Review: Genomic insights into the adaptive traits and stress resistance in modern horses

Halima Jafari , Belete Kuraz Abebe , Li Cong , Zulfiqar Ahmed , Wang Zhaofei , Minhao Sun , Gemingguli Muhatai , Lei Chuzhao , Ruihua Dang

Stress Biology ›› 2026, Vol. 6 ›› Issue (1) : 5

PDF
Stress Biology ›› 2026, Vol. 6 ›› Issue (1) :5 DOI: 10.1007/s44154-025-00274-1
Review
review-article

Review: Genomic insights into the adaptive traits and stress resistance in modern horses

Author information +
History +
PDF

Abstract

The domestication and selective breeding of horses have profoundly influenced the emergence of adaptive traits and stress resistance mechanisms, shaping modern equine populations. This comprehensive review examines the genomic foundations of these traits, emphasizing recent advancements in high-throughput sequencing technologies and bioinformatics. These tools have elucidated the genetic underpinnings of key characteristics such as endurance, speed, metabolic efficiency, and disease resistance. Importantly, the review identifies and connects gene variants associated with thermoregulation, immune function, and cellular repair mechanisms, shedding light on their synergistic roles in enabling horses to adapt to diverse environmental challenges and physiological stressors. By establishing these causal links, this review enhances the coherence between genomic findings and their implications for equine biology. Furthermore, the integration of genomic insights provides a framework for addressing contemporary challenges in horse management and conservation. Issues such as climate change, disease outbreaks, and the preservation of genetic diversity demand innovative strategies grounded in genomics. By bridging the findings on equine adaptation and stress resistance mechanisms with practical applications in breeding and management, this review highlights the potential of genomics to ensure the sustainability and resilience of equine populations in the face of evolving environmental and societal pressures. This expanded perspective underscores the critical role of genomics in both understanding the evolutionary trajectory of horses and guiding future practices in equine health and conservation.

Keywords

Adaptive traits / Environmental stressors / Stress resistance / Domestication / Genome selection / Modern horses

Cite this article

Download citation ▾
Halima Jafari, Belete Kuraz Abebe, Li Cong, Zulfiqar Ahmed, Wang Zhaofei, Minhao Sun, Gemingguli Muhatai, Lei Chuzhao, Ruihua Dang. Review: Genomic insights into the adaptive traits and stress resistance in modern horses. Stress Biology, 2026, 6(1): 5 DOI:10.1007/s44154-025-00274-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abd-El-Aziz A, Riveroll A, Esparza-Gonsalez B, McDuffee L, Cohen AM, Fenech AL, Montelpare WJ. Heat shock alters the proteomic profile of equine mesenchymal stem cells. Int J Mol Sci, 2022, 23(13): 7233

[2]

Ablondi M, Dadousis C, Vasini M, Eriksson S, Mikko S, Sabbioni A. Genetic diversity and signatures of selection in a native Italian horse breed based on SNP data. Animals, 2020, 10(61005

[3]

Ablondi M, Viklund Å, Lindgren G, Eriksson S, Mikko S. Signatures of selection in the genome of Swedish warmblood horses selected for sport performance. BMC Genomics, 2019, 20: 1-12

[4]

Albert E, Biksi I, Német Z, Csuka E, Kelemen B, Morvay F, Bakos Z, Bodó G, Tóth B, Collaud A. Outbreaks of a methicillin-resistant Staphylococcus aureus clone ST398-t011 in a Hungarian equine clinic: emergence of rifampicin and chloramphenicol resistance after treatment with these antibiotics. Microb Drug Resist, 2019, 25(81219-1226

[5]

Alkalamawy N, Amin D, Alkalamawy I, Abd Elaty I. Lavender foal syndrome in Egyptian Arabian horses: molecular and pathological studies. SVU-International Journal of Veterinary Sciences, 2018, 1(1): 55-65

[6]

Ardestani SS, Aminafshar M, Maryam MBZB, Banabazi MH, Sargolzaei M, Miar Y. A genome-wide signatures of selection study of Welsh ponies and draft horses revealed five genes associated with horse type variation. Gene Rep, 2020, 21: 100833

[7]

Asadollahpour Nanaei H, Ayatollahi Mehrgardi A, Esmailizadeh A. Comparative population genomics unveils candidate genes for athletic performance in Hanoverians. Genome, 2019, 62(4): 279-285

[8]

Asadollahpour Nanaei H, Esmailizadeh A, Ayatollahi Mehrgardi A, Han J, Wu D-D, Li Y, Zhang Y-P. Comparative population genomic analysis uncovers novel genomic footprints and genes associated with small body size in Chinese pony. BMC Genomics, 2020, 21(11-10

[9]

Asadollahpour Nanaei H, Kharrati-Koopaee H. Comparative genomics of Pony and Hanoverian horses versus different breeds of horses for identifying candidate genes associated with body size and athletic performance. J Modern Genet, 2021, 16(3): 249-26120.1001.1.20084439.1400.16.3.7.9

[10]

Ayad A, Almarzook S, Besseboua O, Aissanou S, Piórkowska K, Musiał AD, Stefaniuk-Szmukier M, Ropka-Molik K. Investigation of cerebellar abiotrophy (CA), lavender foal syndrome (LFS), and severe combined immunodeficiency (SCID) variants in a cohort of three MENA region horse breeds. Genes, 2021, 12(12): 1893

[11]

Babayi N, Rafat A, Moradi MH, Feizi Derakhshi MR. Comparison of principal component analysis (PCA) and discriminant analysis of principal component (DAPC) methods for analysis of population structure in Akhal-Take, Arabian and Caspian horse breeds using genomic data. Iran J Anim Sci Res, 2021, 13(3453-462

[12]

Bacon EK, Donnelly CG, Bellone RR, Finno CJ, Velie BD. Melanocortin-1 receptor influence in equine opioid sensitivity. Equine Vet Educ, 2023, 35(3): 152-162

[13]

Bai J, Tang L, Bi Y, Li M. Multi-omics insights into the energy compensation of rumen microbiota of grazing yaks in cold season. Front Microbiol, 2024, 15: 1467841

[14]

Balasuriya UBR, Carossino M, Timoney PJ. Equine viral arteritis: a respiratory and reproductive disease of significant economic importance to the equine industry. Equine Vet Educ, 2018, 30(9): 497-512

[15]

Bazvand B, Rashidi A, Zandi MB, Moradi MH, Rostamzadeh J. Genome-wide analysis of population structure, effective population size and inbreeding in Iranian and exotic horses. PLoS ONE, 2024, 19(3e0299109

[16]

Benjamin CL, Sekiguchi Y, Fry LA, Casa DJ. Performance changes following heat acclimation and the factors that influence these changes: meta-analysis and meta-regression. Front Physiol, 2019, 10: 1448

[17]

Bhardwaj A, Tandon G, Pal Y, Sharma NK, Nayan V, Soni S, Iquebal MA, Jaiswal S, Legha RA, Talluri TR. Genome-wide single-nucleotide polymorphism-based genomic diversity and runs of homozygosity for selection signatures in equine breeds. Genes, 2023, 14(81623

[18]

Binns MM, Boehler DA, Lambert DH. Identification of the myostatin locus (MSTN) as having a major effect on optimum racing distance in the Thoroughbred horse in the USA. Anim Genet, 2010, 41: 154-158

[19]

Boyko AR, Brooks SA, Behan-Braman A, Castelhano M, Corey E, Oliveira KC, Swinburne JE, Todhunter RJ, Zhang Z, Ainsworth DM. Genomic analysis establishes correlation between growth and laryngeal neuropathy in Thoroughbreds. BMC Genomics, 2014, 15: 1-9

[20]

Briefer Freymond S, Ruet A, Grivaz M, Fuentes C, Zuberbühler K, Bachmann I, Briefer EF. Stereotypic horses (Equus caballus) are not cognitively impaired. Anim Cogn, 2019, 22: 17-33

[21]

Brooks SA, Stick J, Braman A, Palermo K, Robinson NE, Ainsworth DM. Identification of loci affecting sexually dimorphic patterns for height and recurrent laryngeal neuropathy risk in American Belgian draft horses. Physiol Genomics, 2018, 50(121051-1058

[22]

Brownlow MA, Mizzi JX. Exertional heat illness in thoroughbred racehorses–pathophysiology, case definition and treatment rationale. Equine Vet Educ, 2022, 34(5): 259-271

[23]

Bryan K, Katz LM, Hill EW. Effects of equine myostatin (MSTN) genotype variation on transcriptional responses in Thoroughbred skeletal muscle. Comparative Exercise Physiology, 2019, 15(5): 327-338

[24]

Budsuren U, Ulaangerel T, Shen Y, Liu G, Davshilt T, Yi M, Bold D, Zhang X, Bai D, Dorjgotov D. MSTN regulatory network in Mongolian horse muscle satellite cells revealed with miRNA interference technologies. Genes, 2022, 13(10): 1836

[25]

Cao QL, Pukazhenthi BS, Bapodra P, Lowe S, Bhatnagar YV (2023) Equid Adaptations to Cold Environments. In: Prins HHT, Gordon IJ (eds) The Equids. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-27144-1_8

[26]

Cappelli K, Mecocci S, Porceddu A, Albertini E, Giontella A, Miglio A, Silvestrelli M, Verini Supplizi A, Marconi G, Capomaccio S. Genome-wide epigenetic modifications in sports horses during training as an adaptation phenomenon. Sci Rep, 2023, 13(118786

[27]

Chaucheyras-Durand F, Sacy A, Karges K, Apper E. Gastro-intestinal microbiota in equines and its role in health and disease: the black box opens. Microorganisms, 2022, 10(122517

[28]

Chen C, Zhu B, Tang X, Chen B, Liu M, Gao N, Li S, Gu J. Genome-wide assessment of runs of homozygosity by whole-genome sequencing in diverse horse breeds worldwide. Genes, 2023, 14(61211

[29]

Choudhury MP, Wang Z, Zhu M, Teng S, Yan J, Cao S, Yi G, Liu Y, Liao Y, Tang Z. Genome-wide detection of copy number variations associated with miniature features in horses. Genes, 2023, 14(101934

[30]

Cieslak J, Brooks SA, Wodas L, Mantaj W, Borowska A, Sliwowska JH, Ziarniak K, Mackowski M. Genetic background of the Polish Primitive Horse (Konik) coat color variation—new insight into dun dilution phenotypic effect. J Hered, 2021, 112(5436-442

[31]

Cirilli O, Machado H, Arroyo-Cabrales J, Barrón-Ortiz CI, Davis E, Jass CN, Jukar AM, Landry Z, Marín-Leyva AH, Pandolfi L. Evolution of the family Equidae, subfamily Equinae, in North, central and South America, Eurasia and Africa during the plio-pleistocene. Biology, 2022, 11(9): 1258

[32]

Corbi-Botto CM, Morales-Durand H, Zappa ME, Sadaba SA, Peral-García P, Giovambattista G, Díaz S. Genomic structural diversity in Criollo Argentino horses: analysis of copy number variations. Gene, 2019, 695: 26-31

[33]

Corbin LJ, Pope J, Sanson J, Antczak DF, Miller D, Sadeghi R, Brooks SA. An independent locus upstream of ASIP controls variation in the shade of the bay coat colour in horses. Genes, 2020, 11(6606

[34]

Cosgrove EJ, Sadeghi R, Schlamp F, Holl HM, Moradi-Shahrbabak M, Miraei-Ashtiani SR, Abdalla S, Shykind B, Troedsson M, Stefaniuk-Szmukier M. Genome diversity and the origin of the Arabian horse. Sci Rep, 2020, 10(19702

[35]

Cosso G, Carcangiu V, Luridiana S, Fiori S, Columbano N, Masala G, Careddu GM, Sanna Passino E, Mura MC. Characterization of the Sarcidano horse coat color genes. Animals, 2022, 12(192677

[36]

Criscione A, Mastrangelo S, D’Alessandro E, Tumino S, Di Gerlando R, Zumbo A, Marletta D, Bordonaro S. Genome-wide survey on three local horse populations with a focus on runs of homozygosity pattern. J Anim Breed Genet, 2022, 139(5540-555

[37]

Dall’Olio, S., Bovo, S., Tinarelli, S., Schiavo, G., Padalino, B., & Fontanesi, L.. Association between candidate gene markers and harness racing traits in Italian trotter horses. Livestock Science, 2021, 244: 104351

[38]

Daverio MS, Rigalt F, Romero S, Vidal-Rioja L, Di Rocco F. Polymorphisms in MC1R and ASIP genes and their association with coat color phenotypes in llamas (Lama glama). Small Ruminant Res, 2016, 144: 83-89

[39]

de Barros Damgaard P, Martiniano R, Kamm J, Moreno-Mayar JV, Kroonen G, Peyrot M, Barjamovic G, Rasmussen S, Zacho C, Baimukhanov N. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science, 2018, 360(6396): eaar7711

[40]

de Faria DA, do Prado Paim T, Dos Santos CA, Paiva SR, Nogueira MB, McManus C. Selection signatures for heat tolerance in Brazilian horse breeds. Mol Genet Genomics, 2022, 297(2449-462

[41]

de Oliveira Bussiman F, dos Santos BA, Silva BdaCA, Mamani GCM, Grigoletto L, Pereira GL, de Camargo Ferraz G, Ferraz JBS, Mattos EC, Eler JP. Genome-wide association study: understanding the genetic basis of the gait type in Brazilian Mangalarga Marchador horses, a preliminary study. Livest Sci, 2020, 231: 103867

[42]

Delgado Bermejo JV, Martínez Martínez MA, Rodríguez Galván G, Stemmer A, Navas González FJ, Camacho Vallejo ME. Organization and management of conservation programs and research in domestic animal genetic resources. Diversity, 2019, 11(12): 235

[43]

Dementieva N, Nikitkina E, Shcherbakov Y, Nikolaeva O, Mitrofanova O, Ryabova A, Atroshchenko M, Makhmutova O, Zaitsev A. The genetic diversity of stallions of different breeds in Russia. Genes, 2023, 14(71511

[44]

Der Sarkissian C, Ermini L, Schubert M, Yang MA, Librado P, Fumagalli M, Jónsson H, Bar-Gal GK, Albrechtsen A, Vieira FG. Evolutionary genomics and conservation of the endangered Przewalski’s horse. Curr Biol, 2015, 25(192577-2583

[45]

Do K-T, Kong H-S, Lee J-H, Lee H-K, Cho B-W, Kim H-S, Ahn K, Park K-D. Genomic characterization of the Przewalski׳s horse inhabiting Mongolian steppe by whole genome re-sequencing. Livest Sci, 2014, 167: 86-91

[46]

Durward-Akhurst SA, Marlowe JL, Schaefer RJ, Springer K, Grantham B, Carey WK, Bellone RR, Mickelson JR, McCue ME. Predicted genetic burden and frequency of phenotype-associated variants in the horse. Sci Rep, 2024, 14(18396

[47]

Ebisuda Y, Mukai K, Takahashi Y, Yoshida T, Matsuhashi T, Kawano A, Miyata H, Kuwahara M, Ohmura H. Heat acclimation improves exercise performance in hot conditions and increases heat shock protein 70 and 90 of skeletal muscles in Thoroughbred horses. Physiol Rep, 2024, 12(10e16083

[48]

Evrigh NH, Omri M, Boustan A, Seyedsharifi R, Vahedi V. Genetic diversity and structure of Iranian horses’ population based on mitochondrial markers. J Equine Vet Sci, 2018, 64: 107-111

[49]

Foury A, Mach N, Ruet A, Lansade L, Moisan M-P. Transcriptomic signature related to poor welfare of sport horses. Compr Psychoneuroendocrinol, 2023, 16: 100201

[50]

Frischknecht M, Jagannathan V, Plattet P, Neuditschko M, Signer-Hasler H, Bachmann I, Pacholewska A, Drögemüller C, Dietschi E, Flury C. A non-synonymous HMGA2 variant decreases height in Shetland ponies and other small horses. PLoS ONE, 2015, 10(10e0140749

[51]

Garber A, Hastie P, Murray J-A. Factors influencing equine gut microbiota: current knowledge. J Equine Vet Sci, 2020, 88: 102943

[52]

Gaunitz C, Fages A, Hanghøj K, Albrechtsen A, Khan N, Schubert M, Seguin-Orlando A, Owens IJ, Felkel S, Bignon-Lau O. Ancient genomes revisit the ancestry of domestic and Przewalski’s horses. Science, 2018, 360(6384111-114

[53]

Ghosh S, Das PJ, McQueen CM, Gerber V, Swiderski CE, Lavoie J, Chowdhary BP, Raudsepp T. Analysis of genomic copy number variation in equine recurrent airway obstruction (heaves). Anim Genet, 2016, 47(3334-344

[54]

Ghosh S, Qu Z, Das PJ, Fang E, Juras R, Cothran EG, McDonell S, Kenney DG, Lear TL, Adelson DL. Copy number variation in the horse genome. PLoS Genet, 2014, 10(10): e1004712

[55]

Gmel A, Ricard A, Gerber V, Neuditschko M. Population structure and genomic diversity of the Einsiedler horse. Anim Genet, 2024, 55(3475-479

[56]

Grilz-Seger G, Druml T, Neuditschko M, Mesarič M, Cotman M, Brem G. Analysis of ROH patterns in the Noriker horse breed reveals signatures of selection for coat color and body size. Anim Genet, 2019, 50(4): 334-346

[57]

Gupta AK, Chauhan M, Bhardwaj A, Gupta N, Gupta SC, Pal Y, Tandon SN, Vijh RK. Comparative genetic diversity analysis among six Indian breeds and English Thoroughbred horses. Livest Sci, 2014, 163: 1-11

[58]

Gurgul A, Jasielczuk I, Semik-Gurgul E, Pawlina-Tyszko K, Stefaniuk-Szmukier M, Szmatoła T, Polak G, Tomczyk-Wrona I, Bugno-Poniewierska M. A genome-wide scan for diversifying selection signatures in selected horse breeds. PLoS ONE, 2019, 14(1): e0210751

[59]

Gutiérrez EG, Ortega J, Savoie A, Baeza JA. The mitochondrial genome of the mountain wooly tapir, Tapirus pinchaque and a formal test of the effect of altitude on the adaptive evolution of mitochondrial protein coding genes in odd-toed ungulates. BMC Genomics, 2023, 24(1527

[60]

Han H, McGivney BA, Allen L, Bai D, Corduff LR, Davaakhuu G, Davaasambuu J, Dorjgotov D, Hall TJ, Hemmings AJ. Common protein-coding variants influence the racing phenotype in galloping racehorse breeds. Commun Biol, 2022, 5(11320

[61]

Han H, Randhawa IAS, MacHugh DE, McGivney BA, Katz LM, Dugarjaviin M, Hill EW. Selection signatures for local and regional adaptation in Chinese Mongolian horse breeds reveal candidate genes for hoof health. BMC Genomics, 2023, 24(11-11

[62]

Harris SR, Robinson C, Steward KF, Webb KS, Paillot R, Parkhill J, Holden MTG, Waller AS. Genome specialization and decay of the strangles pathogen, Streptococcus equi, is driven by persistent infection. Genome Res, 2015, 25(9): 1360-1371

[63]

Hendrickson SL. A genome wide study of genetic adaptation to high altitude in feral Andean Horses of the páramo. BMC Evolutionary Biology, 2013, 13: 1-13

[64]

Henkel J, Lafayette C, Brooks SA, Martin K, Patterson-Rosa L, Cook D, Jagannathan V, Leeb T. Whole-genome sequencing reveals a large deletion in the MITF gene in horses with white spotted coat colour and increased risk of deafness. Anim Genet, 2019, 50(2): 172-174

[65]

Hill EW, McGivney BA, Rooney MF, Katz LM, Parnell A, MacHugh DE. The contribution of myostatin (MSTN) and additional modifying genetic loci to race distance aptitude in Thoroughbred horses racing in different geographic regions. Equine Vet J, 2019, 51(5): 625-633

[66]

Holcomb KE. Is shade for horses a comfort resource or a minimum requirement?. J Anim Sci, 2017, 95(9): 4206-4212

[67]

Holcomb KE, Tucker CB, Stull CL. Preference of domestic horses for shade in a hot, sunny environment. J Anim Sci, 2014, 92(4): 1708-1717

[68]

Holl HM, Pflug KM, Yates KM, Hoefs-Martin K, Shepard C, Cook DG, Lafayette C, Brooks SA. A candidate gene approach identifies variants in SLC 45A2 that explain dilute phenotypes, pearl and sunshine, in compound heterozygote horses. Anim Genet, 2019, 50(3): 271-274

[69]

Holtby AR, Hall TJ, McGivney BA, Han H, Murphy KJ, MacHugh DE, Katz LM, Hill EW. Integrative genomics analysis highlights functionally relevant genes for equine behaviour. Anim Genet, 2023, 54(4): 457-469

[70]

Horscroft JA, Kotwica AO, Laner V, West JA, Hennis PJ, Levett DZH, Howard DJ, Fernandez BO, Burgess SL, Ament Z. Metabolic basis to Sherpa altitude adaptation. Proc Natl Acad Sci U S A, 2017, 114(24): 6382-6387

[71]

Horvath S, Haghani A, Peng S, Hales EN, Zoller JA, Raj K, Larison B, Robeck TR, Petersen JL, Bellone RR. DNA methylation aging and transcriptomic studies in horses. Nat Commun, 2022, 13(1): 40

[72]

Howard JT, Pryce JE, Baes C, Maltecca C. Invited review: Inbreeding in the genomics era: inbreeding, inbreeding depression, and management of genomic variability. J Dairy Sci, 2017, 100(86009-6024

[73]

Hug P, Jude R, Henkel J, Jagannathan V, Leeb T. A novel KIT deletion variant in a German Riding Pony with white-spotting coat colour phenotype. Anim Genet, 2019, 50(6): 761-763

[74]

Jäderkvist K, Andersson LS, Johansson AM, Árnason T, Mikko S, Eriksson S, Andersson L, Lindgren G. The DMRT3 ‘Gait keeper’mutation affects performance of Nordic and Standardbred trotters. J Anim Sci, 2014, 92(10): 4279-4286

[75]

Jäderkvist Fegraeus K, Johansson L, Mäenpää M, Mykkänen A, Andersson LS, Velie BD, Andersson L, Árnason T, Lindgren G. Different DMRT3 genotypes are best adapted for harness racing and riding in Finnhorses. J Hered, 2015, 106(6): 734-740

[76]

Jones KE. New insights on equid locomotor evolution from the lumbar region of fossil horses. Proc R Soc Lond B Biol Sci, 2016, 283(1829): 20152947

[77]

Jung P, Abdelbary MMH, Kraushaar B, Fetsch A, Geisel J, Herrmann M, Witte W, Cuny C, Bischoff M. Impact of bacteriophage Saint3 carriage on the immune evasion capacity and hemolytic potential of Staphylococcus aureus CC398. Vet Microbiol, 2017, 200: 46-51

[78]

Kaczensky P, Lkhagvasuren B, Pereladova O, Hemami M, Bouskila A (2020) Equus hemionus (Amended Version of 2015 Assessment). In: The IUCN Red List of Threatened Species 2020–2021. https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T7951A45171204

[79]

Kader A, Li Y, Dong K, Irwin DM, Zhao Q, He X, Liu J, Pu Y, Gorkhali NA, Liu X. Population variation reveals independent selection toward small body size in Chinese Debao pony. Genome Biol Evol, 2016, 8(142-50

[80]

Kader A, Liu X, Dong K, Song S, Pan J, Yang M, Chen X, He X, Jiang L, Ma Y. Identification of copy number variations in three Chinese horse breeds using 70K single nucleotide polymorphism BeadChip array. Anim Genet, 2016, 47(5): 560-569

[81]

Kalbfleisch TS, Rice ES, DePriest MSJr, Walenz BP, Hestand MS, Vermeesch JR, O′ Connell, B. L., Fiddes, I. T., Vershinina, A. O., & Saremi, N. F.. Improved reference genome for the domestic horse increases assembly contiguity and composition. Communications Biology, 2018, 1(1): 197

[82]

Kang H, Zsoldos RR, Sole-Guitart A, Narayan E, Cawdell-Smith AJ, Gaughan JB. Heat stress in horses: a literature review. Int J Biometeorol, 2023, 67(6957-973

[83]

Katano-Toki A, Satoh T, Tomaru T, Yoshino S, Ishizuka T, Ishii S, Ozawa A, Shibusawa N, Tsuchiya T, Saito T. THRAP3 interacts with HELZ2 and plays a novel role in adipocyte differentiation. Mol Endocrinol, 2013, 27(5): 769-780

[84]

Khalt-Abadi Farahani AH, Moradi MH. Estimation of inbreeding values using genomic run of homozygosity and study of evolutionary trend for effective population size in some Asian horse breeds. Iran J Anim Sci, 2018, 49(3): 381-392

[85]

Kim NY, Seong H-S, Kim DC, Park NG, Yang BC, Son JK, Shin SM, Woo JH, Shin MC, Yoo JH. Genome-wide analyses of the Jeju, Thoroughbred, and Jeju crossbred horse populations using the high density SNP array. Genes Genomics, 2018, 40: 1249-1258

[86]

Kingsley NB, Kern C, Creppe C, Hales EN, Zhou H, Kalbfleisch TS, MacLeod JN, Petersen JL, Finno CJ, Bellone RR. Functionally annotating regulatory elements in the equine genome using histone mark ChIP-Seq. Genes, 2019, 11(1): 3

[87]

Kis J, Rózsa L, Husvéth F, Mezőszentgyörgyi D, Kovács S, Bakos Z, Zsolnai A, Anton I. Association of myostatin gene polymorphism with echocardiographic and muscular ultrasonographic measurements in Hungarian thoroughbreds horses. Res Vet Sci, 2023, 160: 45-49

[88]

Klumplerova M, Splichalova P, Oppelt J, Futas J, Kohutova A, Musilova P, Kubickova S, Vodicka R, Orlando L, Horin P. Genetic diversity, evolution and selection in the major histocompatibility complex DRB and DQB loci in the family Equidae. BMC Genomics, 2020, 21: 1-15

