Please wait a minute...

Frontiers of Computer Science

Front. Comput. Sci.    2017, Vol. 11 Issue (4) : 702-716     DOI: 10.1007/s11704-016-5546-y
RESEARCH ARTICLE |
Time-aware conversion prediction
Wendi JI1, Xiaoling WANG1(), Feida ZHU2
1. Shanghai Key Laboratory of Trustworthy Computing, Institute for Data Science and Engineering, East China Normal University, Shanghai 200062, China
2. School of Information Systems, SingaporeManagement University, Singapore 188065, Singapore
Download: PDF(696 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The importance of product recommendation has been well recognized as a central task in business intelligence for e-commerce websites. Interestingly, what has been less aware of is the fact that different products take different time periods for conversion. The “conversion” here refers to actually a more general set of pre-defined actions, including for example purchases or registrations in recommendation and advertising systems. The mismatch between the product’s actual conversion period and the application’s target conversion period has been the subtle culprit compromising many existing recommendation algorithms.

The challenging question: what products should be recommended for a given time period to maximize conversion—is what has motivated us in this paper to propose a rank-based time-aware conversion prediction model (rTCP), which considers both recommendation relevance and conversion time. We adopt lifetime models in survival analysis to model the conversion time and personalize the temporal prediction by incorporating context information such as user preference. A novel mixture lifetime model is proposed to further accommodate the complexity of conversion intervals. Experimental results on two real-world data sets illustrate the high goodness of fit of our proposed model rTCP and demonstrate its effectiveness in time-aware conversion rate prediction for advertising and product recommendation.

Keywords conversion time      survival analysis      product recommendation      advertising     
Corresponding Authors: Xiaoling WANG   
Just Accepted Date: 14 June 2016   Online First Date: 19 September 2016    Issue Date: 26 July 2017
 Cite this article:   
Wendi JI,Xiaoling WANG,Feida ZHU. Time-aware conversion prediction[J]. Front. Comput. Sci., 2017, 11(4): 702-716.
 URL:  
http://journal.hep.com.cn/fcs/EN/10.1007/s11704-016-5546-y
http://journal.hep.com.cn/fcs/EN/Y2017/V11/I4/702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wendi JI
Xiaoling WANG
Feida ZHU
1 YuJ J, ZhuT Y. Combining long-term and short-term user interest for personalized hashtag recommendation. Frontiers of Computer Science, 2015, 9(4): 608–622
doi: 10.1007/s11704-015-4284-x
2 DingY, LiX. Time weight collaborative filtering. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management. 2005, 485–492
doi: 10.1145/1099554.1099689
3 CamposP G, DiezF, CantadorI. Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols. User Modeling and User-Adapted Interaction, 2014, 24(1): 67–119
doi: 10.1007/s11257-012-9136-x
4 YuanQ, CongG, MaZ Y, Sun A, ThalmannN M . Time-aware pointof- interest recommendation. In: Proceedings of the 36th International ACMSIGIR Conference on Research and Development in Information Retrieval. 2013, 363–372
5 BannurS, AlonsoO. Analyzing temporal characteristics of check-in data. In: Proceedings of the Companion Publication of the 23rd International Conference on World Wide Web Companion. 2014, 827–832
doi: 10.1145/2567948.2579041
6 PazzaniM, Billsus D. Learning and revising user profiles: the identification of interesting web sites. Machine Learning, 1997, 27(3): 313–331
doi: 10.1023/A:1007369909943
7 ZhuT S, Greiner R, HaublG . Learning a model of a web user’s interests. In: Proceedings of the 2003 International Conference on User Modeling. 2003, 65–75
doi: 10.1007/3-540-44963-9_10
8 PazzaniM J. A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review, 1999, 13(5): 393–408
doi: 10.1023/A:1006544522159
9 GuanY, CaiS M, ShangM S. Recommendation algorithm based onitem quality and user rating preferences. Frontiers of Computer Science, 2014, 8(2): 289–297
doi: 10.1007/s11704-013-3012-7
10 GoldbergK, RoederT, GuptaD, Perkins C. Eigentaste: a constant time collaborative filtering algorithm. Information Retrieval, 2001, 4(2): 133–151
doi: 10.1023/A:1011419012209
11 BrownP F, PietraV J D, MercerR L, Pietra S A D, LaiJ C . An estimate of an upper bound for the entropy of English. Computational Linguistics, 1992, 18(1): 31–40
12 BillsusD, Pazzani M J. Learning Collaborative Information Filters. In: Proceedings of the 15th International Conference on Machine Learning. 1998, 46–54
13 MaH, LiuC, KingI, Lyu M R. Probabilistic factor models for Web site recommendation. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2011, 265–274
doi: 10.1145/2009916.2009955
14 BreeseJ S, Heckerman D, KadieC . Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. 1998, 43–52
15 BleiD M, NgA Y, JordanM I. Latent Dirichlet allocation. Journal of Machine Learning Research, 2003, 3: 993–1022
16 RendleS, Freudenthaler C, Schmidt-ThiemeL . Factorizing personalized markov chains for next-basket recommendation. In: Proceedings of the 19th International Conference on World Wide Web. 2010, 811–820
doi: 10.1145/1772690.1772773
17 ChengC, YangH Q, LyuM R, King I. Where you like to go next: successive point-of-interest recommendation. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence. 2013, 2605–2611
18 RosalesR, ChengH, ManavogluE. Post-click conversion modeling and analysis for non-guaranteed delivery display advertising. In: Proceedings of the 5th ACM International Conference on Web Search and Data Mining. 2012, 293–302
doi: 10.1145/2124295.2124333
19 ChapelleO, Manavoglu E, RosalesR . Simple and scalable response prediction for display advertising. ACM Transactions on Intelligent Systems and Technology, 2015, 5(4)
20 LeeK C, OrtenB, DasdanA, Li W J. Estimating conversion rate in display advertising from past erformance data. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2012, 768–776
doi: 10.1145/2339530.2339651
21 LathiaN, HailesS, CapraL, Amatriain X. Temporal diversity in recommender systems. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2010, 210–217
doi: 10.1145/1835449.1835486
22 XiangL, YuanQ, ZhaoS W, Chen L, ZhangX T , YangQ, SunJ M. Temporal recommendation on graphs via long- and short-term preference fusion. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and DataMining. 2010, 723–732
doi: 10.1145/1835804.1835896
23 KorenY. Collaborative filtering with temporal dynamics. Communications of the ACM, 2010, 53(4): 89–97
doi: 10.1145/1721654.1721677
24 ZhaoG, LeeM L, HsuW, Chen W. Increasing temporal diversity with purchase intervals. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2012, 165–174
doi: 10.1145/2348283.2348309
25 GuW R, DongS B, ZengZ Z. Increasing recommended effectiveness with markov chains and purchase intervals. Neural Computing and Applications, 2014, 25(5): 1153–1162
doi: 10.1007/s00521-014-1599-8
26 ZhangY F, ZhangM, ZhangY, Lai G K, LiuY Q , ZhangH H, MaS P. Daily-aware personalized recommendation based on feature-level time series analysis. In: Proceedings of the 24th International Conference on World Wide Web. 2015, 1373–1383
doi: 10.1145/2736277.2741087
27 ZhaoX W, GuoY W, HeY L, Jiang H, WuY X , LiX M. We know what you want to buy: a demographic-based system for product recommendation on microblogs. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2014, 1935–1944
doi: 10.1145/2623330.2623351
28 NelsonW B. Applied Life Data Analysis. New York:John Wiley & Sons, 2005
29 ChapelleO. Modeling delayed feedback in display advertising. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Aining. 2014, 1097–1105
doi: 10.1145/2623330.2623634
30 WangJ, ZhangY. Opportunity model for e-commerce recommendation: right product; right time. In: Proceedings of the 36th International ACMSIGIR Conference on Research and Development in Information Retrieval. 2013, 303–312
doi: 10.1145/2484028.2484067
31 WangJ, ZhangY, PosseC, Bhasin A. Is it time for a career switch? In: Proceedings of the 22nd International Conference on World Wide Web. 2013, 1377–1388
doi: 10.1145/2488388.2488509
32 RichardsS J. A handbook of parametric survival models for actuarial use. Scandinavian Actuarial Journal, 2012, 2012(4): 233–257
doi: 10.1080/03461238.2010.506688
33 MurphyK P. Machine Learning: A Probabilistic Perspective. Cambridge, Massathusetts: The MIT press, 2012
[1] FCS-0702-15546-XLW_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed