Hypoxia-induced oxidative stress and mitochondrial damage initiate ferroptosis in Cryptocaryon irritans, a protozoan parasite of marine fish

Baotun Wang , Zhi Luo , Jingyu Zhuang , Zhicheng Li , Xueli Lai , Huicheng Wu , Qing Han , Jizhen Cao , Hebing Wang , Chuanfu Dong , Anxing Li

Stress Biology ›› 2026, Vol. 6 ›› Issue (1) : 6

PDF
Stress Biology ›› 2026, Vol. 6 ›› Issue (1) :6 DOI: 10.1007/s44154-025-00275-0
Original Paper
research-article

Hypoxia-induced oxidative stress and mitochondrial damage initiate ferroptosis in Cryptocaryon irritans, a protozoan parasite of marine fish

Author information +
History +
PDF

Abstract

Cryptocaryon irritans is an obligate parasitic ciliate that significantly endangers marine fish. Hypoxia suppresses the development and hatchability of C. irritans during the tomont stage, which often develops on the seafloor under hypoxic conditions. Despite this knowledge, the underlying adaptation mechanisms of tomonts remain poorly understood. We aimed to determine how hypoxia reprograms tomont metabolism and whether ferroptosis contributes to hypoxia-induced vulnerability. Herein, metabolomic profiling revealed 2,964 differential metabolites under hypoxia. Notably, there were significantly elevated glucose levels, suggesting enhanced glycolytic activity. Enzymatic and qRT-PCR analyses further confirmed hypoxia-induced metabolic reprogramming, including increased hexokinase and pyruvate kinase activities and upregulation of glycolysis-related genes. Hypoxia also induced surface depressions, disrupted cell walls, mitochondrial deformation, reduced mitochondrial membrane potential, disrupted energy homeostasis, and increased NAD⁺/NADH ratio fluctuations and lactate accumulation. To probe ferroptotic susceptibility under hypoxia, hypoxic tomonts were exposed to the ferroptosis inducer erastin, resulting in a hatchability of 13% and promoting reactive oxygen species (ROS) accumulation, lipid peroxidation, and mitochondrial damage. Fluorescence staining revealed strong PI and ROS signals in hypoxic tomonts exposed to the ferroptosis inducer erastin. Notably, mitochondrial dysfunction was accompanied by Ca2⁺ and Fe2⁺ accumulation. Ferroptosis-related genes were upregulated at 24 h post-hypoxia induction. In contrast, gpx4 and mitochondrial electron transport chain components were downregulated at 48 h post-hypoxia induction. These findings demonstrate that hypoxia triggers glycolytic reprogramming and mitochondrial dysfunction in C. irritans, whereas erastin induces ferroptosis under hypoxic stress. This study provides new insights into protozoan hypoxia adaptation and highlights ferroptosis as a potential therapeutic target for controlling parasitic infections in marine aquaculture.

Keywords

Cryptocaryon irritans / Hypoxia / Metabolic reprogramming / Ferroptosis / Oxidative stress

Cite this article

Download citation ▾
Baotun Wang, Zhi Luo, Jingyu Zhuang, Zhicheng Li, Xueli Lai, Huicheng Wu, Qing Han, Jizhen Cao, Hebing Wang, Chuanfu Dong, Anxing Li. Hypoxia-induced oxidative stress and mitochondrial damage initiate ferroptosis in Cryptocaryon irritans, a protozoan parasite of marine fish. Stress Biology, 2026, 6(1): 6 DOI:10.1007/s44154-025-00275-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abe H. Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry (Mosc), 2000, 65: 757-765

[2]

Berthiaume JM, Kurdys JG, Muntean DM, Rosca MG. Mitochondrial NAD+/NADH redox state and diabetic cardiomyopathy. Antioxid Redox Signal, 2019, 30: 375-398

[3]

Boxma B, de Graaf RM, van der Staay GWM, van Alen TA, Ricard G, Gabaldón T, van Hoek AHAM, Moon-van der Staay SY, Koopman WJH, van Hellemond JJ, Tielens AGM, Friedrich T, Veenhuis M, Huynen MA, Hackstein JHP. An anaerobic mitochondrion that produces hydrogen. Nature, 2005, 434: 74-79

[4]

Bravo-Torres JC, Villagómez-Castro JC, Calvo-Méndez C, Flores-Carreón A, López-Romero E. Purification and biochemical characterisation of a membrane-bound α-glucosidase from the parasite Entamoeba histolytica. Int J Parasitol, 2004, 34: 455-462

[5]

D’Elia M, Marino C, Celano R, Napolitano E, Colarusso C, Sorrentino R, D’Ursi AM, Rastrelli L. Impact of a formulation containing chaga extract, coenzyme Q10, and alpha-lipoic acid on mitochondrial dysfunction and oxidative stress: NMR metabolomic insights into cellular energy. Antioxidants, 2025, 14: 753

[6]

Dan X, Li A, Lin X, Teng N, Zhu X. A standardized method to propagate Cryptocaryon irritans on a susceptible host pompano Trachinotus ovatus. Aquaculture, 2006, 258: 127-133

[7]

De Stefani D, Patron M, Rizzuto R. Structure and function of the mitochondrial calcium uniporter complex. Biochim Biophys Acta, 2015, 1853: 2006-2011

[8]

DeMichele E, Buret AG, Taylor CT. Hypoxia-inducible factor-driven glycolytic adaptations in host-microbe interactions. Pflugers Arch Eur J Physiol, 2024, 476: 1353-1368

[9]

Du Y, Guo Z. Recent progress in ferroptosis: inducers and inhibitors. Cell Death Discov, 2022, 8: 1-10

[10]

Fan X, Yang M, Lang Y, Lu S, Kong Z, Gao Y, Shen N, Zhang D, Lv Z. Mitochondrial metabolic reprogramming in diabetic kidney disease. Cell Death Dis, 2024, 15: 1-12

[11]

Fuhrmann DC, Brüne B. Mitochondrial composition and function under the control of hypoxia. Redox Biol, 2017, 12: 208-215

[12]

Gan B. Mitochondrial regulation of ferroptosis. J Cell Biol, 2021, 220: e202105043

[13]

Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and transferrin regulate ferroptosis. Mol Cell, 2015, 59: 298-308

[14]

Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB, Jiang X. Role of mitochondria in ferroptosis. Mol Cell, 2019, 73: 354-363.e3

[15]

Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem Biophys Res Commun, 2017, 482: 419-425

[16]

Graf JS, Schorn S, Kitzinger K, Ahmerkamp S, Woehle C, Huettel B, Schubert CJ, Kuypers MMM, Milucka J. Anaerobic endosymbiont generates energy for ciliate host by denitrification. Nature, 2021, 591: 445-450

[17]

Han F, Hu Y, Wu M, He Z, Tian H, Zhou L. Structures of Tetrahymena thermophila respiratory megacomplexes on the tubular mitochondrial cristae. Nat Commun, 2023, 14: 2542

[18]

Harner ME, Unger A-K, Geerts WJ, Mari M, Izawa T, Stenger M, Geimer S, Reggiori F, Westermann B, Neupert W. An evidence based hypothesis on the existence of two pathways of mitochondrial crista formation. Elife, 2016, 5: e18853

[19]

He B, Liu Z, Wang Y, Cheng L, Qing Q, Duan J, Xu J, Dang X, Zhou Z, Li Z. Imidacloprid activates ROS and causes mortality in honey bees (Apis mellifera) by inducing iron overload. Ecotoxicol Environ Saf, 2021, 228: 112709

[20]

Hjort K, Goldberg AV, Tsaousis AD, Hirt RP, Embley TM. Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos Trans R Soc Lond B Biol Sci, 2010, 365: 713-727

[21]

Huang M, Cao X, Jiang Y, Shi Y, Ma Y, Hu D, Song X. Evaluation of the combined effect of artemisinin and ferroptosis inducer RSL3 against toxoplasma gondii. Int J Mol Sci, 2023, 24: 229

[22]

Imbard A, Bouchereau J, Arnoux J-B, Brassier A, Schiff M, Bérat C-M, Pontoizeau C, Benoist J-F, Josse C, Montestruc F, de Lonlay P. Citrulline in the management of patients with urea cycle disorders. Orphanet J Rare Dis, 2023, 18: 207