[89]

Köseman A, Özşensoy Y, Erdoǧan M, Yaralı C, Toprak B, Zengin K, Şeker İ (2019) Investigation of genetic structures of coloured horses by mtdna d-loop sequence analysis in Turkey. Kafkas Univ Vet Fak Derg 25(6):769–778. https://doi.org/10.9775/kvfd.2019.21844

[90]

Krebs LC, de Moraes Santos MM, Siqueira MC, de Araujo BPG, Diaz IDPS, Costa RB, de Araújo Oliveira CA, Barbero MMD, de Camargo GMF, de Godoi FN (2024) Candidate genes for height measurements in Campolina horses. Anim Prod Sci 64(1). https://doi.org/10.1071/AN23071

[91]

Laseca N, Molina A, Valera M, Antonini A, Demyda-Peyrás S. Copy number variation (CNV): a new genomic insight in horses. Animals, 2022, 12(111435

[92]

Lee WonSeok LW, Park KyungDo PK, Taye M, Lee Chul LC, Kim HeeBal KH, Lee HakKyo LH, Shin DongHyun SD. Analysis of cross-population differentiation between Thoroughbred and Jeju horses. Asian-Australas J Anim Sci, 2018, 31(81110-1118

[93]

Li R, Liu D-H, Cao C-N, Wang S-Q, Dang R-H, Lan X-Y, Chen H, Zhang T, Liu W-J, Lei C-Z. Single nucleotide polymorphisms of myostatin gene in Chinese domestic horses. Gene, 2014, 538(1): 150-154

[94]

Li X, Wang J, Yao X, Zeng Y, Wang C, Ren W, Yuan X, Wang T, Meng J. Transcriptome blood profile of the Yili horse before and after training. Acta Vet Brno, 2024, 93(2): 159-167

[95]

Librado P, Der Sarkissian C, Ermini L, Schubert M, Jónsson H, Albrechtsen A, Fumagalli M, Yang MA, Gamba C, Seguin-Orlando A. Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. Proc Natl Acad Sci U S A, 2015, 112(50): E6889-E6897

[96]

Librado P, Fages A, Gaunitz C, Leonardi M, Wagner S, Khan N, Hanghøj K, Alquraishi SA, Alfarhan AH, Al-Rasheid KA. The evolutionary origin and genetic makeup of domestic horses. Genetics, 2016, 204(2): 423-434

[97]

Lindsay-McGee V, Sanchez-Molano E, Banos G, Clark EL, Piercy RJ, Psifidi A. Genetic characterisation of the Connemara pony and the Warmblood horse using a within-breed clustering approach. Genet Sel Evol, 2023, 55(1): 60

[98]

Littiere TO, Castro GHF, Rodriguez MdelPR, Bonafé CM, Magalhães AFB, Faleiros RR, Vieira JIG, Santos CG, Verardo LL. Identification and functional annotation of genes related to horses’ performance: from GWAS to post-GWAS. Animals, 2020, 10(71173

[99]

Liu S, Jiang S, Dong XG, Cui R, Ling Y, Zhao C. Novel variants in the HMGA2 gene are associated with withers height in Debao pony. J Equine Vet Sci, 2020, 88: 102948

[100]

Liu X, Zhang Y, Li Y, Pan J, Wang D, Chen W, Zheng Z, He X, Zhao Q, Pu Y. EPAS1 gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses. Mol Biol Evol, 2019, 36(112591-2603

[101]

Liu X, Zhang Y, Liu W, Li Y, Pan J, Pu Y, Han J, Orlando L, Ma Y, Jiang L. A single-nucleotide mutation within the TBX3 enhancer increased body size in Chinese horses. Curr Biol, 2022, 32(2480-487

[102]

Liu X, Zhang Y, Pu Y, Ma Y, Jiang L. Whole-genome identification of transposable elements reveals the equine repetitive element insertion polymorphism in Chinese horses. Anim Genet, 2023, 54(2): 144-154

[103]

Ma Z, Mao C, Jia Y, Fu Y, Kong W. Extracellular matrix dynamics in vascular remodeling. Am J Physiol Cell Physiol, 2020, 319(3): C481-C499

[104]

Magdesian KG, Tanaka J, Bellone RR. A de novo MITF deletion explains a novel splashed white phenotype in an American Paint Horse. J Hered, 2020, 111(3): 287-293

[105]

Maniego J, Giles O, Hincks P, Stewart G, Proudman C, Ryder E. Long-read sequencing assays designed to detect potential gene editing events in the myostatin gene revealed distinct haplotype signatures in the Thoroughbred horse population. Anim Genet, 2023, 54(4): 470-482

[106]

Manigandan S, Yun JW. Sodium-potassium adenosine triphosphatase α2 subunit (ATP1A2) negatively regulates UCP1-dependent and UCP1-independent thermogenesis in 3T3-L1 adipocytes. Biotechnol Bioprocess Eng, 2023, 28(4): 644-657

[107]

Marín Navas C, Delgado Bermejo JV, McLean AK, León Jurado JM, Torres ARdelaByRde, Navas González FJ. One hundred years of coat colour influences on genetic diversity in the process of development of a composite horse breed. Vet Sci, 2022, 9(2): 68

[108]

McCue ME, Geor RJ, Schultz N. Equine metabolic syndrome: a complex disease influenced by genetics and the environment. J Equine Vet Sci, 2015, 35(5367-375

[109]

McGivney BA, Han H, Corduff LR, Katz LM, Tozaki T, MacHugh DE, Hill EW. Genomic inbreeding trends, influential sire lines and selection in the global Thoroughbred horse population. Sci Rep, 2020, 10(1): 466

[110]

McGivney BA, Hernandez B, Katz LM, MacHugh DE, McGovern SP, Parnell AC, Wiencko HL, Hill EW. A genomic prediction model for racecourse starts in the Thoroughbred horse. Anim Genet, 2019, 50(4347-357

[111]

McHorse BK, Biewener AA, Pierce SE. The evolution of a single toe in horses: causes, consequences, and the way forward. Integr Comp Biol, 2019, 59(3): 638-655

[112]

Mejdell CM, Bøe KE, Jørgensen GHM. Caring for the horse in a cold climate—reviewing principles for thermoregulation and horse preferences. Appl Anim Behav Sci, 2020, 231: 105071

[113]

Metzger J, Rau J, Naccache F, Bas Conn L, Lindgren G, Distl O. Genome data uncover four synergistic key regulators for extremely small body size in horses. BMC Genomics, 2018, 19: 1-15

[114]

