Upregulation of deubiquitinase UBP16 induced by rice stripe virus infection stabilizes SHMT1 to suppress ROS accumulation and facilitate virus infection in Nicotiana benthamiana

Kun Wang , Yaqin Wang , Shuai Fu , Yuchong Tan , Liang Wu , Yi Xu , Jianxiang Wu , Xueping Zhou

Stress Biology ›› 2025, Vol. 5 ›› Issue (1) : 62

PDF
Stress Biology ›› 2025, Vol. 5 ›› Issue (1) : 62 DOI: 10.1007/s44154-025-00265-2
Original Paper
research-article

Upregulation of deubiquitinase UBP16 induced by rice stripe virus infection stabilizes SHMT1 to suppress ROS accumulation and facilitate virus infection in Nicotiana benthamiana

Author information +
History +
PDF

Abstract

Modification of proteins by ubiquitin is a dynamic and reversible process. It is unclear whether rice stripe virus (RSV) can modulate the plant deubiquitination pathway. In this study, we found that RSV infection can specifically upregulate the expression of the deubiquitinase NbUBP16. Further analysis revealed that NbUBP16 stabilizes serine hydroxymethyltrasferase (SHMT1) by binding to NbSHMT1 and removing its polyubiquitination modification mediated by E3 ligase MEL, which inhibits downstream SHMT1-mediated ROS accumulation and thereby facilitates RSV infection. Our findings provide new insights into the molecular arms race between pathogens and plants, demonstrating how a plant virus can undermine plant defenses by hijacking host deubiquitination pathways.

Keywords

Rice stripe virus / NbUBP16 / Ubiquitination / SHMT1 / ROS accumulation

Cite this article

Download citation ▾
Kun Wang, Yaqin Wang, Shuai Fu, Yuchong Tan, Liang Wu, Yi Xu, Jianxiang Wu, Xueping Zhou. Upregulation of deubiquitinase UBP16 induced by rice stripe virus infection stabilizes SHMT1 to suppress ROS accumulation and facilitate virus infection in Nicotiana benthamiana. Stress Biology, 2025, 5(1): 62 DOI:10.1007/s44154-025-00265-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bach-Pages M, Preston G (2018) Methods to quantify biotic-induced stress in plants. Methods Mol Biol 1734: 241-255. https://doi.org/10.1007/978-1-4939-7604-1_19

[2]

Chen J, Zhao Y, Luo X, Hong H, Yang T, Huang S, Wang C, Chen H, Qian X, Feng M, Chen Z, Dong Y, Ma Z, Li J, Zhu M, He S, Dinesh-Kumar S, Tao X. NLR surveillance of pathogen interference with hormone receptors induces immunity. Nature, 2023, 614: E16.

[3]

Copeland C, Li X. Regulation of plant immunity by the proteasome. Int Rev Cell Mol Biol, 2019, 343: 37-63.

[4]

Derkacheva M, Liu S, Figueiredo D, Gentry M, Mozgova I, Nanni P, Tang M, Mannervik M, Köhler C, Hennig L (2016) H2A deubiquitinases UBP12/13 are part of the polycomb group protein system. Nat Plants‌‌ 2:9. https://doi.org/10.1038/Nplants.2016.126

[5]

Doelling J, Phillips A, Soyler-Ogretim G, Wise J, Chandler J, Callis J, Otegui M, Vierstra R. The ubiquitin-specific protease subfamily UBP3/UBP4 is essential for pollen development and transmission in arabidopsis. Plant Physiol, 2007, 145: 801-813.

[6]

Ducker G, Rabinowitz J. One-carbon metabolism in health and disease. Cell Metab, 2017, 25: 27-42.

[7]

Fang X, Qi Y. RNAi in plants: an argonaute-centered view. Plant Cell, 2016, 28: 272-285.

[8]

Fu S, Xu Y, Li C, Li Y, Wu J, Zhou X. Rice stripe virus interferes with s-acylation of remorin and induces its autophagic degradation to facilitate virus infection. Mol Plant, 2018, 11: 269-287.

[9]

Fu S, Wang K, Ma T, Liang Y, Ma Z, Wu J, Xu Y, Zhou X. An evolutionarily conserved C4HC3-type E3 ligase regulates plant broad-spectrum resistance against pathogens. Plant Cell, 2022, 34: 1822-1843.

[10]

Gupta R, Yang Q, Dogra S, Wajapeyee N. Serine hydroxymethyl transferase 1 stimulates pro-oncogenic cytokine expression through sialic acid to promote ovarian cancer tumor growth and progression. Oncogene, 2017, 36: 4014-4024.

[11]

Hickey L, Hafeez A, Robinson H, Jackson S, Leal-Bertioli S, Tester M, Gao C, Godwin I, Hayes B, Wulff B. Breeding crops to feed 10 billion. Nat Biotechnol, 2019, 37: 744-754.

[12]

Huang X, Wang J, Chen S, Liu S, Li Z, Wang Z, Chen B, Zhang C, Zhang Y, Wu J, Yang X, Xie Q, Li F, An H, Huang J, Li H, Liu C, Wu X, Liu D, Yang X, Zhou G, Zhang T. Rhabdovirus encoded glycoprotein induces and harnesses host antiviral autophagy for maintaining its compatible infection. Autophagy, 2023, 20: 275-294.

[13]

Komander D, Clague M, Urbé S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol, 2009, 10: 550-563.

[14]

Langin G, González-Fuente M, Üstün S. The plant ubiquitin-proteasome system as a target for microbial manipulation. Annu Rev Phytopathol, 2023, 61: 351-375.

[15]

Lee C, Li M, Feke A, Liu W, Saffer A, Gendron J. GIGANTEA recruits the UBP12 and UBP13 deubiquitylases to regulate accumulation of the ZTL photoreceptor complex. Nat Commun, 2019, 10: 3750.

[16]

Li Y, Xia T, Gao F, Li Y. Control of plant branching by the CUC2/CUC3-DA1-UBP15 regulatory module. Plant Cell, 2020, 32: 1919-1932.

[17]

Li C, Xu Y, Fu S, Liu Y, Li Z, Zhang T, Wu J, Zhou X. The unfolded protein response plays dual roles in rice stripe virus infection through fine-tuning the movement protein accumulation. PLoS Pathog, 2021, 17. e1009370

[18]

Luo R, Yang K, Xiao W. Plant deubiquitinases: from structure and activity to biological functions. Plant Cell Rep, 2023, 42: 469-486.

[19]

March E, Farrona S. Plant deubiquitinases and their role in the control of gene expression through modification of histones. Front Plant Sci, 2018, 8: 2274.

[20]

Ngou B, Ding P, Jones J. Thirty years of resistance: Zig-zag through the plant immune system. Plant Cell, 2022, 34: 1447-1478.

[21]

Ray S, Casteel C. Effector-mediated plant-virus-vector interactions. Plant Cell, 2022, 34: 1514-1531.

[22]

Savary S, Willocquet L, Pethybridge S, Esker P, McRoberts N, Nelson A. The global burden of pathogens and pests on major food crops. Nat Ecol Evol, 2019, 3: 430-439.

[23]

Trujillo M. Ubiquitin signalling: controlling the message of surface immune receptors. New Phytol, 2021, 231: 47-53.

[24]

Wang H, Wang S, Wang W, Xu L, Welsh L, Gierlinski M, Whisson S, Hemsley P, Boevink P, Birch P. Uptake of oomycete RXLR effectors into host cells by clathrin-mediated endocytosis. Plant Cell, 2023, 35: 2504-2526.

[25]

Wang K, Fu S, Wu L, Wu J, Wang Y, Xu Y, Zhou X. Rice stripe virus nonstructural protein 3 suppresses plant defence responses mediated by the MEL-SHMT1 module. Mol Plant Pathol, 2023, 24: 1359-1369.

[26]

Wu Q, Tong C, Chen Z, Huang S, Zhao X, Hong H, Li J, Feng M, Wang H, Xu M, Yan Y, Cui H, Shen D, Ai G, Xu Y, Li J, Zhang H, Huang C, Zhang Z, Dong S, Wang X, Zhu M, Dinesh-Kumar S, Tao X. Nlrs derepress MED10b-and MED7-mediated repression of jasmonate- dependent transcription to activate immunity. P Natl Acad Sci USA, 2023, 120. e2302226120

[27]

Xiong J, Yang F, Yao X, Zhao Y, Wen Y, Lin H, Guo H, Yin Y, Zhang D. The deubiquitinating enzymes UBP12 and UBP13 positively regulate recovery after carbon starvation by modulating BES1 stability in Arabidopsis thaliana. Plant Cell, 2022, 34: 4516-4530.

[28]

Xu Y, Fu S, Tao X, Zhou X. Rice stripe virus: exploring molecular weapons in the arsenal of a negative-sense RNA virus. Annu Rev Phytopathol, 2021, 59: 351-371.

[29]

Yu X, Feng B, He P, Shan L. From chaos to harmony: responses and signaling upon microbial pattern recognition. Annu Rev Phytopathol, 2017, 55: 109-137.

[30]

Yuan M, Jiang Z, Bi G, Nomura K, Liu M, Wang Y, Cai B, Zhou J, He S, Xin X. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature, 2021, 592: 105-109.

[31]

Zhang Y, Sun K, Sandoval F, Santiago K, Roje S. One-carbon metabolism in plants: characterization of a plastid serine hydroxymethyltransferase. Biochem J, 2010, 430: 97-105.

[32]

Zhang H, Wang F, Song W, Yang Z, Li L, Ma Q, Tan X, Wei Z, Li Y, Li J, Yan F, Chen J, Sun Z. Different viral effectors suppress hormone-mediated antiviral immunity of rice coordinated by OsNPR1. Nat Commun, 2023, 14: 3011.

[33]

Zhao J, Zhou H, Li X. Ubiquitin-specific protease16 interacts with a heavy metal associated isoprenylated plant protein27 and modulates cadmium tolerance. Plant Signal Behav, 2013, 8. e25680

[34]

Zhou H, Zhao J, Yang Y, Chen C, Liu Y, Jin X, Chen L, Li X, Deng X, Schumaker K, Guo Y. Ubiquitin-specific protease16 modulates salt tolerance in Arabidopsis by regulating Na(+)/H(+) antiport activity and serine hydroxymethyltransferase stability. Plant Cell, 2012, 24: 5106-5122.

Funding

Key Technologies Research and Development Program(2022YFD1400804)

Innovative Research Group Project of the National Natural Science Foundation of China(W2411024)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/