[23]

Jiang B, Guo Q, Li Z, Guo Y, Su Y, Li W, Liu C, Li A. Biofouling of nets is a primary source of cryptocaryoniasis outbreaks in cage cultures. Aquaculture, 2022, 550: 737892

[24]

Jiang S, Li H, Zhang L, Mu W, Zhang Y, Chen T, Wu J, Tang H, Zheng S, Liu Y, Wu Y, Luo X, Xie Y, Ren J (2025) Generic Diagramming Platform (GDP): a comprehensive database of high-quality biomedical graphics. Nucleic Acids Res 53(D1):D1670–6. https://doi.org/10.1093/nar/gkae973

[25]

Kong J, Zhou L, Yuan Y, Wang L, Kang T, Wu J, Xie X, Yin F. Salinity regulates the formation and hatching of Cryptocaryon irritans tomonts, affecting infectivity to Larimichthys crocea. Aquaculture, 2022, 554: 738166

[26]

Li Y, Jiang B, Mo Z, Li A, Dan X. Cryptocaryon irritans (Brown, 1951) is a serious threat to aquaculture of marine fish. Rev Aquacult, 2021, 14: 218-236

[27]

Li S, Xu W, Wang H, Tang T, Ma J, Cui Z, Shi H, Qin T, Zhou H, Li L, Jiang T, Li C. Ferroptosis plays an essential role in the antimalarial mechanism of low-dose dihydroartemisinin. Biomed Pharmacother, 2022, 148: 112742

[28]

Li Z, Zhuang J, Cao J, Han Q, Luo Z, Wang B, Wang H, Dong C, Li A. Fine structural features of the free-living stages of Amyloodinium ocellatum (Dinoflagellata, Thoracosphaeraceae): a marine fish ectoparasite. J Eukaryot Microbiol, 2024, 72: e13067

[29]

Lindmark DG, Müller M. Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem, 1973, 248: 7724-7728

[30]

Liu X, Shi M, Bai Y, Su X, Liu Y, Wu J, Chen L. Hypoxia and ferroptosis. Cell Signal, 2024, 122: 111328

[31]

Lloyd D, Chapman A, Ellis JE, Hillman K, Paget TA, Yarlett N, Williams AG (2021) Oxygen levels are key to understanding “Anaerobic” protozoan pathogens with micro-aerophilic lifestyles. In: Advances in microbial physiology. Academic Press, pp 163–240. https://doi.org/10.1016/bs.ampbs.2021.09.001

[32]

Loenarz C, Coleman ML, Boleininger A, Schierwater B, Holland PWH, Ratcliffe PJ, Schofield CJ. The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens. EMBO Rep, 2011, 12: 63-70

[33]

Longo N, Frigeni M, Pasquali M. Carnitine transport and fatty acid oxidation. Biochim Biophys Acta, 2016, 1863: 2422-2435

[34]

Ma R, Fan X, Yin F, Ni B, Gu F. Ultrastructural features of the tomont of Cryptocaryon irritans (Ciliophora: Prostomatea), a parasitic ciliate of marine fishes. Parasitology, 2017, 144: 720-729

[35]

Maher P, van Leyen K, Dey PN, Honrath B, Dolga A, Methner A. The role of Ca2+ in cell death caused by oxidative glutamate toxicity and ferroptosis. Cell Calcium, 2018, 70: 47-55

[36]

Mai YZ, Li YW, Li RJ, Li W, Huang XZ, Mo ZQ, Li AX. Proteomic analysis of differentially expressed proteins in the marine fish parasitic ciliate Cryptocaryon irritans. Vet Parasitol, 2015, 211: 1-11

[37]

Mironova GD, Pavlik LL, Kirova YI, Belosludtseva NV, Mosentsov AA, Khmil NV, Germanova EL, Lukyanova LD. Effect of hypoxia on mitochondrial enzymes and ultrastructure in the brain cortex of rats with different tolerance to oxygen shortage. J Bioenerg Biomembr, 2019, 51: 329-340

[38]

Mo Z, Li Y, Wang H, Wang J, Ni L, Yang M, Lao G, Luo X, Li A, Dan X. Comparative transcriptional profile of the fish parasite Cryptocaryon irritans. Parasit Vectors, 2016, 9: 630

[39]

Morozov YM, Rakic P. Disorder of golgi apparatus precedes anoxia-induced pathology of mitochondria. Int J Mol Sci, 2023, 24: 4432

[40]

Murphy MP. How mitochondria produce reactive oxygen species. Biochem J, 2008, 417: 1-13

[41]

Obirikorang KA, Appiah-Kubi R, Adjei-Boateng D, Sekey W, Duodu CP. Acute hyperthermia and hypoxia tolerance of two improved strains of Nile tilapia (Oreochromis niloticus). Stress Biol, 2023, 3: 21

[42]

Prokić MD, Hermes-Lima M, Moreira DC. Redox metabolism in ecophysiology and evolution, 2nd edition. Antioxidants, 2025, 14: 755

[43]

Qiu X, Yao Y, Chen Y, Li Y, Sun X, Zhu X. TRPC5 promotes intermittent hypoxia-induced cardiomyocyte injury through oxidative stress. NSS, 2024, 16: 2125-2141

[44]

Roberts DJ, Miyamoto S. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ, 2015, 22: 248-257

[45]

Roman MR, Brandt SB, Houde ED, Pierson JJ. Interactive effects of hypoxia and temperature on coastal pelagic zooplankton and fish. Front Mar Sci, 2019, 6: 00139

[46]

Ruijter GJG, Bax M, Patel H, Flitter SJ, van de Vondervoort PJI, de Vries RP, vanKuyk PA, Visser J. Mannitol is required for stress tolerance in Aspergillus niger conidiospores. Eukaryot Cell, 2003, 2: 690-698

[47]

Saraiva FMS, Cosentino-Gomes D, Inacio JDF, Almeida-Amaral EE, Louzada-Neto O, Rossini A, Nogueira NP, Meyer-Fernandes JR, Paes MC. Hypoxia effects on Trypanosoma cruzi epimastigotes proliferation, differentiation, and energy metabolism. Pathogens, 2022, 11: 897

[48]

Sato M, Kusumi R, Hamashima S, Kobayashi S, Sasaki S, Komiyama Y, Izumikawa T, Conrad M, Bannai S, Sato H. The ferroptosis inducer erastin irreversibly inhibits system xc− and synergizes with cisplatin to increase cisplatin’s cytotoxicity in cancer cells. Sci Rep, 2018, 8: 968

[49]

Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol, 2014, 24: R453-R462

[50]

Schormann N, Hayden KL, Lee P, Banerjee S, Chattopadhyay D. An overview of structure, function, and regulation of pyruvate kinases. Protein Sci, 2019, 28: 1771-1784

[51]

Schug ZT, Peck B, Jones DT, Zhang Q, Grosskurth S, Alam IS, Goodwin LM, Smethurst E, Mason S, Blyth K, McGarry L, James D, Shanks E, Kalna G, Saunders RE, Jiang M, Howell M, Lassailly F, Thin MZ, Spencer-Dene B, Stamp G, van den Broek NJF, Mackay G, Bulusu V, Kamphorst JJ, Tardito S, Strachan D, Harris AL, Aboagye EO, Critchlow SE, Wakelam MJO, Schulze A, Gottlieb E. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell, 2015, 27(1): 57-71

[52]

Siddique Q, Xie X, Yin F. An integrated metabolomics and proteomics analysis reveals copper-zinc alloy surface contact-mediated metabolic disruption, lipid peroxidation, and osmotic imbalance of Cryptocaryon irritans tomonts. Aquaculture, 2025, 595: 741713

[53]

Smith KA, Waypa GB, Schumacker PT. Redox signaling during hypoxia in mammalian cells. Redox Biol, 2017, 13: 228-234

[54]

Stockwell BR, Jiang X. The chemistry and biology of ferroptosis. Cell Chem Biol, 2020, 27: 365-375

[55]

Sukhorukov VM, Bereiter-Hahn J. Anomalous diffusion induced by cristae geometry in the inner mitochondrial membrane. PLoS ONE, 2009, 4: e4604

[56]

Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res, 2021, 31: 107-125

[57]

Tang J, Wang X, Chen S, Chang T, Gu Y, Zhang F, Hou J, Luo Y, Li M, Huang J, Liu M, Zhang L, Wang Y, Shen X, Xu L. Disruption of glucose homeostasis by bacterial infection orchestrates host innate immunity through NAD+/NADH balance. Cell Rep, 2024, 43: 114648

[58]

Wang H, Liu C, Zhao Y, Gao G. Mitochondria regulation in ferroptosis. Eur J Cell Biol, 2020, 99: 151058

[59]

Wang B, Guo Q, Luo Z, Zhuang J, Wang C, Li Z, Li H, Han Q, Cao J, Wang H, Li A. The effect of varying dissolved oxygen levels on cryptocaryoniasis in cage-farmed Larimichthys crocea. Aquaculture, 2025, 594: 741373

[60]

Watanabe Y, How KH, Zenke K, Itoh N, Yoshinaga T. Dormancy induced by a hypoxic environment in tomonts of Cryptocaryon irritans, a parasitic ciliate of marine teleosts. Aquaculture, 2018, 485: 131-139

[61]

Wu H, Tang S, Lu Y, Cen Y, Deng Y, Li Y, Dan X, Mo Z. Role of immunoglobulin M in Trachinotus ovatus defense against Cryptocaryon irritans infection. Int J Biol Macromol, 2025, 319: 145556

[62]

Yang C, Ko B, Hensley CT, Jiang L, Wasti AT, Kim J, Sudderth J, Calvaruso MA, Lumata L, Mitsche M, Rutter J, Merritt ME, DeBerardinis RJ. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol Cell, 2014, 56: 414-424

[63]

Yin F, Yin J, Xie X, Jiang L. Water temperature affects Cryptocaryon irritans development, cryptocaryoniasis occurrence and an auxiliary treatment decision-making webpage. Aquaculture, 2023, 574: 739694

[64]

Zahid A, Abiodun OS, Xie X, Yin F. Lipid changes and molecular mechanism inducing cuproptosis in Cryptocaryon irritans after copper–zinc alloy exposure. Pestic Biochem Physiol, 2024, 199: 105756

[65]

Zhao Z, Jiang M, Huang J, Lin C, Guo W, Zhong Z, Huang Q, Liu S, Deng H, Zhou Y. Honokiol induces apoptosis-like death in Cryptocaryon irritans tomont. Parasit Vectors, 2023, 16: 287

[66]

Zheng X, Liang Y, Zhang C. Ferroptosis regulated by hypoxia in cells. Cells, 2023, 12: 1050

[67]

Zhong Z, Li Z, Li H, Guo Q, Wang C, Cao J, Li A. Glutathione metabolism in Cryptocaryon irritans involved in defense against oxidative stress induced by zinc. Parasit Vectors, 2022, 15: 318

[68]

Zhong Z, Li H, Li Z, Cao J, Wang C, Luo Z, Wang B, Zhuang J, Han Q, Li A. Inhibiting thioredoxin glutathione reductase is a promising approach to controlling Cryptocaryon irritans infection in fish. Vet Parasitol, 2023, 320: 109972

[69]

Zhong Z, Li Z, Jiang B, Guo Q, Guo Y, Li A (2021) Using red tilapia to control Cryptocaryon irritans infestations. Aquaculture 541. https://doi.org/10.1016/j.aquaculture.2021.736763

[70]

Zhou Z, Luo M, Zhang H, Yin Y, Cai Y, Zhu Z. Metabolite annotation from knowns to unknowns through knowledge-guided multi-layer metabolic networking. Nat Commun, 2022, 13: 6656

Funding

Dedicated Fund for Marine Economic Development in Guangdong Province(GDNRC[2024]26)

National Natural Science Foundation of China(32273176)

RIGHTS & PERMISSIONS

The Author(s)

PDF

59

Accesses

0

Citation

Detail

Sections
Recommended

/