Metzger J, Schrimpf R, Philipp U, Distl O. Expression levels of LCORL are associated with body size in horses. PLoS ONE, 2013, 8(2): e56497

[115]

Metzger J, Tonda R, Beltran S, Águeda L, Gut M, Distl O. Next generation sequencing gives an insight into the characteristics of highly selected breeds versus non-breed horses in the course of domestication. BMC Genomics, 2014, 15: 1-13

[116]

Migdał A, Migdał Ł, Oczkowicz M, Okólski A, Chełmońska-Soyta A. Influence of age and immunostimulation on the level of toll-like receptor gene (TLR3, 4, and 7) expression in foals. Animals, 2020, 10(111966

[117]

Mon SLY, Lwin M, Oozawa E, Ozawa T, Oozawa K, Kawabe K, Hashiguchi T, Okamoto S, Shimogiri T. Estimation of inbreeding in Japanese Noma horses using genome-wide SNP genotyping. J Anim Genet, 2024, 52(13

[118]

Mostafavi A, Fozi MA, Koshkooieh AE, Mohammadabadi M, Babenko OI, Klopenko NI (2019) Effect of LCORL gene polymorphism on body size traits in horse populations. Acta Sci Anim Sci 42(1):2020. https://doi.org/10.4025/actascianimsci.v42i1.47483

[119]

Mousavi SF, Razmkabir M, Rostamzadeh J, Seyedabadi H-R, Naboulsi R, Petersen JL, Lindgren G. Genetic diversity and signatures of selection in four indigenous horse breeds of Iran. Heredity, 2023, 131: 96-108

[120]

Mukhopadhyay A, Cook SR, SanMiguel P, Ekenstedt KJ, Taylor SD. TLR4 and MD2 variation among horses with differential TNFα baseline concentrations and response to intravenous lipopolysaccharide infusion. Sci Rep, 2023, 13(11486

[121]

Neves AP, Schwengber EB, Albrecht FF, Isola JV, van der Linden LDS. Beyond fifty shades: The genetics of horse colors. Trends and Advances in Veterinary Genetics, 2017, 75: 75

[122]

Nguyen TB, Paul RC, Okuda Y, Le TNA, Pham PTK, Kaissar KJ, Kazhmurat A, Bibigul S, Bakhtin M, Kazymbet P. Genetic characterization of Kushum horses in Kazakhstan based on haplotypes of mtDNA and Y chromosome, and genes associated with important traits of the horses. J Equine Sci, 2020, 31(335-43

[123]

Nogueira MB, de Faria DA, Ianella P, Paiva SR, McManus C. Genetic diversity and population structure of locally adapted Brazilian horse breeds assessed using genome-wide single nucleotide polymorphisms. Livest Sci, 2022, 264: 105071

[124]

Nolte W, Thaller G, Kuehn C. Selection signatures in four German warmblood horse breeds: tracing breeding history in the modern sport horse. PLoS ONE, 2019, 14(4e0215913

[125]

Norton EM, Avila F, Schultz NE, Mickelson JR, Geor RJ, McCue ME. Evaluation of an HMGA2 variant for pleiotropic effects on height and metabolic traits in ponies. J Vet Intern Med, 2019, 33(2942-952

[126]

Orlando L. Ancient genomes reveal unexpected horse domestication and management dynamics. BioEssays, 2020, 42(11900164

[127]

Orlando L, Librado P. Origin and evolution of deleterious mutations in horses. Genes, 2019, 10(9649

[128]

Osthaus B, Proops L, Long S, Bell N, Hayday K, Burden F. Hair coat properties of donkeys, mules and horses in a temperate climate. Equine Vet J, 2018, 50(3339-342

[129]

Oyebanjo MO, Obi EA, Salako AE. Genes affecting coat colour and the resulting variation in horses (Equus caballus)—a review. J Anim Sci Vet Med, 2022, 7: 127-149

[130]

Pal Y, Legha RA, Bhardwaj A, Tripathi BN. Status and conservation of equine biodiversity in India. Indian Journal of Comparative Microbiology, Immunology and Infectious Diseases, 2020, 41(2): 174-184

[131]

Patterson Rosa L, Martin K, Vierra M, Foster G, Brooks SA, Lafayette C. Non-frameshift deletion on MITF is associated with a novel splashed white spotting pattern in horses (Equus caballus). Anim Genet, 2022, 53(4): 538-540

[132]

Pereira GL, Malheiros JM, Ospina AMT, Chardulo LAL, Curi RA. Exome sequencing in genomic regions related to racing performance of Quarter Horses. J Appl Genet, 2019, 60: 79-86

[133]

Petersen JL, Mickelson JR, Cothran EG, Andersson LS, Axelsson J, Bailey E, Bannasch D, Binns MM, Borges AS, Brama P. Genetic diversity in the modern horse illustrated from genome-wide SNP data. PLoS ONE, 2013, 8(1): e54997

[134]

Pezzanite LM, Chow L, Engiles JB, Kurihara J, Plaisance C, Goodrich LR, Dow S. Targeted transcriptomic analysis of synovial tissues from horses with septic arthritis treated with immune-activated mesenchymal stromal cells reveals induction of T-cell response pathways. J Am Vet Med Assoc, 2024, 262(11-10

[135]

Piel LMW, Hart KA (2024) Innate Immunity in the Foal. Equine Neonatal Med 1089–1098. https://doi.org/10.1002/9781119617228.ch46

[136]

Pira E, Vacca GM, Dettori ML, Piras G, Moro M, Paschino P, Pazzola M. Polymorphisms at myostatin gene (MSTN) and the associations with sport performances in Anglo-Arabian racehorses. Animals, 2021, 11(4): 964

[137]

Plasil M, Oppelt J, Klumplerova M, Bubenikova J, Vychodilova L, Janova E, Stejskalova K, Futas J, Knoll A, Leblond A. Newly identified variability of the antigen binding site coding sequences of the equine major histocompatibility complex class I and class II genes. HLA, 2023, 102(4489-500

[138]

Plemyashov K, Fedorov V, Koryakina L, Maksimov V, Grigorieva N, Pavlova A, Sleptsov E (2022) Physiological Basis of Adaptation of Yakut Horses to Subarctic Climate. FASEB J 36(1). https://doi.org/10.1096/fasebj.2022.36.S1.L7682

[139]

Powell BB, Horvath KC, Gilliam TL, Sibille KT, Keil A, Miller-Cushon EK, Wickens CL, Brooks SA. Behavioral and physiological reactions to a sudden novel object in the weanling horse: quantitative phenotypes for future GWAS. Genes, 2023, 14(3): 593

[140]

Poyato-Bonilla J, Laseca N, Demyda-Peyrás S, Molina A, Valera M. 500 years of breeding in the Carthusian strain of Pura Raza Español horse: an evolutional analysis using genealogical and genomic data. J Anim Breed Genet, 2022, 139(184-99

[141]

Proops L, Osthaus B, Bell N, Long S, Hayday K, Burden F. Shelter-seeking behavior of donkeys and horses in a temperate climate. J Vet Behav, 2019, 32: 16-23

[142]

Purgato S, Belloni E, Piras FM, Zoli M, Badiale C, Cerutti F, Mazzagatti A, Perini G, Della Valle G, Nergadze SG. Centromere sliding on a mammalian chromosome. Chromosoma, 2015, 124: 277-287

[143]

Putnová L, Štohl R. Comparing assignment-based approaches to breed identification within a large set of horses. J Appl Genet, 2019, 60(2): 187-198

[144]

Radovic L, Remer V, Rigler D, Bozlak E, Allen L, Brem G, Reissman M, Brockmann GA, Ropka-Molik K, Stefaniuk-Szmukier M. The global spread of Oriental horses in the past 1,500 years through the lens of the Y chromosome. Proc Natl Acad Sci U S A, 2024, 121(49): e2414408121

[145]

Ransom JI, Kaczensky P (2016) Wild Equids: Ecology, Management, and Conservation. Johns Hopkins University Press, Baltimore

[146]

Raudsepp T, Finno CJ, Bellone RR, Petersen JL. Ten years of the horse reference genome: insights into equine biology, domestication and population dynamics in the post-genome era. Anim Genet, 2019, 50(6569-597

[147]

Ren X, Yang H, Zhao Y, Su S, Wang X, Bao H, Bai D, Li B, Shiraigol W, Dugarjaviin M. Association analysis between major temperament traits and diversification of the candidate gene in Mongolian horse (Equus caballus). J Agric Biotechnol, 2017, 25(3): 405-414

[148]

Ricard A, Duluard A. Genomic analysis of gaits and racing performance of the French trotter. J Anim Breed Genet, 2021, 138(2): 204-222

[149]

Ricard A, Dumont Saint Priest B, Danvy S, Barrey E (2020). Accelerometers provide early genetic selection criteria for jumping horses. Front Genetics 11:448. https://doi.org/10.3389/fgene.2020.00448

[150]

Ricard A, Robert C, Blouin C, Baste F, Torquet G, Morgenthaler C, Rivière J, Mach N, Mata X, Schibler L (2017) Endurance exercise ability in the horse: a trait with complex polygenic determinism. Front Genet 8:89. https://doi.org/10.3389/fgene.2017.00089

[151]

Rivero J-LL, Hill EW. Skeletal muscle adaptations and muscle genomics of performance horses. Vet J, 2016, 209: 5-13

[152]

Roberts JH, Zhang J, David F, McLean A, Blumenshine K, Müller-Alander E, Halper J. Expression of genes with biomarker potential identified in skin from DSLD-affected horses increases with age. PLoS ONE, 2023, 18(7): e0287740

[153]

Rooney MF, Porter RK, Katz LM, Hill EW. Skeletal muscle mitochondrial bioenergetics and associations with myostatin genotypes in the Thoroughbred horse. PLoS ONE, 2017, 12(11e0186247

[154]

Ropka-Molik K, Stefaniuk-Szmukier M, Musiał AD, Piórkowska K, Szmatoła T. Sequence analysis and expression profiling of the equine ACTN3 gene during exercise in Arabian horses. Gene, 2019, 685: 149-155

[155]

Ropka-Molik K, Stefaniuk-Szmukier M, Musiał AD, Velie BD. The genetics of racing performance in Arabian horses. International Journal of Genomics, 2019, 2019(19013239

[156]

Ropka-Molik K, Stefaniuk-Szmukier M, Piórkowska K, Szmatoła T, Bugno-Poniewierska M. Molecular characterization of the apoptosis-related SH3RF1 and SH3RF2 genes and their association with exercise performance in Arabian horses. BMC Vet Res, 2018, 14: 1-7

[157]

Ropka-Molik K, Stefaniuk-Szmukier M, Z˙ukowski K, Piórkowska K, Bugno-Poniewierska M. Exercise-induced modification of the skeletal muscle transcriptome in Arabian horses. Physiol Genomics, 2017, 49(6318-326

[158]

Rosengren Pielberg G, Golovko A, Sundström E, Curik I, Lennartsson J, Seltenhammer MH, Druml T, Binns M, Fitzsimmons C, Lindgren G. A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nat Genet, 2008, 40(8): 1004-1009

[159]

Santos WB, Schettini GP, Maiorano AM, Bussiman FO, Balieiro JCC, Ferraz GC, Pereira GL, Baldassini WA, Neto ORM, Oliveira HN. Genome-wide scans for signatures of selection in Mangalarga Marchador horses using high-throughput SNP genotyping. BMC Genomics, 2021, 22: 1-17

[160]

Shawaf T, Hussen J, Al-Zoubi M, Hamaash H, Al-Busadah K. Impact of season, age and gender on some clinical, haematological and serum parameters in Shetland ponies in east province, Saudi Arabia. Int J Vet Sci Med, 2018, 6(1): 61-64

[161]

Shoemaker L, Clauset A. Body mass evolution and diversification within horses (family Equidae). Ecol Lett, 2014, 17(2): 211-220

[162]

Sjaastad ØV, Sand O, Hove K (2016) Regulation of body temperature. In Sjaastad OV et al (eds) Physiology of Domestic Animals. Scandinavian Veterinary Press, pp 767–794

[163]

Sneddon J (2023) Adaptations to Hot Environments. In: Prins HHT, Gordon IJ (eds) The Equids. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-27144-1_9

[164]

Solé M, Ablondi M, Binzer-Panchal A, Velie BD, Hollfelder N, Buys N, Ducro BJ, François L, Janssens S, Schurink A. Inter-and intra-breed genome-wide copy number diversity in a large cohort of European equine breeds. BMC Genomics, 2019, 20(1): 1-12

[165]

Solounias N, Danowitz M, Stachtiaris E, Khurana A, Araim M, Sayegh M, Natale J. The evolution and anatomy of the horse manus with an emphasis on digit reduction. R Soc Open Sci, 2018, 5(1): 171782

[166]

Song S, Oh D-Y, Cho G-J, Kim DH, Park Y-S, Han K. Targeted next-generation sequencing for identifying genes related to horse temperament. Genes Genomics, 2017, 39: 1325-1333

[167]

Srikanth K, Kim N-Y, Park W, Kim J-M, Kim K-D, Lee K-T, Son J-H, Chai H-H, Choi J-W, Jang G-W. Comprehensive genome and transcriptome analyses reveal genetic relationship, selection signature, and transcriptome landscape of small-sized Korean native Jeju horse. Sci Rep, 2019, 9(116672

[168]

Stefaniuk M, Ropka-Molik K. RNA sequencing as a powerful tool in searching for genes influencing health and performance traits of horses. J Appl Genet, 2016, 57(2199-206

[169]

Sun B, Deng T (2019) The Equus datum and the early radiation of Equus in China. Front Ecol Evol 429. https://doi.org/10.3389/fevo.2019.00429

[170]

Szmatoła T, Gurgul A, Jasielczuk I, Oclon E, Ropka-Molik K, Stefaniuk-Szmukier M, Polak G, Tomczyk-Wrona I, Bugno-Poniewierska M. Assessment and distribution of runs of homozygosity in horse breeds representing different utility types. Animals, 2022, 12(23): 3293

[171]

Takeda Y, Demura M, Kometani M, Karashima S, Yoneda T, Takeda Y. Molecular and epigenetic control of aldosterone synthase, CYP11B2 and 11-hydroxylase, CYP11B1. Int J Mol Sci, 2023, 24(65782

[172]

Thomer A, Gottschalk M, Christmann A, Naccache F, Jung K, Hewicker-Trautwein M, Distl O, Metzger J. An epistatic effect of KRT25 on SP6 is involved in curly coat in horses. Sci Rep, 2018, 8(16374

[173]

Todd ET, Fromentier A, Sutcliffe R, Collin YRH, Perdereau A, Aury J-M, Èche C, Bouchez O, Donnadieu C, Wincker P. Imputed genomes of historical horses provide insights into modern breeding. iScience, 2023, 26(7107104

[174]

Tozaki T, Kikuchi M, Kakoi H, Hirota K-I, Nagata S-I. A genome-wide association study for body weight in Japanese Thoroughbred racehorses clarifies candidate regions on chromosomes 3, 9, 15, and 18. J Equine Sci, 2017, 28(4127-134

[175]

Velie BD, Fegraeus KJ, Solé M, Rosengren MK, Røed KH, Ihler C-F, Strand E, Lindgren G. A genome-wide association study for harness racing success in the Norwegian-Swedish coldblooded trotter reveals genes for learning and energy metabolism. BMC Genetics, 2018, 19: 1-13

[176]

Vermillion KL, Anderson KJ, Hampton M, Andrews MT. Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal. Physiol Genomics, 2015, 47(3): 58-74

[177]

Viļuma A, Mikko S, Hahn D, Skow L, Andersson G, Bergström TF. Genomic structure of the horse major histocompatibility complex class II region resolved using PacBio long-read sequencing technology. Sci Rep, 2017, 7(1): 45518

[178]

Wade CM (2013) Assembly and analysis of the equine genome sequence. Equine Genomics 103–111. https://doi.org/10.1002/9781118522158

[179]

Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, Lear TL, Adelson DL, Bailey E, Bellone RR. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science, 2009, 326(5954865-867

[180]

Walther B, Klein K-S, Barton A-K, Semmler T, Huber C, Merle R, Tedin K, Mitrach F, Lübke-Becker A, Gehlen H. Equine methicillin-resistant sequence type 398 Staphylococcus aureus (MRSA) harbor mobile genetic elements promoting host adaptation. Front Microbiol, 2018, 9: 2516

[181]

Walther B, Monecke S, Ruscher C, Friedrich AW, Ehricht R, Slickers P, Soba A, Wleklinski C-G, Wieler LH, Lübke-Becker A. Comparative molecular analysis substantiates zoonotic potential of equine methicillin-resistant Staphylococcus aureus. J Clin Microbiol, 2009, 47(3): 704-710

[182]

Wang G-D, Fan R-X, Zhai W, Liu F, Wang L, Zhong L, Wu H, Yang H-C, Wu S-F, Zhu C-L. Genetic convergence in the adaptation of dogs and humans to the high-altitude environment of the Tibetan plateau. Genome Biol Evol, 2014, 6(82122-2128

[183]

Wang M-W-OGRG-W-OG, Liu Y, Bi X, Ma H, Zeng G, Guo J, Guo M, Ling Y, Zhao C. Genome-wide detection of copy number variants in Chinese indigenous horse breeds and verification of CNV-overlapped genes related to heat adaptation of the Jinjiang horse. Genes, 2022, 13(4): 603

[184]

Wickens C, Brooks SA. Genetics of equine behavioral traits. Vet Clin North Am Equine Pract, 2020, 36(2411-424

[185]

Wilkins AS, Wrangham RW, Fitch WT. The “domestication syndrome” in mammals: a unified explanation based on neural crest cell behavior and genetics. Genetics, 2014, 197(3): 795-808

[186]

Williams CT, Barnes BM, Buck CL. Persistence, entrainment, and function of circadian rhythms in polar vertebrates. Physiology, 2015, 30(2): 86-96

[187]

Wolfsberger WW, Ayala NM, Castro-Marquez SO, Irizarry-Negron VM, Potapchuk A, Shchubelka K, Potish L, Majeske AJ, Oliver LF, Lameiro AD. Genetic diversity and selection in Puerto Rican horses. Sci Rep, 2022, 12(1): 515

[188]

Wonghanchao T, Sanigavatee K, Poochipakorn C, Huangsaksri O, Yalong M, Poungpuk K, Thanaudom K, Deethong N, Chanda M. Impact of different cooling solutions on autonomic modulation in horses in a novice endurance ride. Animal, 2024, 18(4101114

[189]

Yang L, Kong X, Yang S, Dong X, Yang J, Gou X, Zhang H. Haplotype diversity in mitochondrial DNA reveals the multiple origins of Tibetan horse. PLoS ONE, 2018, 13(7e0201564

[190]

Yudin NS, Larkin DM, Ignatieva EV. A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments. BMC Genet, 2017, 18: 33-43

[191]

Zhao P, Li S, He Z, Ma X. Physiological and genetic basis of high-altitude indigenous animals’ adaptation to hypoxic environments. Animals, 2024, 14(203031

[192]

Zhao RY, Zhao YP, Li B, Bou G, Zhang XZ, Mongke T, Bao T, Gereliin S, Gereltuuin T, Li C. Overview of the genetic control of horse coat color patterns. Hereditas, 2018, 40(5357-368

Funding

Third National Census of Livestock and Poultry Genetic Resources(K4050422227)

National Key R&D Program of China(2024YFD1300500)

Key Research and Development Program of Shaanxi Province(2025NC-YBXM-110)

RIGHTS & PERMISSIONS

The Author(s)

PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

/