Please wait a minute...

Frontiers of Agricultural Science and Engineering

Front. Agr. Sci. Eng.    2017, Vol. 4 Issue (4) : 433-447     https://doi.org/10.15302/J-FASE-2017173
RESEARCH ARTICLE |
Quambalaria species associated with eucalypt diseases in southern China
Shuaifei CHEN1,2, Qianli LIU1, Guoqing LI1, Michael J. WINGFIELD2()
1. China Eucalypt Research Centre, Chinese Academy of Forestry, Zhanjiang 524022, China
2. Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
Download: PDF(2259 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The genus Quambalaria includes several important pathogens of species of Eucalyptus and Corymbia, mainly causing leaf and shoot blight. Recently, extensive shoot and leaf dieback and stem cankers suspected to be Quambalaria diseases have been found on young Eucalyptus urophylla × E. grandis trees in Guangdong and Hainan Provinces. The occurrence of Quambalaria species and their association with eucalypt hosts within China needs to be investigated for tree diseases management. The isolates from the diseased samples were identified based on their morphological structures and phylogenetic analyses with DNA sequence data for the internal transcribed spacer region and large ribosome subunit RNA of the nuclear rDNA. This work revealed that three species of Quambalaria were present: Quambalaria pitereka from Corymbia citriodora, Q. eucalypti from E. urophylla × E. grandis, both isolated from young eucalypt leaves and shoots in Guangdong Province, and Quambalaria simpsonii, which was isolated from stem cankers of E. urophylla × E. grandis at four different sites across Guangdong and Hainan Provinces. These results confirmed that Quambalaria agents were associated with the diseases occurring on eucalypt hosts in South China. This is the first report of Q. eucalypti in Asia and the first report of Q. simpsonii in China on Eucalyptus trees.

Keywords Corymbia      Eucalyptus      forest pathogens      plantations      Myrtaceae     
Corresponding Authors: Michael J. WINGFIELD   
Just Accepted Date: 30 October 2017   Online First Date: 22 November 2017    Issue Date: 10 December 2017
 Cite this article:   
Shuaifei CHEN,Qianli LIU,Guoqing LI, et al. Quambalaria species associated with eucalypt diseases in southern China[J]. Front. Agr. Sci. Eng. , 2017, 4(4): 433-447.
 URL:  
http://journal.hep.com.cn/fase/EN/10.15302/J-FASE-2017173
http://journal.hep.com.cn/fase/EN/Y2017/V4/I4/433
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shuaifei CHEN
Qianli LIU
Guoqing LI
Michael J. WINGFIELD
Fig.1  Symptoms of infection by Quambalaria spp. on eucalypt trees. Shoot (a) and juvenile leave (b) of Corymbia citriodora infected by Quambalaria pitereka covered in white masses of conidia and conidiophores. New shoot (c) produced from the infected C. citriodora, and reinfected by Q. pitereka. Death of apical shoot (d) of Eucalyptus urophylla× E. grandis clone infected by Quambalaria simpsonii. Mature leaf (e) and young apical shoot (f) of E. urophylla× E. grandis clone infected by Q. simpsonii. Arrows indicate infected sites.
Identity Isolate No.a GenBank accession No.b Host Location Collector Reference 
ITSLSU 
Quambalaria coyrecupWAC12947cdeDQ823431DQ823444Corymbia calophyllaWestern Australia, AustraliaT PaapPaap et al.[23]
Q. coyrecupWAC12948deDQ823433DQ823446C. calophyllaWestern Australia, AustraliaT PaapPaap et al.[23]
Q. coyrecupWAC12949eDQ823432DQ823445C. calophyllaWestern Australia, AustraliaT PaapPaap et al.[23]
Q. coyrecupWAC12950deDQ823429DQ823447C. calophyllaWestern Australia, AustraliaT PaapPaap et al.[23]
Q. coyrecupWAC12951deDQ823430DQ823448C. calophyllaWestern Australia, AustraliaT PaapPaap et al.[23]
Q. coyrecupBRIP48338dEF444877N/AgC. polycarpaDarwin, Northern Territory, AustraliaR PitkethleyPegg et al.[24]
Q. coyrecupBRIP48339dEF444878N/AC. polycarpaDarwin, Northern Territory, AustraliaR PitkethleyPegg et al.[24]
Q. cyanescensCBS357.73cde = CMW5583DQ317622DQ317615skin of manNetherlandsTF Visserde Beer et al.[22]
Q. cyanescensCBS876.73de = CMW5584DQ317623DQ317616Eucalyptus paucifloraNew South Wales, AustraliaVF Brownde Beer et al.[22]
Q. cyanescensWAC12952deDQ823419DQ823440C. calophyllaWestern Australia, AustraliaT PaapPaap et al.[23]
Q. cyanescensWAC12953deDQ823422DQ823443C. ficifoliaWestern Australia, AustraliaT PaapPaap et al.[23]
Q. cyanescensWAC12954eDQ823420DQ823442C. calophyllaWestern Australia, AustraliaT PaapPaap et al.[23]
Q. cyanescensWAC12955deDQ823421DQ823441C. calophyllaWestern Australia, AustraliaT PaapPaap et al.[23]
Q. cyanescensBRIP48396dEF444874N/ANative C. citriodoraBeaudesert, Queensland, AustraliaGS PeggPegg et al.[24]
Q. cyanescensBRIP48398dEF444875N/ANative C. citriodoraBeaudesert, Queensland, AustraliaGS PeggPegg et al.[24]
Q. cyanescensBRIP48403dEF444876N/ANative C. citriodoraBeaudesert, Queensland, AustraliaGS PeggPegg et al.[24]
Q. eucalyptiCBS118844cde = CMW1101DQ317625DQ317618Eucalyptus grandisKwambonambi, South AfricaMJ Wingfieldde Beer et al.[22]
Q. eucalyptiCBS 119680de = CMW11678DQ317626DQ317619E. grandis clone NH58Kwambonambi, South AfricaL Lombardde Beer et al.[22]
Q. eucalyptiCMW14329DQ317614N/AE. grandis× E. camaldulensis cloneKwambonambi, South AfricaJ RouxRoux et al.[30]
Q. eucalyptiCBS118615= CMW17252DQ317609N/AE. nitensRooihoogte, South AfricaZL Mthalane & J RouxRoux et al.[30]
Q. eucalyptiCMW17253DQ317610N/AE. nitensRooihoogte, South AfricaZL Mthalane & J RouxRoux et al.[30]
Q. eucalyptiCMW17254DQ317611N/AE. nitensRooihoogte, South AfricaZL Mthalane & J RouxRoux et al.[30]
Q. eucalyptiCMW17255DQ317612N/AE. nitensRooihoogte, South AfricaZL Mthalane & J RouxRoux et al.[30]
Q. eucalyptiCBS118616= CMW17771DQ317613N/AE. grandis cloneKwambonambi, South AfricaJ RouxRoux et al.[30]
Q. eucalyptiUY1036EU439922N/AMyrceugenia glaucescensUruguayC. A. PérezPérez et al.[28]
Q. eucalyptiUY1718EU439923N/AM. glaucescensUruguayC. A. PérezPérez et al.[28]
Q. eucalyptiPE3/MEAN 996JX297605N/AE. globulusPortugalN/ABraganca et al.[27]
Q. eucalyptiPE6/MEAN 997JX297603N/AE. globulusPortugalN/ABraganca et al.[27]
Q. eucalyptiPE27/MEAN 998JX297604N/AE. globulusPortugalN/ABraganca et al.[27]
Q. eucalyptiPE28/MEAN 999JX297600N/AE. globulusPortugalN/ABraganca et al.[27]
Q. eucalyptiPE29/MEAN 1000JX297602N/AE. globulusPortugalN/ABraganca et al.[27]
Q. eucalyptiPE30/MEAN 1001JX297601N/AE. globulusPortugalN/ABraganca et al.[27]
Q. eucalyptiPE52/MEAN 1002JX297606N/AE. globulusPortugalN/ABraganca et al.[27]
Q. eucalyptiPE53/MEAN 1003JX297598N/AE. globulusPortugalN/ABraganca et al.[27]
Q. eucalyptiPE54/MEAN 1004JX297599N/AE. globulusPortugalN/ABraganca et al.[27]
Q. eucalyptiPE93/MEAN 1006KR336802N/AE. globulusPortugalN/ABraganca et al.[27]
Q. eucalyptiPE96/MEAN 1009KR336803N/AE. globulusPortugalN/ABraganca et al.[27]
Q. eucalyptiPE151/MEAN 1012KR336804N/AE. globulusPortugalN/ABraganca et al.[27]
Q. eucalyptiPE152/MEAN 1013KR336805N/AE. globulusPortugalN/ABraganca et al.[27]
Q. eucalyptiPE153/MEAN 1014KR336806N/AE. globulusPortugalN/ABraganca et al.[27]
Q. eucalyptiPE154/MEAN 1015KR336807N/AE. globulusPortugalN/ABraganca et al.[27]
Q. eucalyptiBRIP48367EF444823N/AC. torelliana× C. citriodora subsp. variegataWalkamin, Queensland, AustraliaGS PeggPegg et al.[24]
Q. eucalyptiBRIP48422dEF444832N/AE. dunniiNew South Wales, AustraliaAJ CarnegiePegg et al.[24]
Q. eucalyptiBRIP48498dEF444844N/AE. grandisNew South Wales, AustraliaAJ CarnegiePegg et al.[24]
Q. eucalyptiBRIP48507dEF444822N/AE. grandisMoggill, Queensland, AustraliaGS PeggPegg et al.[24]
Q. eucalyptiCERC8476dKY615009N/AE. grandisGuangdong, ChinaSF Chen & JQ LiThis study
Q. eucalyptiCERC8477gKY615010N/AE. grandisGuangdong, ChinaSF Chen & JQ LiThis study
Q. eucalyptiCERC8478KY615011N/AE. grandisGuangdong, ChinaSF Chen & JQ LiThis study
Q. eucalyptiCERC8479gKY615012KY615050E. grandisGuangdong, ChinaSF Chen & JQ LiThis study
Q. eucalyptiCERC8480gKY615013N/AE. grandisGuangdong, ChinaSF Chen & JQ LiThis study
Q. eucalyptiCERC8481KY615014KY615051E. grandisGuangdong, ChinaSF Chen & JQ LiThis study
Q. eucalyptiCERC8482gKY615015N/AE. grandisGuangdong, ChinaSF Chen & JQ LiThis study
Q. eucalyptiCERC8483KY615016N/AE. grandisGuangdong, ChinaSF Chen & JQ LiThis study
Q. piterekaDAR19773cdeDQ823423DQ823438C. eximiaNew South Wales, AustraliaJ Walker & AL BertusPaap et al.[23]
Q. piterekaCMW 6707deDQ317627DQ317620Corymbia maculataNew South Wales, AustraliaMJ Wingfieldde Beer et al.[22]
Q. piterekaCBS118828de = CMW5318DQ317628DQ317621C. citriodora subsp. variegataQueensland, AustraliaM Ivoryde Beer et al.[22]
Q. piterekaCMW23610EF427372N/AC. citriodoraGuangdong, ChinaYJ XieZhou et al.[17]
Q. piterekaCMW23611EF427373N/AC. citriodoraGuangdong, ChinaYJ XieZhou et al.[17]
Q. piterekaCMW23612EF427374N/AC. citriodoraGuangdong, ChinaYJ XieZhou et al.[17]
Q. piterekaCMW23613dEF427375N/AC. citriodoraGuangdong, ChinaYJ XieZhou et al.[17]
Q. piterekaBRIP48325EF427366N/AC. citriodora subsp. variegataQueensland, AustraliaGS PeggZhou et al.[17]
Q. piterekaBRIP48361dEF427367N/AC. citriodora subsp. variegataQueensland, AustraliaGS PeggZhou et al.[17]
Q. piterekaBRIP48370dEF427368N/AC. citriodora subsp. variegataQueensland, AustraliaGS PeggZhou et al.[17]
Q. piterekaBRIP48384dEF427369N/AC. citriodora subsp. variegataQueensland, AustraliaGS PeggZhou et al.[17]
Q. piterekaBRIP48386edEF427370N/AC. citriodora subsp. variegataQueensland, AustraliaGS PeggZhou et al.[17]
Q. piterekaBRIP48531dEF427371N/AC. citriodora subsp. variegataQueensland, AustraliaGS PeggZhou et al.[17]
Q. piterekaWAC12957eDQ823426DQ823437C. ficifoliaWestern Australia, AustraliaT PaapPaap et al.[23]
Q. piterekaWAC12958eDQ823427DQ823436C. calophyllaWestern Australia, AustraliaT PaapPaap et al.[23]
Q. piterekaQP26eDQ823424DQ823434C. citriodora subsp. variegataQueensland, AustraliaGS PeggPaap et al.[23]
Q. piterekaQP45deDQ823425DQ823439C. citriodora subsp. variegataQueensland, AustraliaGS PeggPaap et al.[23]
Q. piterekaBRIP48346dEF444845N/AC. citriodora subsp. citriodoraDavies Creek, Queensland, AustraliaGS PeggPegg et al.[24]
Q. piterekaBRIP48317EF444854N/AC. henryiCoolabunia, Queensland, AustraliaGS PeggPegg et al.[24]
Q. piterekaBRIP48381dEF444858N/AC. citriodora subsp. citriodoraSilkwood, Queensland, AustraliaGS PeggPegg et al.[24]
Q. piterekaBRIP48383dEF444859N/AC. citriodora subsp. variegataBeaudesert, Queensland, AustraliaGS PeggPegg et al.[24]
Q. piterekaWAC12956dDQ823428N/AC. ficifoliaWestern Australia, AustraliaT PaapPaap et al.[23], Pegg et al.[24]
Q. piterekaBRIP48349dEF444860N/AC. torelliana × C. citriodora subsp. variegataMareeba, Queensland, AustraliaGS PeggPegg et al.[24]
Q. piterekaBRIP48325dEF427366N/AC. citriodora subsp. variegataBinjour, Queensland, AustraliaGS PeggPegg et al.[24]
Q. piterekaBRIP48328dEF444872N/ANative C. citriodora subsp. variegataDilkoon, New South Wales, AustraliaGS PeggPegg et al.[24]
Q. piterekaBRIP48432dEF444873N/AC. citriodora subsp. variegataGrafton, New South Wales, AustraliaGS PeggPegg et al.[24]
Q. piterekaCERC8486deKY615017KY615052C. citriodora provenance CERC10Guangdong, ChinaSF Chen & GQ LiThis study
Q. piterekaCERC8488eKY615018KY615053C. citriodora provenance CERC12Guangdong, ChinaSF Chen & GQ LiThis study
Q. piterekaCERC8489KY615019N/AC. citriodora provenance CERC13Guangdong, ChinaSF Chen & GQ LiThis study
Q. piterekaCERC8491KY615020N/AC. citriodora provenance CERC15Guangdong, ChinaSF Chen & GQ LiThis study
Q. piterekaCERC8494egKY615021KY615054C. citriodora provenance CERC17Guangdong, ChinaSF Chen & GQ LiThis study
Q. piterekaCERC9093KY615022N/AC. citriodora provenance CR76Guangdong, ChinaSF Chen & Y LinThis study
Q. piterekaCERC9094KY615023N/AC. citriodora provenance N371Guangdong, ChinaSF Chen & Y LinThis study
Q. piterekaCERC9095KY615024N/AC. citriodora provenance N28Guangdong, ChinaSF Chen & Y LinThis study
Q. piterekaCERC9096KY615025N/AC. citriodora provenance N411Guangdong, ChinaSF Chen & Y LinThis study
Q. piterekaCERC9097egKY615026KY615055C. citriodora provenance N223Guangdong, ChinaSF Chen & Y LinThis study
Q. piterekaCERC9098gKY615027N/AC. citriodora provenance N322Guangdong, ChinaSF Chen & Y LinThis study
Q. piterekaCERC9099egKY615028KY615056C. citriodora provenance CR033Guangdong, ChinaSF Chen & Y LinThis study
Q. piterekaCERC9100KY615029N/AC. citriodora provenance CR039Guangdong, ChinaSF Chen & Y LinThis study
Q. piterekaCERC9101KY615030N/AC. citriodora provenance CR92Guangdong, ChinaSF Chen & Y LinThis study
Q. piterekaCERC9102KY615031N/AC. citriodora provenance CR36Guangdong, ChinaSF Chen & Y LinThis study
Q. piterekaCERC9103eKY615032KY615057C. citriodora provenance N601Guangdong, ChinaSF Chen & Y LinThis study
Q. piterekaCERC9104KY615033N/AC. citriodora provenance N28Guangdong, ChinaSF Chen & Y LinThis study
Q. simpsoniiCBS 124772deGQ303290GQ303321Eucalyptus tintinnansEdith Falls, AustraliaBA SummerellCheewangkoon et al.[26]
Q. simpsoniiCBS 124773deGQ303291GQ303322Eucalyptus sp.Lamphoon, ThailandR CheewangkoonCheewangkoon et al.[26]
Q. simpsoniiCERC8496dgKY615034N/AE. urophylla × E. grandisHainan, ChinaSF Chen & QL LiuThis study
Q. simpsoniiCERC8499KY615035N/AE. urophylla × E. grandisHainan, ChinaSF Chen & QL LiuThis study
Q. simpsoniiCERC8505dKY615036N/AE. urophylla × E. grandisHainan, ChinaSF Chen & QL LiuThis study
Q. simpsoniiCERC8507deKY615037KY615058E. urophylla × E. grandisHainan, ChinaSF Chen & QL LiuThis study
Q. simpsoniiCERC8512dKY615038N/AE. urophylla × E. grandisHainan, ChinaSF Chen & QL LiuThis study
Q. simpsoniiCERC8514KY615039N/AE. urophylla × E. grandisHainan, ChinaSF Chen & QL LiuThis study
Q. simpsoniiCERC8516KY615040N/AE. urophylla × E. grandisHainan, ChinaSF Chen & QL LiuThis study
Q. simpsoniiCERC8517eKY615041KY615059E. urophylla × E. grandisHainan, ChinaSF Chen & QL LiuThis study
Q. simpsoniiCERC8519dgKY615042N/AE. urophylla × E. grandisHainan, ChinaSF Chen & QL LiuThis study
Q. simpsoniiCERC8526KY615043N/AE. urophylla × E. grandisHainan, ChinaSF Chen & QL LiuThis study
Q. simpsoniiCERC8532KY615044N/AE. urophylla × E. grandisGuangdong, ChinaSF Chen & JQ LiThis study
Q. simpsoniiCERC8534degKY615045KY615060E. urophylla × E. grandisGuangdong, ChinaSF Chen & JQ LiThis study
Q. simpsoniiCERC8536eKY615046KY615061E. urophylla × E. grandisGuangdong, ChinaSF Chen & JQ LiThis study
Q. simpsoniiCERC8539egKY615047KY615062E. urophylla × E. grandisGuangdong, ChinaSF Chen & JQ LiThis study
Q. simpsoniiCERC8541dKY615048N/AE. urophylla × E. grandisGuangdong, ChinaSF Chen & JQ LiThis study
Q. simpsoniiCERC8543dKY615049N/AE. urophylla × E. grandisGuangdong, ChinaSF Chen & JQ LiThis study
Microstroma juglandisR.B. 2042deDQ317634DQ317617 Juglans regiaGermanyR Bauerde Beer et al.[22]
Tab.1  Isolates of Quambalaria species collected from eucalypt trees in southern China in 2015 and 2016 and used for phylogenetic and morphological analysis
Fig.2  Phylogenetic tree based on maximum likelihood analysis of ITS sequence data of haplotypes of five Quambalaria species, Q. coyrecup (QCO), Q. cyanescens (QCY), Q. eucalypti (QE), Q. pitereka (QP) and Q. simpsonii (QS). Bootstrap values>60% are presented at branches, bootstrap values<60% or absent values are not shown. Haplotypes and isolates from eucalypts in this study are in boldface and highlighted. Isolates representing ex-type are marked with T, isolates repeated are marked with R. The tree is rooted to Microstroma juglandis.
Haplotype121a158159160161162558
QE1TTb
QE2TC
QE3CC
QE4TTTATAC
Tab.2  Four haplotypes of Q. eucalypti as determined from the polymorphic nucleotides within the aligned sequence data of ITS region for isolates collected from species of Eucalyptus, C. torelliana× C. citriodora subsp. variegate and M. glaucescens
Haplotype24a54107112214219233236390451606614
QP1TAGGTGbTCCCCA
QP2TAGATGTCCCCA
QP3TAGATATCCCCA
QP4TAGGTATCTCCA
QP5TAGGTATCCACA
QP6TAGGTATCCCTG
QP7AGGGGATCCCCG
QP8AGGGTATCCCCG
QP9TGGGGATCCCCG
QP10AGAGTATCCCCG
QP11TGGGTATCCCCG
QP12TGGATGCGCCCA
Tab.3  Twelve haplotypes of Q. pitereka as determined from the polymorphic nucleotides within the aligned sequence data of ITS region for isolates collected from species of Corymbia
Haplotype4a171553605621
QS1AaATT
QS2AACT
QS3GACTT
QS4GACT
QS5GACC
QS6GGCC
Tab.4  Six haplotypes of Q. simpsonii as determined from the polymorphic nucleotides within the aligned sequence data of ITS region for isolates collected from species of Eucalyptus
Fig.3  Phylogenetic tree based on Maximum Likelihood analysis of large subunit sequence data of haplotypes of five Quambalaria species, Q. coyrecup (QCO), Q. cyanescens (QCY), Q. eucalypti (QE), Q. pitereka (QP) and Q. simpsonii (QS), respectively. Bootstrap values>60% are presented at branches, bootstrap values<60% or absent values are not shown. Haplotypes and isolates from eucalypts in this study are in boldface and highlighted. Isolates representing ex-type are marked with T, isolates repeated are marked with R. The tree is rooted to Microstroma juglandis.
Fig.4  Cultures grown on malt extract agar at 25°C after 2 weeks and the primary and secondary conidia. (a,b) Quambalaria pitereka; (c,d) Q. eucalypti; (e,f) Q. simpsonii.
SpeciesIsolate No.Primary conidia Secondary conidia
(L × W) sizea/mm(L × W) meanb/mmL/Wc (L × W) sizea/mm(L × W) meanb/mmL/Wc
Q. piterekaCERC8494(7.0–)7.5–13.0(–20.5) × (2.5–)3.0–3.5(–4.0)10.2 × 3.33.1 (4.0–)4.5–6.0(–7.0) × 2.0–2.5(–3.0)5.2 × 2.52.1
CERC9097(8.0–)8.5–12.5(–15.0) × (2.5–)2.5–3.5(–4.0)10.5 × 3.03.5(4.5–)5.0–6.5(–7.0) × 2.0–2.5(–3.0)5.7 × 2.32.5
CERC9098(8.0–)10.5–14.0(–16.0) × (2.0–)3.0–4.5(–5.0)12.2 × 3.63.46.0–7.5(–8.0) × (2.0–)2.5–3.5(–4.0)6.8 × 3.02.3
CERC9099(8.0–)9.0–12.5(–15.0) × (3.0–)3.5–4.5(–5.5)10.7 × 4.02.75.5–7.0(–7.5) × 2.5–3.5(–4.0)6.3 × 3.12.2
Averaged(7.0–)8.5–13.0(–20.5) × (2.0–)2.5–4.0(–5.5)10.9 × 3.43.2(4.0–)5.0–7.0(–78.0) × 2.0–3.0(–4.0)6.0 × 2.72.2
Q. eucalyptiCERC8477(4.5–)5.0–7.5(–8.0) × (3.0–)3.5–4.5(–4.5)6.2 × 3.91.62.5–3.0(–3.5) × 2.5–3.03.0 × 2.51.2
CERC8479(5.5–)6.0–7.0(–7.5) × (2.5–)3.0–4.0(–4.5)6.3 × 3.71.72.5–3.5(–4.0) × (2.0–)2.5–3.03.0 × 2.51.2
CERC8482(4.5–)5.0–6.5(–7.0) × (3.0–)3.5–4.0(–4.5)5.7 × 3.91.53.0–4.0(–5.0) × 2.5–3.03.6 × 2.81.3
CERC8480(5.5–)6.0–7.0(–8.0) × (3.0–)3.5–4.0(–4.5)6.4 × 3.81.73.0–3.6(–4.0) × 2.5–3.03.4 × 2.71.3
Averaged(4.5–)5.5–7.0(–8.0) × (2.5–)3.5–4.0(–4.5)6.2 × 3.81.6(2.5–)3.0–4.0(–5.0) × (2.0–)2.5–3.03.3 × 2.61.3
Q. simpsoniiCERC8496(6.0–)6.5–9.5(–11.0) × (2.0–)2.5–3.5(–4.0)8.3 × 3.12.7(3.0–)3.5–4.5(–5.0) × 2.0–2.5(–3.0)4.0 × 2.41.7
CERC8519(5.5–)6.0–8.0(–9.0) × 3.0–4.0(–4.5)7.1 × 3.62.0(2.5–)3.0–3.5(–4.0) × 2.0–2.53.3 × 2.31.4
CERC8534(6.0–)7.0–9.0(–10.0) × (2.0–)3.0–3.5(–4.0)7.9 × 3.22.5(3.0–)3.5–4.5(–5.0) × 2.0–3.04.0 × 2.51.6
CERC8539(5.5–)6.5–10.5(–12.5) × (2.5–)3.0–4.0(–4.5)8.4 × 3.42.53.0–4.0(–4.5) × 2.0–3.03.6 × 2.51.4
Averaged(5.5–)6.5–9.5(–12.5) × (2.0–)3.0–4.0(–4.5)7.9 × 3.32.4 (2.5–)3.0–4.0(–5.0) × 2.0–2.5(–3.0)3.7 × 2.41.5
Tab.5  Primary conidial and secondary conidia measurements of three Quambalaria species identified in this study
1 Chen S X, Chen X F. Technical problems and thinking on eucalypt plantation management in China. Eucalypt Science & Technology, 2013, 30(3): 52–59 (in Chinese)
2 Qi S X. Eucalyptus in China. Bejing: China Forestry House Press, 2002 (in Chinese)
3 Qi S X, Wang H F, Wen Y Q. The Manual of Eucalyptus Plantation. Beijing: China Forestry House Press, 2006 (in Chinese)
4 Xie Y J, Arnold R J, Wu Z H, Chen S F, Du A P, Luo J Z. Advances in eucalypt research in China. Frontiers of Agricultural Science and Engineering , 2017, 
5 Zhou X D, Wingfield M J. Eucalypt diseases and their management in China. Australasian Plant Pathology, 2011, 40(4): 339–345
https://doi.org/10.1007/s13313-011-0053-y
6 Cortinas M N, Burgess T, Dell B, Xu D, Crous P W, Wingfield B D, Wingfield M J. First record of Colletogloeopsis zuluense comb. nov., causing a stem canker of Eucalyptus in China. Mycological Research, 2006, 110(2): 229–236
https://doi.org/10.1016/j.mycres.2005.08.012 pmid: 16378717
7 Chen S F, Barnes I, Chungu D, Roux J, Wingfield M J, Xie Y J, Zhou X D. High population diversity and increasing importance of the Eucalyptus stem canker pathogen, Teratosphaeria zuluensis, in South China. Australasian Plant Pathology, 2011, 40(4): 407–415
https://doi.org/10.1007/s13313-011-0051-0
8 Chen S F, Pavlic D, Roux J, Slippers B, Xie Y J, Wingfield M J, Zhou X D. Characterization of Botryosphaeriaceae from plantation-grown Eucalyptus species in South China. Plant Pathology, 2011, 60(4): 739–751
https://doi.org/10.1111/j.1365-3059.2011.02431.x
9 Chen S F, Gryzenhout M, Roux J, Xie Y J, Wingfield M J, Zhou X D. Identification and pathogenicity of Chrysoporthe cubensis on Eucalyptus and Syzygium spp. in South China. Plant Disease, 2010, 94(9): 1143–1150
https://doi.org/10.1094/PDIS-94-9-1143
10 Chen S, Gryzenhout M, Roux J, Xie Y, Wingfield M J, Zhou X. Novel species of Celoporthe from Eucalyptus and Syzygium trees in China and Indonesia. Mycologia, 2011, 103(6): 1384–1410
https://doi.org/10.3852/11-006 pmid: 21700641
11 Chen S F, Van Wyk M, Roux J, Wingfield M J, Xie Y J, Zhou X D. Taxonomy and pathogenicity of Ceratocystis species on Eucalyptus trees in South China, including C. chinaeucensis sp. nov. Fungal Diversity, 2013, 58(1): 267–279
https://doi.org/10.1007/s13225-012-0214-5
12 Lombard L, Zhou X D, Crous P W, Wingfield B D, Wingfield M J. Calonectria species associated with cutting rot of Eucalyptus. Persoonia, 2010, 24(1): 1–11
https://doi.org/10.3767/003158510X486568 pmid: 20664755
13 Lombard L, Chen S F, Mou X, Zhou X D, Crous P W, Wingfield M J. New species, hyper-diversity and potential importance of Calonectria spp. from Eucalyptus in South China. Studies in Mycology, 2015, 80(2): 151–188
https://doi.org/10.1016/j.simyco.2014.11.003 pmid: 26955194
14 Chen S F, Lombard L, Roux J, Xie Y J, Wingfield M J, Zhou X D. Novel species of Calonectria associated with Eucalyptus leaf blight in Southeast China. Persoonia, 2011, 26(1): 1–12
https://doi.org/10.3767/003158511X555236 pmid: 22025800
15 Burgess T I, Andjic V, Hardy G S, Dell B, Xu D. First report of Phaeophleospora destructans in China. Journal of Tropical Forest Science, 2006, 18(2): 144–146
16 Burgess T I, Barber P A, Sufaati S, Xu D, Hardy G S, Dell B. Mycosphaerella spp. on Eucalyptus in Asia: new species, new hosts and new records. Fungal Diversity, 2007, 24(2): 135–157
17 Zhou X D, de Beer Z W, Xie Y J, Pegg G S, Wingfield M J. DNA-based identification of Quambalaria pitereka causing severe leaf blight of Corymbia citriodora in China. Fungal Diversity, 2007, 25(5): 245–254
18 Walker J, Bertus A L. Shoot blight of Eucalyptus spp. caused by an undescribed species of Ramularia. Proceedings of the Linnean Society of New South Wales, 1971, 96(2): 108–115
19 Bertus A L, Walker J. Ramularia on Eucalyptus and Angophora. Australasian Plant Pathology Society Newsletter, 1974, 3(1): 3
https://doi.org/10.1071/APP9740003
20 Wingfield M J, Crous P W, Swart W J. Sporothrix eucalypti (sp. nov.), a shoot and leaf pathogen of Eucalyptus in South Africa. Mycopathologia, 1993, 123(3): 159–164
https://doi.org/10.1007/BF01111267
21 Simpson J A. Quambalaria, a new genus of eucalypt pathogens. Australasian Mycologist, 2000, 19(2): 57–62
22 de Beer Z W, Begerow D, Bauer R, Pegg G S, Crous P W, Wingfield M J. Phylogeny of the Quambalariaceae fam. nov., including important Eucalyptus pathogens in South Africa and Australia. Studies in Mycology, 2006, 55: 289–298
https://doi.org/10.3114/sim.55.1.289 pmid: 18490987
23 Paap T, Burgess T I, McComb J A, Shearer B L, Hardy G E. Quambalaria species implicated in canker and shoot blight diseases causing decline of Corymbia calophylla and C. ficifolia in the southwest of Western Australia. Mycological Research, 2008, 112(1): 57–69
https://doi.org/10.1016/j.mycres.2007.10.005 pmid: 18222081
24 Pegg G S, O’Dwyer C, Carnegie A J, Burgess T I, Wingfield M J, Drenth A. Quambalaria species associated with plantation and native eucalypts in Australia. Plant Pathology, 2008, 57(4): 702–714
https://doi.org/10.1111/j.1365-3059.2008.01840.x
25 Pegg G S, Carnegie A J, Wingfield M J, Drenth A. Quambalaria species: increasing threat to eucalypt plantations in Australia. Southern Forests, 2009, 71(2): 111–114
https://doi.org/10.2989/SF.2009.71.2.4.819
26 Cheewangkoon R, Groenewald J Z, Summerell B A, Hyde K D, To-Anun C, Crous P W. Myrtaceae, a cache of fungal biodiversity. Persoonia, 2009, 23(1): 55–85
https://doi.org/10.3767/003158509X474752 pmid: 20198162
27 Braganca H, Diogo E L F, Neves L, Valente C, Araujo C, Bonifacio L, Phillips A J L. Quambalaria eucalypti a pathogen of Eucalyptus globulus newly reported in Portugal and in Europe. Forest Pathology, 2016, 46(1): 67–75
https://doi.org/10.1111/efp.12221
28 Pérez C A, de Beer Z W, Altier N A, Wingfield M J, Blanchette R A. Discovery of the eucalypt pathogen Quambalaria eucalypti infecting a non-Eucalyptus host in Uruguay. Australasian Plant Pathology, 2008, 37(6): 600–604
https://doi.org/10.1071/AP08063
29 Braun U. A monograph of CercosporellaRamularia and allied genera (phytopathogenic hyphomycetes). Volume 2. Munchen: IHW-Verlag, 1998
30 Roux J, Mthalane Z L, de Beer Z W, Eisenberg B, Wingfield M J. Quambalaria leaf and shoot blight on Eucalyptus in South Africa. Australasian Plant Pathology, 2006, 35(4): 427–433
https://doi.org/10.1071/AP06044
31 van Burik J A H, Schreckhise R W, White T C, Bowden R A, Myerson D. Comparison of six extraction techniques for isolation of DNA from filamentous fungi. Medical Mycology, 1998, 36(5): 299–303
https://doi.org/10.1080/02681219880000471 pmid: 10075499
32 Chen S F, Wingfield M J, Li G Q, Liu F F. Corticimorbus sinomyrti gen. et sp. nov. (Cryphonectriaceae) pathogenic to native Rhodomyrtus tomentosa (Myrtaceae) in South China. Plant Pathology, 2016, 65(8): 1254–1266
https://doi.org/10.1111/ppa.12507
33 Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 2007, 24(8): 1596–1599
https://doi.org/10.1093/molbev/msm092 pmid: 17488738
34 Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 2002, 30(14): 3059–3066
https://doi.org/10.1093/nar/gkf436 pmid: 12136088
35 Guindon S, Gascuel O, Rannala B. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 2003, 52(5): 696–704
https://doi.org/10.1080/10635150390235520 pmid: 14530136
36 Posada D, Crandall K A. MODELTEST: testing the model of DNA substitution. Bioinformatics, 1998, 14(9): 817–818
https://doi.org/10.1093/bioinformatics/14.9.817 pmid: 9918953
37 Alfenas A C, Zauza E A V, Rosa O P P, Assis T F. Sporothrix eucalypti a new pathogen of eucalyptus in Brazil. Fitopatologia Brasileira, 2001, 26(2): 221
https://doi.org/10.1590/S0100-41582001000200021
38 Zauza E A Z, Alfenas A C, Langrell S R H, Tommerup I C. Detection and identification of Quambalaria species in Eucalyptus nurseries and plantations. In: Proceedings of the 8th International Congress of Plant Pathology, Christchurch. Sydney: Horticulture Australia, 2003, 113
39 Burgess T I, Wingfield M J. Pathogens on the move: a 100-year global experiment with planted eucalypts. Bioscience, 2017, 67(1): 14–25
https://doi.org/10.1093/biosci/biw146
[1] FASE-17173-OF-CSF_suppl_1 Download
Related articles from Frontiers Journals
[1] Yaojian XIE, Roger J. ARNOLD, Zhihua WU, Shuaifei CHEN, Apeng DU, Jianzhong LUO. Advances in eucalypt research in China[J]. Front. Agr. Sci. Eng. , 2017, 4(4): 380-390.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed