Calcium signaling-mediated phosphorylation controls zinc allocation in Arabidopsis

Yanjun Fang , Fangru Liu , Chenyue Yang , Xuening Ma , Cun Wang , Zhenqian Zhang , Chuanfeng Ju

Stress Biology ›› 2025, Vol. 5 ›› Issue (1) : 78

PDF
Stress Biology ›› 2025, Vol. 5 ›› Issue (1) :78 DOI: 10.1007/s44154-025-00276-z
Original Paper
research-article

Calcium signaling-mediated phosphorylation controls zinc allocation in Arabidopsis

Author information +
History +
PDF

Abstract

Zinc (Zn) deficiency in soil can directly result in Zn deficiency in crops, subsequently causing Zn deficiency in humans. Currently, the physiological adaptation mechanisms by which plants respond to Zn deficiency have been fairly well characterized. However, the regulatory mechanisms governing Zn transport in plants remain poorly understood. In this study, we found that CBL1/4/5/8/9-CIPK3/9/23/26 complexes interact with the Zn transporter ZIP2 and phosphorylate its Ser190 residue. Biochemical analyses and complementation experiments in yeast and plants demonstrated that the Ser190 site is essential for the transport activity of ZIP2, and that the Zn transporter ZIP2 is involved in the transport of Zn between the columnar sheath cells in the roots. Notably, the hybrid complementation lines carrying CBL-CIPK-mediated phosphorylation sites of ZIP2 and ZIP12 exhibited enhanced tolerance to Zn deficiency. Overall, these findings suggest that CBL-CIPK-ZIP2/ZIP12 phosphorylation network coordinates Zn allocation in Arabidopsis, providing a potential target for improving Zn deficiency and developing Zn-enriched crop varieties.

Keywords

Calcium signaling / Phosphorylation / CBL-CIPK / ZIP2 / Arabidopsis

Cite this article

Download citation ▾
Yanjun Fang, Fangru Liu, Chenyue Yang, Xuening Ma, Cun Wang, Zhenqian Zhang, Chuanfeng Ju. Calcium signaling-mediated phosphorylation controls zinc allocation in Arabidopsis. Stress Biology, 2025, 5(1): 78 DOI:10.1007/s44154-025-00276-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ajeesh Krishna TP, Maharajan T, Victor Roch G, Ignacimuthu S, Antony Ceasar S. Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants. Front Plant Sci, 2020, 11: 662

[2]

Amini S, Arsova B, Hanikenne M. The molecular basis of zinc homeostasis in cereals. Plant Cell Environ, 2022, 45: 1339-1361

[3]

Assunção AG, Herrero E, Lin YF, Huettel B, Talukdar S, Smaczniak C, Immink RG, van Eldik M, Fiers M, Schat H, Aarts MG. Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc Natl Acad Sci USA, 2010, 107: 10296-10301

[4]

Boudsocq M, Sheen J. CDPKs in immune and stress signaling. Trends Plant Sci, 2013, 18: 30-40

[5]

Chen X, Ding Y, Yang Y, Song C, Wang B, Yang S, Guo Y, Gong Z. Protein kinases in plant responses to drought, salt, and cold stress. J Integr Plant Biol, 2021, 63: 53-78

[6]

Clemens S. The cell biology of zinc. J Exp Bot, 2022, 73: 1688-1698

[7]

Dong Q, Wallrad L, Almutairi BO, Kudla J. Ca2+signaling in plant responses to abiotic stresses. J Integr Plant Biol, 2022, 64: 287-300

[8]

Fang Y, Ju C, Javed L, Cao C, Deng Y, Gao Y, Chen X, Sun L, Zhao Y, Wang C. Plasma membrane-associated calcium signaling modulates zinc homeostasis in Arabidopsis. Sci Bull, 2025

[9]

Gao H, Wang T, Zhang Y, Li L, Wang C, Guo S, Zhang T, Wang C. GTPase ROP6 negatively modulates phosphate deficiency through inhibition of PHT1;1 and PHT1;4 inArabidopsis thaliana. J Integr Plant Biol, 2021, 63: 1775-1786

[10]

Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci U S A, 1998, 95: 7220-7224

[11]

Guo Y, Halfter U, Ishitani M, Zhu JK. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell, 2001, 13: 1383-1400

[12]

Ho CH, Lin SH, Hu HC, Tsay YF. CHL1 functions as a nitrate sensor in plants. Cell, 2009, 138: 1184-1194

[13]

Inaba S, Kurata R, Kobayashi M, Yamagishi Y, Mori I, Ogata Y, Fukao Y. Identification of putative target genes of bZIP19, a transcription factor essential for Arabidopsis adaptation to Zn deficiency in roots. Plant J, 2015, 84: 323-334

[14]

Ju C, Zhang Z, Deng J, Miao C, Wang Z, Wallrad L, Javed L, Fu D, Zhang T, Kudla J, Gong Z, Wang C. Ca2+-dependent successive phosphorylation of vacuolar transporter MTP8 by CBL2/3-CIPK3/9/26 and CPK5 is critical for manganese homeostasis in Arabidopsis. Mol Plant, 2022, 15: 419-437

[15]

Ju C, Javed L, Fang Y, Zhao Y, Cao C, Deng Y, Gao Y, Sun L, Wang C. Arabidopsiscalcium-dependent protein kinases 4/5/6/11 negatively regulate hydrotropism via phosphorylation of MIZU-KUSSEI1. Plant Cell, 2024

[16]

Lee S, Lee J, Ricachenevsky FK, Punshon T, Tappero R, Salt DE, Guerinot ML. Redundant roles of four ZIP family members in zinc homeostasis and seed development inArabidopsis thaliana. Plant J, 2021, 108: 1162-1173

[17]

Lilay GH, Persson DP, Castro PH, Liao F, Alexander RD, Aarts MGM, Assunção AGL. ArabidopsisbZIP19 and bZIP23 act as zinc sensors to control plant zinc status. Nat Plants, 2021, 7: 137-143

[18]

Lin YF, Liang HM, Yang SY, Boch A, Clemens S, Chen CC, Wu JF, Huang JL, Yeh KC. ArabidopsisIRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytol, 2009, 182: 392-404

[19]

Luan S. The CBL-CIPK network in plant calcium signaling. Trends Plant Sci, 2009, 14: 37-42

[20]

Maierhofer T, Diekmann M, Offenborn JN, Lind C, Bauer H, Hashimoto K, S Al-Rasheid KA, Luan S, Kudla J, Geiger D, Hedrich R (2014) Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid. Sci Signal 7:ra86. https://doi.org/10.1126/scisignal.2005703

[21]

Milner MJ, Seamon J, Craft E, Kochian LV. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot, 2013, 64: 369-381

[22]

Natasha N, Shahid M, Bibi I, Iqbal J, Khalid S, Murtaza B, Bakhat HF, Farooq ABU, Amjad M, Hammad HM, Niazi NK, Arshad M. Zinc in soil-plant-human system: a data-analysis review. Sci Total Environ, 2022, 808 152024

[23]

Ragel P, Ródenas R, García-Martín E, Andrés Z, Villalta I, Nieves-Cordones M, Rivero RM, Martínez V, Pardo JM, Quintero FJ, Rubio F. The CBL-interacting protein kinase CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsis roots. Plant Physiol, 2015, 169: 2863-2873

[24]

Sinclair SA, Krämer U. The zinc homeostasis network of land plants. Biochimica Et Biophysica Acta (BBA), 2012, 1823: 1553-1567

[25]

Skalny AV, Aschner M, Tinkov AA (2021) Chapter Eight - ZincZ. In: Advances in food and nutrition research. https://doi.org/10.1016/bs.afnr.2021.01.003

[26]

Stanton C, Sanders D, Krämer U, Podar D. Zinc in plants: integrating homeostasis and biofortification. Mol Plant, 2022, 15: 65-85

[27]

Straub T, Ludewig U, Neuhäuser B. The kinase CIPK23 inhibits ammonium transport in Arabidopsis thaliana. PlantCell, 2017, 29: 409-422

[28]

Su H, Wang T, Ju C, Deng J, Zhang T, Li M, Tian H, Wang C. Abscisic acid signaling negatively regulates nitrate uptake via phosphorylation of NRT1.1 by SnRK2s in Arabidopsis. J Integr Plant Biol, 2021, 63: 597-610

[29]

Tang RJ, Zhao FG, Garcia VJ, Kleist TJ, Yang L, Zhang HX, Luan S. Tonoplast CBL-CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis. Proc Natl Acad Sci U S A, 2015, 112: 3134-3139

[30]

Tang RJ, Zhao FG, Yang Y, Wang C, Li K, Kleist TJ, Lemaux PG, Luan S. A calcium signalling network activates vacuolar K+remobilization to enable plant adaptation to low-K environments. Nat Plants, 2020, 6: 384-393

[31]

Thiébaut N, Hanikenne M (2022) Zinc deficiency responses: bridging the gap between Arabidopsis and dicotyledonous crops. J Exp Bot 73:1699–1716. https://doi.org/10.1093/jxb/erab491

[32]

Verma P, Sanyal SK, Pandey GK. Ca2+–CBL–CIPK: a modulator system for efficient nutrient acquisition. Plant Cell Rep, 2021, 40: 2111-2122

[33]

Wang F-Z, Li J-F. Weitsing: a new face of Ca2+-permeable channels in plant immunity. Stress Biol, 2023, 3: 25

[34]

Wang T, Chen X, Ju C, Wang C. Calcium signaling in plant mineral nutrition: from uptake to transport. Plant Communications, 2023, 4 100678

[35]

Wang X-T, Liu K-H, Li Y, Ren Y-Y, Li Q, Wang B-T. Zinc metalloprotease FgM35, which targets the wheat zinc-binding protein TaZnBP, contributes to the virulence ofFusarium graminearum. Stress Biol, 2024, 4: 45

[36]

Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, Wu WH. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 2006, 125: 1347-1360

[37]

Yang Y, Guo Y. Unraveling salt stress signaling in plants. J Integr Plant Biol, 2018, 60: 796-804

[38]

Zeng H, Wu H, Yan F, Yi K, Zhu Y. Molecular regulation of zinc deficiency responses in plants. J Plant Physiol, 2021, 261 153419

[39]

Zhang H, Lang Z, Zhu JK, Wang P (2025) Tackling abiotic stress in plants: recent insights and trends. Stress Biol 5:8. https://doi.org/10.1007/s44154-025-00216-x

[40]

Zhang Z, Fu D, Sun Z, Ju C, Miao C, Wang Z, Xie D, Ma L, Gong Z, Wang C. Tonoplast-associated calcium signaling regulates manganese homeostasis in Arabidopsis. Mol Plant, 2021, 14: 805-819

[41]

Zhang Z, Fu D, Xie D, Wang Z, Zhao Y, Ma X, Huang P, Ju C, Wang C. CBL1/9-CIPK23-NRAMP1 axis regulates manganese toxicity. New Phytol, 2023, 239: 660-672

[42]

Zhao H, Eide D (1996) The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc Natl Acad Sci U S A 93:2454–2458. https://doi.org/10.1073/pnas.93.6.2454

Funding

National Natural Science Foundation of China(32470268)

Chinese Universities Scientific Fund(Grant.No.2452023069)

Northwest A and F University(A1080524001)

RIGHTS & PERMISSIONS

The Author(s)

PDF

28

Accesses

0

Citation

Detail

Sections
Recommended

/