a symbiotic solution exemplified for video analysis. In: Proceedings of the 22nd ACM International Conference on Multimedia. 2014, 77–86
44 Kumar B, Savvides M, Xie C Y. Correlation pattern recognition for face recognition. Proceedings of the IEEE, 2006, 94(11): 1963–1976
https://doi.org/10.1109/JPROC.2006.884094
45 Liu C J. The bayes decision rule induced similarity measures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 1086–1090
https://doi.org/10.1109/TPAMI.2007.1063
46 Hwang W, Park G, Lee J, Kee S C. Multiple face model of hybrid fourier feature for large face image set. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2006, 1574–1581
47 Liu C J. Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(5): 725–737
https://doi.org/10.1109/TPAMI.2006.90
48 Parkhi O M, Vedaldi A, Zisserman A. Deep face recognition. In: Proceedings of British Machine Vision Conference. 2015, 1–12
https://doi.org/10.5244/C.29.41
49 Li P, Fu Y, Mohammed U, Elder J H, Prince S J. Probabilistic models for inference about identity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(1): 144–157
https://doi.org/10.1109/TPAMI.2011.104
50 Berg T, Belhumeur P N. Tom-vs-Pete classifiers and identitypreserving alignment for face verification. In: Proceedings of British Machine Vision Conference. 2012
51 Chen D, Cao X D, Wen F, Sun J. Blessing of dimensionality: highdimensional feature and its efficient compression for face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2013, 3025–3032
https://doi.org/10.1109/CVPR.2013.389
52 Taigman Y, Yang M, Ranzato M, Wolf L. Deepface: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 1701–1708
https://doi.org/10.1109/CVPR.2014.220
53 Sun Y, Wang X G, Tang X O. Deep learning face representation from predicting 10,000 classes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 1891–1898
54 Schroff F, Kalenichenko D, Philbin J. Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 815–823
https://doi.org/10.1109/CVPR.2015.7298682
55 Yi D, Lei Z, Liao S C, Li S Z. Learning face representation from scratch. 2014, arXiv preprint arXiv:1411.7923v1
Related articles from Frontiers Journals
[1] Xin LIU,Meina KAN,Wanglong WU,Shiguang SHAN,Xilin CHEN. VIPLFaceNet: an open source deep face recognition SDK[J]. Front. Comput. Sci., 2017, 11(2): 208-218.
[2] Lele CAO,Fuchun SUN,Hongbo LI,Wenbing HUANG. Advancing the incremental fusion of robotic sensory features using online multi-kernel extreme learning machine[J]. Front. Comput. Sci., 2017, 11(2): 276-289.
[3] Qicong WANG,Binbin WANG,Xinjie HAO,Lisheng CHEN,Jingmin CUI,Rongrong JI,Yunqi LEI. Face recognition by decision fusion of two-dimensional linear discriminant analysis and local binary pattern[J]. Front. Comput. Sci., 2016, 10(6): 1118-1129.
[4] Yuan SU,Xi ZHANG,Lixin LIU,Shouyou SONG,Binxing FANG. Understanding information interactions in diffusion: an evolutionary game-theoretic perspective[J]. Front. Comput. Sci., 2016, 10(3): 518-531.
[5] Quanqing XU,Rajesh Vellore ARUMUGAM,Khai Leong YONG,Yonggang WEN,Yew-Soon ONG,Weiya XI. Adaptive and scalable load balancing for metadata server cluster in cloud-scale file systems[J]. Front. Comput. Sci., 2015, 9(6): 904-918.
[6] Xiaoyan LUO,Jun ZHANG,Qionghai DAI. Hybrid fusion and interpolation algorithm with near-infrared image[J]. Front. Comput. Sci., 2015, 9(3): 375-382.
[7] Yin LU,Fuxiang WANG,Xiaoyan LUO,Feng LIU. Novel infrared and visible image fusion method based on independent component analysis[J]. Front. Comput. Sci., 2014, 8(2): 243-254.
[8] Shangfei WANG,Shan HE,Yue WU,Menghua HE,Qiang JI. Fusion of visible and thermal images for facial expression recognition[J]. Front. Comput. Sci., 2014, 8(2): 232-242.
[9] Lishan QIAO, Limei ZHANG, Songcan CHEN. Dimensionality reduction with adaptive graph[J]. Front Comput Sci, 2013, 7(5): 745-753.
[10] Zhaoxiang ZHANG, Yunhong WANG. Automatic object classification using motion blob based local feature fusion for traffic scene surveillance[J]. Front Comput Sci, 2012, 6(5): 537-546.
[11] Pu HUANG, Zhenmin TANG, Caikou CHEN, Xintian CHENG. Nearest-neighbor classifier motivated marginal discriminant projections for face recognition[J]. Front Comput Sci Chin, 2011, 5(4): 419-428.
[12] Sikang HU, Yuanda CAO, . Knowledge fusion framework based on Web page texts[J]. Front. Comput. Sci., 2009, 3(4): 457-464.
[13] YANG Jian, YANG Jingyu, ZHANG David. Median Fisher Discriminator: a robust feature extraction method with applications to biometrics[J]. Front. Comput. Sci., 2008, 2(3): 295-305.
[14] Tang Yuanyan. Status of pattern recognition with wavelet analysis[J]. Front. Comput. Sci., 2008, 2(3): 268-294.
[15] YANG Xuejun, WANG Panfeng, DU Yunfei, ZHOU Haifang. A data-distributed parallel algorithm for wavelet-based fusion of remote sensing images[J]. Front. Comput. Sci., 2007, 1(2): 231-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed