Advances in CrRLK1L function in plant cell wall signaling during interaction with the environment and development

George Bawa , Yang Shen , Mingzhe Sun , Xiaoli Sun

Stress Biology ›› 2025, Vol. 5 ›› Issue (1) : 60

PDF
Stress Biology ›› 2025, Vol. 5 ›› Issue (1) : 60 DOI: 10.1007/s44154-025-00231-y
Review
review-article

Advances in CrRLK1L function in plant cell wall signaling during interaction with the environment and development

Author information +
History +
PDF

Abstract

As a barrier between the cell and its environment, the plant cell wall provides structural support during development and stress response. Plants are able to sense their surroundings and adjust their activities accordingly. A crucial mechanism involved in these adaptive changes is the cell wall integrity (CWI) maintenance mechanism, which monitors and maintains the integrity of cell walls via changes in cell and cell wall metabolism without destroying cell wall organization. Different abiotic stresses and changes in plant developmental phases disrupt CWI. However, emerging evidence has demonstrated the initiation of CWI signaling mechanisms as key in promoting plant growth in complex situations. This review discusses recent advances in the Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) protein function in plant cell wall signaling during adaptation to changing environments and development. We conclude by highlighting how current spatially resolved transcriptomics may be used to advance the role of CrRLK1L members in plant cell wall signaling during development and stress response.

Keywords

CrRLK1L / Plant cell wall / Cell wall integrity / Stress tolerance / RLKs

Cite this article

Download citation ▾
George Bawa, Yang Shen, Mingzhe Sun, Xiaoli Sun. Advances in CrRLK1L function in plant cell wall signaling during interaction with the environment and development. Stress Biology, 2025, 5(1): 60 DOI:10.1007/s44154-025-00231-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abreha K, Enyew M, Carlsson A, Ramsh, Vetukuri R, Feyissa T, Motlhaodi T, Ng’uni D, Geleta M (2022) Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress. Planta 255:20. https://doi.org/10.1007/s00425-021-03799-7

[2]

Bacete L, Mélida H, Miedes E, Molina A. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. Plant J, 2018, 93: 614-636.

[3]

Bacete L, Schulz J, Engelsdorf T, Bartosova Z, Vaahtera L, Yan G, Gerhold JM, Tichá T, Øvstebø C, Gigli-Bisceglia N, Johannessen-Starheim S, Margueritat J, Kollist H, Dehoux T, McAdam SAM, Hamann T. THESEUS1 modulates cell wall stiffness and abscisic acid production in Arabidopsis thaliana. Proc Natl Acad Sci U S A, 2022, 119: e2119258119.

[4]

Baez LA, Tichá T, Hamann T. Cell wall integrity regulation across plant species. Plant Mol Biol, 2022, 109: 483-504.

[5]

Basu D, Haswell ES. Plant mechanosensitive ion channels: an ocean of possibilities. Curr Opin Plant Biol, 2017, 40: 43-48.

[6]

Boisson-Dernier A, Roy S, Kritsas K, Schauer M, Jaciubek M, Schroeder J, Grossniklaus U. Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge. Development (Cambridge, England), 2009, 136: 3279-3288.

[7]

Boisson-Dernier A, Kessler SA, Grossniklaus U. The walls have ears: the role of plant CrRLK1Ls in sensing and transducing extracellular signals. J Exp Bot, 2011, 62: 1581-1591.

[8]

Boisson-Dernier A, Lituiev DS, Nestorova A, Franck CM, Thirugnanarajah S, Grossniklaus U. ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases. PLoS Biol, 2013, 11: e1001719.

[9]

Boisson-Dernier A, Franck CM, Lituiev DS, Grossniklaus U. Receptor-like cytoplasmic kinase MARIS functions downstream of CrRLK1L-dependent signaling during tip growth. Proc Natl Acad Sci U S A, 2015, 112: 12211-12216.

[10]

Brown, D.M., Zeef, L.A.H., Ellis, J., Goodacre, R. and Turner, S.R. (2005) Identification of Novel Genes in Arabidopsis Involved in Secondary Cell Wall Formation Using Expression Profiling and Reverse Genetics. The Plant Cell, 17, 2281-2295.

[11]

Cai X, Chen Y, Wang Y, Shen Y, Junkai Y, Jia B, Sun X, Sun M. A comprehensive investigation of the regulatory roles of OsERF096, an AP2/ERF transcription factor, in rice cold stress response. Plant Cell Rep, 2023, 42: 1-12.

[12]

Calderone S, Mauri N, Manga-Robles A, Fornalé S, García-Mir L, Centeno M-L, Sánchez-Retuerta C, Ursache R, Acebes J-L, Campos N, García-Angulo P, Encina A, Caparrós-Ruiz D. Diverging cell wall strategies for drought adaptation in two maize inbreds with contrasting lodging resistance. Plant Cell Environ, 2024, 47: 1747-1768.

[13]

Caño-Delgado A, Penfield S, Smith C, Catley M, Bevan M. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J, 2003, 34: 351-362.

[14]

Cesarino I. Structural features and regulation of lignin deposited upon biotic and abiotic stresses. Curr Opin Biotechnol, 2019, 56: 209-214.

[15]

Chae L, Sudat S, Dudoit S, Zhu T, Luan S. Diverse transcriptional programs associated with environmental stress and hormones in the Arabidopsis receptor-like kinase gene family. Mol Plant, 2009, 2: 84-107.

[16]

Chaudhary A, Hsiao YC, Jessica Yeh FL, Župunski M, Zhang H, Aizezi Y, Malkovskiy A, Grossmann G, Wu HM, Cheung AY, Xu SL, Wang ZY. FERONIA signaling maintains cell wall integrity during brassinosteroid-induced cell expansion in Arabidopsis. Mol Plant, 2025, S1674-2052(25): 00067-X

[17]

Chen J, Yu F, Liu Y, Du C, Li X, Zhu S, Wang X, Lan W, Rodriguez PL, Liu X, Li D, Chen L, Luan S. FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis. Proc Natl Acad Sci U S A, 2016, 113: E5519-5527.

[18]

Chen J, Wang Z, Liu S, Zhang S, Ge C, Shen Q, Ma H, Zhang X, Dong H, Zhao X, Liu R, Pang C. Nitrogen stress inhibits root growth by regulating cell wall and hormone changes in cotton (Gossypium hirsutum L.). J Agron Crop Sci, 2021, 207: 1006-1023.

[19]

Chen X, Smith SM, Shabala S, Yu M. Phytohormones in plant responses to boron deficiency and toxicity. J Exp Bot, 2022, 74: 743-754.

[20]

Colin L, Ruhnow F, Zhu J-K, Zhao C, Zhao Y, Persson S. The cell biology of primary cell walls during salt stress. Plant Cell, 2022, 35: 201-217.

[21]

Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol, 2005, 6: 850-861.

[22]

Cosgrove DJ. Re-constructing our models of cellulose and primary cell wall assembly. Curr Opin Plant Biol, 2014, 22: 122-131.

[23]

Cosgrove DJ. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J Exp Bot, 2015, 67: 463-476.

[24]

Cosgrove DJ. Structure and growth of plant cell walls. Nat Rev Mol Cell Biol, 2024, 25: 340-358.

[25]

Cui Y, Lu X, Gou X. Receptor-like protein kinases in plant reproduction: current understanding and future perspectives. Plant Commun, 2022, 3. 100273

[26]

Denness L, McKenna JF, Segonzac C, Wormit A, Madhou P, Bennett M, Mansfield J, Zipfel C, Hamann T. Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol, 2011, 156: 1364-1374.

[27]

Dong Q, Zhang Z, Liu Y, Tao LZ, Liu H. FERONIA regulates auxin-mediated lateral root development and primary root gravitropism. FEBS Lett, 2019, 593: 97-106.

[28]

Duan Q, Kita D, Li C, Cheung AY, Wu HM. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci U S A, 2010, 107: 17821-17826.

[29]

Dubois M, Van den Broeck L, Inzé D. The pivotal role of ethylene in plant growth. Trends Plant Sci, 2018, 23: 311-323.

[30]

Dünser K, Gupta S, Herger A, Feraru MI, Ringli C, Kleine-Vehn J. Extracellular matrix sensing by FERONIA and Leucine-Rich repeat extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana. Embo J, 2019, 38: e100353.

[31]

Ellis C, Karafyllidis I, Wasternack C, Turner JG. The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell, 2002, 14: 1557-1566.

[32]

Engelsdorf T, Gigli-Bisceglia N, Veerabagu M, McKenna JF, Vaahtera L, Augstein F, Van der Does D, Zipfel C, Hamann T. The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana. Sci Signal, 2018, 11: eaao3070.

[33]

Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J, Yang WC, Grossniklaus U. The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science, 2007, 317: 656-660.

[34]

Farooq MA, Ma W, Shen S, Gu A. Underlying biochemical and molecular mechanisms for seed germination. Int J Mol Sci, 2022, 23: 8502.

[35]

Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, Liu MC, Maman J, Steinhorst L, Schmitz-Thom I, Yvon R, Kudla J, Wu HM, Cheung AY, Dinneny JR. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr Biol, 2018, 28: 666-675.e665.

[36]

Feng H, Liu C, Fu R, Zhang M, Li H, Shen L, Wei Q, Sun X, Xu L, Ni B, Li C. LORELEI-LIKE GPI-ANCHORED PROTEINS 2/3 regulate pollen tube growth as chaperones and coreceptors for ANXUR/BUPS receptor kinases in Arabidopsis. Mol Plant, 2019, 12: 1612-1623.

[37]

Feng, W., Kita, D., Peaucelle, A., Cartwright, H.N., Doan, V., Duan, Q., Liu, M.-C., Maman, J., Steinhorst, L., Schmitz-Thom, I., Yvon, R., Kudla, J., Wu, H.-M., Cheung, A.Y. and Dinneny, J.R. (2018) The FERONIA Receptor Kinase Maintains Cell-Wall Integrity during Salt Stress through Ca2+ Signaling. Current Biology, 28, 666-675.e665.

[38]

Forand AD, Finfrock YZ, Lavier M, Stobbs J, Qin L, Wang S, Karunakaran C, Wei Y, Ghosh S, Tanino KK. With a little help from my cell wall: structural modifications in pectin may play a role to overcome both dehydration stress and fungal pathogens. Plants (Basel), 2022, 11: 385.

[39]

Franck CM, Westermann J, Boisson-Dernier A. Plant malectin-like receptor kinases: from cell wall integrity to immunity and beyond. Annu Rev Plant Biol, 2018, 69: 301-328.

[40]

Fu, W.-w., Wang, Z.-Y., Liusui, Y.-H., Zhang, X., Han, A.-X., Zhong, X.-Y., Zhang, J.-B. and Guo, Y.-J.(2024) Genome-wide analysis of the cotton COBRA-like gene family and functional characterization of GhCOBL22 in relation to drought tolerance. BMC Plant Biology, 24, 1242.

[41]

Galindo-Trigo S, Gray JE, Smith LM. Conserved roles of CrRLK1L receptor-like kinases in cell expansion and reproduction from algae to angiosperms. Front Plant Sci, 2016, 7: 1269.

[42]

Galindo-Trigo S, Blanco-Touriñán N, DeFalco TA, Wells ES, Gray JE, Zipfel C, Smith LM. Cr RLK1L receptor‐like kinases HERK1 and ANJEA are female determinants of pollen tube reception. EMBO Rep, 2020, 21. e48466

[43]

Gandhi A, Oelmüller R. Emerging roles of receptor-like protein kinases in plant response to abiotic stresses. Int J Mol Sci, 2023, 24: 14762.

[44]

Gao S, Li C. CrRLK1L receptor kinases-regulated pollen-pistil interactions. Reprod Breed, 2022, 2: 113-118.

[45]

Ge Z, Bergonci T, Zhao Y, Zou Y, Du S, Liu MC, Luo X, Ruan H, García-Valencia LE, Zhong S, Hou S, Huang Q, Lai L, Moura DS, Gu H, Dong J, Wu HM, Dresselhaus T, Xiao J, Cheung AY, Qu LJ. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science, 2017, 358: 1596-1600.

[46]

Ge Z, Dresselhaus T, Qu L-J. How CrRLK1L receptor complexes perceive RALF signals. Trends Plant Sci, 2019, 24: 978-981.

[47]

Giacomello S. A new era for plant science: spatial single-cell transcriptomics. Curr Opin Plant Biol, 2021, 60. 102041

[48]

Giacomello S, Salmén F, Terebieniec BK, Vickovic S, Navarro JF, Alexeyenko A, Reimegård J, McKee LS, Mannapperuma C, Bulone V, Ståhl PL, Sundström JF, Street NR, Lundeberg J. Spatially resolved transcriptome profiling in model plant species. Nat Plants, 2017, 3: 17061.

[49]

Gigli-Bisceglia N, Engelsdorf T, Strnad M, Vaahtera L, Khan GA, Yamoune A, Alipanah L, Novák O, Persson S, Hejatko J, Hamann T (2018) Cell wall integrity modulates Arabidopsis thaliana cell cycle gene expression in a cytokinin- and nitrate reductase-dependent manner. Development 145:dev166678. https://doi.org/10.1242/dev.166678

[50]

Gigli-Bisceglia N, Engelsdorf T, Hamann T. Plant cell wall integrity maintenance in model plants and crop species-relevant cell wall components and underlying guiding principles. Cell Mol Life Sci, 2020, 77: 2049-2077.

[51]

Gonneau M, Desprez T, Martin M, Doblas VG, Bacete L, Miart F, Sormani R, Hématy K, Renou J, Landrein B, Murphy E, Van De Cotte B, Vernhettes S, De Smet I, Höfte H. Receptor kinase THESEUS1 is a rapid alkalinization factor 34 receptor in Arabidopsis. Curr Biol, 2018, 28: 2452-2458.e2454.

[52]

Gulati GS, D’Silva JP, Liu Y, Wang L, Newman AM. Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics. Nat Rev Mol Cell Biol, 2025, 26: 11-31.

[53]

Guo H, Li L, Ye H, Yu X, Algreen A, Yin Y. Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc Natl Acad Sci U S A, 2009, 106: 7648-7653.

[54]

Guo H, Ye H, Li L, Yin Y. A family of receptor-like kinases are regulated by BES1 and involved in plant growth in Arabidopsis thaliana. Plant Signal Behav, 2009, 4: 784-786.

[55]

Hamann T. Plant cell wall integrity maintenance as an essential component of biotic stress response mechanisms. Front Plant Sci, 2012, 3: 77.

[56]

Hamann T. The plant cell wall integrity maintenance mechanism—concepts for organization and mode of Action. Plant Cell Physiol, 2014, 56: 215-223.

[57]

Hamant O, Haswell ES. Life behind the wall: sensing mechanical cues in plants. BMC Biol, 2017, 15: 59.

[58]

Hématy K, Höfte H. Novel receptor kinases involved in growth regulation. Curr Opin Plant Biol, 2008, 11: 321-328.

[59]

Hématy K, Sado PE, Van Tuinen A, Rochange S, Desnos T, Balzergue S, Pelletier S, Renou JP, Höfte H. A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr Biol, 2007, 17: 922-931.

[60]

Honkanen S, Jones VAS, Morieri G, Champion C, Hetherington AJ, Kelly S, Proust H, Saint-Marcoux D, Prescott H, Dolan L. The mechanism forming the cell surface of tip-growing rooting cells is conserved among land plants. Curr Biol, 2016, 26: 3238-3244.

[61]

Houston K, Tucker MR, Chowdhury J, Shirley N, Little A. The plant cell wall: a complex and dynamic structure as revealed by the responses of genes under stress conditions. Front Plant Sci, 2016, 7: 984.

[62]

Hu Y, Liu Y, Wei JJ, Zhang WK, Chen SY, Zhang JS. Regulation of seed traits in soybean. aBIOTECH, 2023, 4: 372-385.

[63]

Huang X, Liu Y, Jia Y, Ji L, Luo X, Tian S, Chen T. FERONIA homologs in stress responses of horticultural plants: current knowledge and missing links. Stress Biol, 2024, 4: 28.

[64]

Huck N, Moore JM, Federer M, Grossniklaus U. The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development, 2003, 130: 2149-2159.

[65]

Huerta-López C, Clemente-Manteca A, Velázquez-Carreras D, Espinosa FM, Sanchez JG, Martínez-del-Pozo Á, García-García M, Martín-Colomo S, Rodríguez-Blanco A, Esteban-González R, Martín-Zamora FM, Gutierrez-Rus LI, Garcia R, Roca-Cusachs P, Elosegui-Artola A, del Pozo MA, Herrero-Galán E, Sáez P, Plaza GR, Alegre-Cebollada J. Cell response to extracellular matrix viscous energy dissipation outweighs high-rigidity sensing. Sci Adv, 2024, 10: eadf9758.

[66]

Hurlock AK, Wang K, Takeuchi T, Horn PJ, Benning C. In vivo lipid 'tag and track' approach shows acyl editing of plastid lipids and chloroplast import of phosphatidylglycerol precursors in Arabidopsis thaliana. Plant J, 2018, 95: 1129-1139.

[67]

Jain M, Chourey PS, Li Q-B, Pring DR. Expression of cell wall invertase and several other genes of sugar metabolism in relation to seed development in sorghum (Sorghum bicolor). J Plant Physiol, 2008, 165: 331-344.

[68]

Ji D, Chen T, Zhang Z, Li B, Tian S. Versatile roles of the receptor-like kinase feronia in plant growth, development and host-pathogen interaction. Int J Mol Sci, 2020, 21. 7881

[69]

Jia M, Du P, Ding N, Zhang Q, Xing S, Wei L, Zhao Y, Mao W, Li J, Li B, Jia W. Two FERONIA-like receptor kinases regulate apple fruit ripening by modulating ethylene production. Front Plant Sci, 2017, 8. 1406

[70]

Jia K, Wang W, Zhang Q, Jia W. Cell wall integrity signaling in fruit ripening. Int J Mol Sci, 2023, 24. 4054

[71]

Jin X, Chai Q, Liu C, Niu X, Li W, Shang X, Gu A, Zhang D, Guo W. Cotton GhNAC4 promotes drought tolerance by regulating secondary cell wall biosynthesis and ribosomal protein homeostasis. Plant J, 2024, 117: 1052-1068.

[72]

Johnson KL, Gidley MJ, Bacic A, Doblin MS. Cell wall biomechanics: a tractable challenge in manipulating plant cell walls 'fit for purpose'!. Curr Opin Biotechnol, 2018, 49: 163-171.

[73]

Kessler SA, Lindner H, Jones DS, Grossniklaus U. Functional analysis of related CrRLK1L receptor-like kinases in pollen tube reception. EMBO Rep, 2015, 16: 107-115.

[74]

Kong Y, Chen J, Jiang L, Chen H, Shen Y, Wang L, Yan Y, Zhou H, Zheng H, Yu F, Ming Z. Structural and biochemical basis of Arabidopsis FERONIA receptor kinase-mediated early signaling initiation. Plant Commun, 2023, 4. 100559

[75]

Lan Z, Song Z, Wang Z, Li L, Liu Y, Zhi S, Wang R, Wang J, Li Q, Bleckmann A, Zhang L, Dresselhaus T, Dong J, Gu H, Zhong S, Qu LJ. Antagonistic RALF peptides control an intergeneric hybridization barrier on Brassicaceae stigmas. Cell, 2023, 186: 4773-4787.e4712.

[76]

Lassig R, Gutermuth T, Bey TD, Konrad KR, Romeis T. Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. Plant J, 2014, 78: 94-106.

[77]

Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C. Cell wall metabolism in response to abiotic stress. Plants (Basel), 2015, 4: 112-166

[78]

Levesque-Tremblay G, Pelloux J, Braybrook SA, Müller K. Tuning of pectin methylesterification: consequences for cell wall biomechanics and development. Planta, 2015, 242: 791-811.

[79]

Li C, Wang L, Cui Y, He L, Qi Y, Zhang J, Lin J, Liao H, Lin Q, Yang T, Feng Y, Liu X. Two FERONIA-like receptor (FLR) genes are required to maintain architecture, fertility, and seed yield in rice. Mol Breed, 2016, 36: 151.

[80]

Li C, Wu HM, Cheung AY. FERONIA and her pals: functions and mechanisms. Plant Physiol, 2016, 171: 2379-2392.

[81]

Li E, Wang G, Zhang Y-L, Kong Z, Li S. FERONIA mediates root nutating growth. Plant J, 2020, 104: 1105-1116.

[82]

Li L, Chen H, Alotaibi SS, Pěnčík A, Adamowski M, Novák O, Friml J. RALF1 peptide triggers biphasic root growth inhibition upstream of auxin biosynthesis. Proc Natl Acad Sci, 2022, 119. e2121058119

[83]

Li C, Yeh FL, Cheung AY, Duan Q, Kita D, Liu MC, Maman J, Luu EJ, Wu B.W, Gates L, Jalal M, Kwong A, Carpenter H and Wu HM. (2015) Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. Elife, 4.

[84]

Lieben L. Plant genetics: spatial transcriptomics in plants. Nat Rev Genet, 2017, 18: 394.

[85]

Lin F, Manisseri C, Fagerström A, Peck ML, Vega-Sánchez ME, Williams B, Chiniquy DM, Saha P, Pattathil S, Conlin B, Zhu L, Hahn MG, Willats WGT, Scheller HV, Ronald PC, Bartley LE. Cell wall composition and candidate biosynthesis gene expression during rice development. Plant Cell Physiol, 2016, 57: 2058-2075.

[86]

Lin W, Tang W, Pan X, Huang A, Gao X, Anderson CT, Yang Z. Arabidopsis pavement cell morphogenesis requires FERONIA binding to pectin for activation of ROP GTPase signaling. Curr Biol, 2022, 32: 497-507.e494.

[87]

Lindner H, Müller LM, Boisson-Dernier A, Grossniklaus U. CrRLK1L receptor-like kinases: not just another brick in the wall. Curr Opin Plant Biol, 2012, 15: 659-669.

[88]

Liu X, Jiang W, Li Y, Nie H, Cui L, Li R, Tan L, Peng L, Li C, Luo J, Li M, Wang H, Yang J, Zhou B, Wang P, Liu H, Zhu J-K, Zhao C. FERONIA coordinates plant growth and salt tolerance via the phosphorylation of phyB. Nat Plants, 2023, 9: 645-660.

[89]

Liu Z, Dai H, Hao J, Li R, Pu X, Guan M, Chen Q. Current research and future directions of melatonin's role in seed germination. Stress Biology, 2023, 3: 53.

[90]

Liu Z, Kong X, Long Y, Liu S, Zhang H, Jia J, Cui W, Zhang Z, Song X, Qiu L, Zhai J, Yan Z. Integrated single-nucleus and spatial transcriptomics captures transitional states in soybean nodule maturation. Nat Plants, 2023, 9: 515-524.

[91]

Liu L, Liu X, Bai Z, Tanveer M, Zhang Y, Chen W, Shabala S, Huang L. Small but powerful: RALF peptides in plant adaptive and developmental responses. Plant Sci, 2024, 343. 112085

[92]

Liu MCJ, Yeh FLJ, Yvon R, Simpson K, Jordan S, Chambers J, Wu HM, Cheung AY. Extracellular pectin-RALF phase separation mediates FERONIA global signaling function. Cell, 2024, 187: 312-330.e322.

[93]

Liu X, Wang L, Liu L, Li Y, Ogden M, Somssich M, Liu Y, Zhang Y, Ran M, Persson S, Zhao C. FERONIA adjusts CC1 phosphorylation to control microtubule array behavior in response to salt stress. Sci Adv, 2024, 10: eadq8717.

[94]

Lorrai R, Erguvan Ö, Raggi S, Jonsson K, Široká J, Tarkowská D, Novák O, Griffiths J, Jones AM, Verger S, Robert S, Ferrari S. Cell wall integrity modulates HOOKLESS1 and PHYTOCHROME INTERACTING FACTOR4 expression controlling apical hook formation. Plant Physiol, 2024, 196: 1562-1578.

[95]

Lu H-P, Wang J-J, Wang M-J, Liu J-X. Roles of plant hormones in thermomorphogenesis. Stress Biology, 2021, 1: 20.

[96]

Ma Z, Bykova NV, Igamberdiev AU. Cell signaling mechanisms and metabolic regulation of germination and dormancy in barley seeds. The Crop Journal, 2017, 5: 459-477.

[97]

Malivert A, Hamant O. Why is FERONIA pleiotropic?. Nature Plants, 2023, 9: 1018-1025.

[98]

Mao D, Yu F, Li J, Van de Poel B, Tan D, Li J, Liu Y, Li X, Dong M, Chen L, Li D, Luan S (2015) FERONIA receptor kinase interacts with -adenosylmethionine synthetase and suppresses -adenosylmethionine production and ethylene biosynthesis in rabidopsis. Plant Cell Environ 38:2566-2574. https://doi.org/10.1111/pce.12570

[99]

Marzol E, Borassi C, Bringas M, Sede A, Rodríguez Garcia DR, Capece L, Estevez JM. Filling the gaps to solve the extensin puzzle. Mol Plant, 2018, 11: 645-658.

[100]

Maynard KR, Collado-Torres L, Weber LM, Uytingco C, Barry BK, Williams SR, Catallini JL, Tran MN, Besich Z, Tippani M, Chew J, Yin Y, Kleinman JE, Hyde TM, Rao N, Hicks SC, Martinowich K, Jaffe AE. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat Neurosci, 2021, 24: 425-436.

[101]

McFarlane HE. Open questions in plant cell wall synthesis. J Exp Bot, 2023, 74: 3425-3448.

[102]

Meng A, Wen D, Zhang C. Maize seed germination under low-temperature stress impacts seedling growth under normal temperature by modulating photosynthesis and antioxidant metabolism. Front Plant Sci, 2022, 13: 843033.

[103]

Miyazaki S, Murata T, Sakurai-Ozato N, Kubo M, Demura T, Fukuda H, Hasebe M. ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization. Curr Biol, 2009, 19: 1327-1331.

[104]

Mizuta Y, Higashiyama T. Chemical signaling for pollen tube guidance at a glance. Journal of cell science, 2018, 131: jcs208447.

[105]

Muhammad N, Dong Q, Luo T, Zhang X, Song M, Wang X, Ma X. New developments in understanding cotton's physiological and molecular responses to salt stress. Plant Stress, 2025, 15: 100742.

[106]

Muschitz A, Riou C, Mollet J-C, Gloaguen V, Faugeron C. Modifications of cell wall pectin in tomato cell suspension in response to cadmium and zinc. Acta Physiol Plant, 2015, 37: 245.

[107]

Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H, Furuichi T, Kishigami A, Sokabe M, Kojima I, Sato S, Kato T, Tabata S, Iida K, Terashima A, Nakano M, Ikeda M, Yamanaka T, Iida H. Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci U S A, 2007, 104: 3639-3644.

[108]

Nguyen QT, Kisiala A, Andreas P, Neil Emery RJ, Narine S. Soybean seed development: fatty acid and phytohormone metabolism and their interactions. Curr Genomics, 2016, 17: 241-260.

[109]

Nibau C, Cheung AY. New insights into the functional roles of CrRLKs in the control of plant cell growth and development. Plant Signal Behav, 2011, 6: 655-659.

[110]

Nishimura N, Sarkeshik A, Nito K, Park S-Y, Wang A, Carvalho PC, Lee S, Caddell DF, Cutler SR, Chory J, Yates JR, Schroeder JI. PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J, 2010, 61: 290-299.

[111]

Nissen KS, Willats WGT, Malinovsky FG. Understanding CrRLK1L function: cell walls and growth control. Trends Plant Sci, 2016, 21: 516-527.

[112]

Novaković L, Guo T, Bacic A, Sampathkumar A, Johnson KL. Hitting the wall-sensing and signaling pathways involved in plant cell wall remodeling in response to abiotic stress. Plants, 2018. Plants (Basel) 7

[113]

Ou Y, Kui H, Li J. Receptor-like kinases in root development: current progress and future directions. Mol Plant, 2021, 14: 166-185.

[114]

Park YB, Cosgrove DJ. Xyloglucan and its interactions with other components of the growing cell wall. Plant Cell Physiol, 2015, 56: 180-194.

[115]

Pérez García M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M. Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry, 2011, 50: 989-1000.

[116]

Qiu, C., Chen, J., Wu, W., Liao, B., Zheng, X., Li, Y., Huang, J., Shi, J. and Hao, Z. (2023) Genome Wide Analysis and Abiotic Stress-Responsive Patterns of COBRA-like Gene Family in Liriodendron chinense. Plants, 12, 1616.

[117]

Rai KM, Thu SW, Balasubramanian VK, Cobos CJ, Disasa T, Mendu V. Identification, characterization, and expression analysis of cell wall related genes in Sorghum bicolor (L.) Moench, a food, fodder, and biofuel crop. Frontiers in Plant Science, 2016. Frontiers in Plant Science 7

[118]

Rao A, Barkley D, França GS, Yanai I. Exploring tissue architecture using spatial transcriptomics. Nature, 2021, 596: 211-220.

[119]

Richter J, Ploderer M, Mongelard G, Gutierrez L, Hauser MT. Role of CrRLK1L cell wall sensors HERCULES1 and 2, THESEUS1, and FERONIA in growth adaptation triggered by heavy metals and trace elements. Front Plant Sci, 2017, 8. 1554

[120]

Rotman N, Rozier F, Boavida L, Dumas C, Berger F, Faure JE. Female control of male gamete delivery during fertilization in Arabidopsis thaliana. Curr Biol, 2003, 13: 432-436.

[121]

Rui Y, Dinneny JR. A wall with integrity: surveillance and maintenance of the plant cell wall under stress. New Phytol, 2020, 225: 1428-1439.

[122]

Sangi S, Santos MLC, Alexandrino CR, Da Cunha M, Coelho FS, Ribeiro GP, Lenz D, Ballesteros H, Hemerly AS, Venâncio TM, Oliveira AEA, Grativol C. Cell wall dynamics and gene expression on soybean embryonic axes during germination. Planta, 2019, 250: 1325-1337.

[123]

Saulnier L, Guillon F, Chateigner-Boutin A-L. Cell wall deposition and metabolism in wheat grain. J Cereal Sci, 2012, 56: 91-108.

[124]

Scheller HV, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol, 2010, 61: 263-289.

[125]

Schoenaers S, Balcerowicz D, Breen G, Hill K, Zdanio M, Mouille G, Holman T, Oh J, Wilson M, Nikonorova N, Vu L, Smet I, Swarup R, De Vos W, Pintelon I, Adriaensen D, Grierson C, Bennett M, Vissenberg K. The auxin-regulated CrRLK1L kinase ERULUS controls cell wall composition during root hair tip growth. Curr Biol, 2018, 28: 722.

[126]

Schulze-Muth P, Irmler S, Schröder G, Schröder J. Novel type of receptor-like protein kinase from a higher plant (Catharanthus roseus): cDNA, gene, intramolecular autophosphorylation, and identification of a threonine important for auto- and substrate phosphorylation*. J Biol Chem, 1996, 271: 26684-26689.

[127]

Serrano K, Tedeschi F, Andersen SU, Scheller HV. Unraveling plant–microbe symbioses using single-cell and spatial transcriptomics. Trends Plant Sci, 2024, 29: 1356-1367.

[128]

Seymour GB, Østergaard L, Chapman NH, Knapp S, Martin C. Fruit development and ripening. Annu Rev Plant Biol, 2013, 64: 219-241.

[129]

Shaw R, Tian X, Xu J. Single-cell transcriptome analysis in plants: advances and challenges. Mol Plant, 2021, 14: 115-126.

[130]

Shen Y, Li J, Cai X, Jin J, Li D, Wu H, Dong W, Guo Y, Sun M, Sun X. Investigation of the potential regulation of the UDP-glycosyltransferase genes on rice grain size and abiotic stress response. Gene, 2025, 933. 149003

[131]

Smokvarska M, Bayle V, Maneta-Peyret L, Fouillen L, Poitout A, Dongois A, Fiche J-B, Gronnier J, Garcia J, Höfte H, Nolmann M, Zipfel C, Maurel C, Moreau P, Jaillais Y, Martiniere A. The receptor kinase FERONIA regulates phosphatidylserine localization at the cell surface to modulate ROP signaling. Science Advances, 2023, 9: eadd4791.

[132]

Solis-Miranda J, Quinto C. The CrRLK1L subfamily: one of the keys to versatility in plants. Plant Physiol Biochem, 2021, 166: 88-102.

[133]

Song X, Guo P, Xia K, Wang M, Liu Y, Chen L, Zhang J, Xu M, Liu N, Yue Z, Xu X, Gu Y, Li G, Liu M, Fang L, Deng XW, Li B. Spatial transcriptomics reveals light-induced chlorenchyma cells involved in promoting shoot regeneration in tomato callus. Proc Natl Acad Sci U S A, 2023, 120. e2310163120

[134]

Sun X, Sun M, Jia B, Qin Z, Yang K, Chen C, Yu Q, Zhu Y. A Glycine soja methionine sulfoxide reductase B5a interacts with the Ca(2+) /CAM-binding kinase GsCBRLK and activates ROS signaling under carbonate alkaline stress. Plant J, 2016, 86: 514-529.

[135]

Sun M, Qian X, Chen C, Cheng S, Jia B, Zhu Y, Sun X. Ectopic expression of GsSRK in medicago sativa reveals its involvement in plant architecture and salt stress responses. Frontiers in Plant Science, 2018, 9: 226.

[136]

Sun X, Cai X, Yin K, Gu L, Shen Y, Hu B, Wang Y, Chen Y, Zhu Y, Jia B, Sun M. Wild soybean SNARE proteins BET1s mediate the subcellular localization of the cytoplasmic receptor-like kinases CRCK1s to modulate salt stress responses. Plant J, 2020, 105: 771.

[137]

Sun M, Shen Y, Chen Y, Wang Y, Cai X, Junkai Y, Jia B, Dong W, Chen X, Sun X. Osa-miR1320 targets the ERF transcription factor OsERF096 to regulate cold tolerance via JA-mediated signaling. Plant Physiol, 2022, 189: 2500.

[138]

Suwa R, Hakata H, Hara H, El-Shemy HA, Adu-Gyamfi JJ, Nguyen NT, Kanai S, Lightfoot DA, Mohapatra PK, Fujita K. High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes. Plant Physiol Biochem, 2010, 48: 124-130.

[139]

Takeuchi H, Higashiyama T. Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis. Nature, 2016, 531: 245-248.

[140]

Voxeur A, Höfte H. Cell wall integrity signaling in plants: "to grow or not to grow that's the question". Glycobiology, 2016, 26: 950-960.

[141]

Wang T, Liang L, Xue Y, Jia PF, Chen W, Zhang MX, Wang YC, Li HJ, Yang WC. A receptor heteromer mediates the male perception of female attractants in plants. Nature, 2016, 531: 241-244.

[142]

Wang L, Yang T, Lin Q, Wang B, Li X, Luan S, Yu F. Receptor kinase FERONIA regulates flowering time in Arabidopsis. BMC Plant Biol, 2020, 20: 26.

[143]

Wang L, Wang D, Yang Z, Jiang S, Qu J, He W, Liu Z, Xing J, Ma Y, Lin Q, Yu F. Roles of FERONIA-like receptor genes in regulating grain size and quality in rice. Science China Life Sciences, 2021, 64: 294-310.

[144]

Wang Z, Wang M, Yang C, Zhao L, Qin G, Peng L, Zheng Q, Nie W, Song C-P, Shi H, Zhu J-K, Zhao C. SWO1 modulates cell wall integrity under salt stress by interacting with importin ɑ in Arabidopsis. Stress Biology, 2021, 1: 9.

[145]

Wang Y, Shen Y, Dong W, Cai X, Junkai Y, Chen Y, Jia B, Sun M, Sun X (2024) PHD17 acts as a target of miR1320 to negatively control cold tolerance via JA-activated signaling in rice. Crop J 12:1447–1458. https://doi.org/10.1016/j.cj.2024.07.012

[146]

Westermann J, Streubel S, Franck CM, Lentz R, Dolan L, Boisson-Dernier A. An evolutionarily conserved receptor-like kinases signaling module controls cell wall integrity during tip growth. Curr Biol, 2019, 29: 3899-3908.e3893.

[147]

Winship LJ, Obermeyer G, Geitmann A, Hepler PK. Pollen tubes and the physical world. Trends Plant Sci, 2011, 16: 353-355.

[148]

Wolf S. Plant cell wall signalling and receptor-like kinases. Biochem J, 2017, 474: 471-492.

[149]

Wolf S. Cell wall signaling in plant development and defense. Annu Rev Plant Biol, 2022, 73: 323-353.

[150]

Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T, Shimamoto K. Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell, 2007, 19: 4022-4034.

[151]

Xia K, Sun H-X, Li J, Li J, Zhao Y, Chen L, Qin C, Chen R, Chen Z, Liu G, Yin R, Mu B, Wang X, Xu M, Li X, Yuan P, Qiao Y, Hao S, Wang J, Xie Q, Xu J, Liu S, Li Y, Chen A, Liu L, Yin Y, Yang H, Wang J, Gu Y, Xu X. The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves. Dev Cell, 2022, 57: 1299-1310.e1294.

[152]

Xu SL, Rahman A, Baskin TI, Kieber JJ. Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell, 2008, 20: 3065-3079.

[153]

Yan M, Jing W, Xu N, Shen L, Zhang Q, Zhang W. Arabidopsis thaliana constitutively active ROP11 interacts with the NADPH oxidase respiratory burst oxidase homologue F to regulate reactive oxygen species production in root hairs. Funct Plant Biol, 2016, 43: 221-231.

[154]

Yin Y, Qin K, Song X, Zhang Q, Zhou Y, Xia X, Yu J. BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase-mediated reactive oxygen species signaling in tomato. Plant Cell Physiol, 2018, 59: 2239-2254

[155]

Yu F, Qian L, Nibau C, Duan Q, Kita D, Levasseur K, Li X, Lu C, Li H, Hou C, Li L, Buchanan BB, Chen L, Cheung AY, Li D, Luan S. FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase. Proc Natl Acad Sci, 2012, 109: 14693-14698.

[156]

Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G. How plant hormones mediate salt stress responses. Trends Plant Sci, 2020, 25: 1117-1130.

[157]

Yu Z, Ren Y, Liu J, Zhu J-K, Zhao C. A novel mitochondrial protein is required for cell wall integrity, auxin accumulation and root elongation in Arabidopsis under salt stress. Stress Biology, 2022, 2: 13.

[158]

Zhang H, Zhao Y, Zhu J-K. Thriving under stress: how plants balance growth and the stress response. Dev Cell, 2020, 55: 529-543.

[159]

Zhang X, Yang Z, Wu D, Yu F. RALF–FERONIA signaling: linking plant immune response with cell growth. Plant Communications, 2020, 1. 100084

[160]

Zhang T-Q, Chen Y, Liu Y, Lin W-H, Wang J-W. Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root. Nat Commun, 2021, 12: 2053.

[161]

Zhao C, Zayed O, Yu Z, Jiang W, Zhu P, Hsu CC, Zhang L, Tao WA, Lozano-Durán R, Zhu JK. Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proc Natl Acad Sci U S A, 2018, 115: 13123-13128.

[162]

Zhao C, Jiang W, Zayed O, Liu X, Tang K, Nie W, Li Y, Xie S, Li Y, Long T, Liu L, Zhu Y, Zhao Y, Zhu JK. The LRXs-RALFs-FER module controls plant growth and salt stress responses by modulating multiple plant hormones. Natl Sci Rev, 2021, 8: nwaa149.

[163]

Zheng D, Xu J, Lu Y, Chen H, Chu Q, Fan L. Recent progresses in plant single-cell transcriptomics. Crop Design, 2023, 2. 100041

[164]

Zhong K, Zhang P, Wei X, Platre MP, He W, Zhang L, Małolepszy A, Cao M, Hu S, Tang S, Li B, Hu P, Busch W. Natural variation of TBR confers plant zinc toxicity tolerance through root cell wall pectin methylesterification. Nat Commun, 2024, 15: 5823.

[165]

Zhu L, Chu LC, Liang Y, Zhang XQ, Chen LQ, Ye D. The Arabidopsis CrRLK1L protein kinases BUPS1 and BUPS2 are required for normal growth of pollen tubes in the pistil. Plant J, 2018, 95: 474-486.

[166]

Zhu S, Martínez Pacheco J, Estevez JM, Yu F. Autocrine regulation of root hair size by the RALF-FERONIA-RSL4 signaling pathway. New Phytol, 2020, 227: 45-49.

[167]

Zhu S, Fu Q, Xu F, Zheng H, Yu F. New paradigms in cell adaptation: decades of discoveries on the CrRLK1L receptor kinase signalling network. New Phytol, 2021, 232: 1168-1183.

[168]

Zong J, Wang L, Zhu L, Bian L, Zhang B, Chen X, Huang G, Zhang X, Fan J, Cao L, Coupland G, Liang W, Zhang D, Yuan Z. A rice single cell transcriptomic atlas defines the developmental trajectories of rice floret and inflorescence meristems. New Phytol, 2022, 234: 494-512.

[169]

Zou Y, Gigli-Bisceglia N, van Zelm E, Kokkinopoulou P, Julkowska MM, Besten M, Nguyen T-P, Li H, Lamers J, de Zeeuw T, Dongus JA, Zeng Y, Cheng Y, Koevoets IT, Jørgensen B, Giesbers M, Vroom J, Ketelaar T, Petersen BL, Engelsdorf T, Sprakel J, Zhang Y, Testerink C. Arabinosylation of cell wall extensin is required for the directional response to salinity in roots. Plant Cell, 2024, 36: 3328-3343.

Funding

National Key Research and Development Plan of China(2021YFF1001100)

National Natural Science Foundation of China(32341033)

Key Research and Development Plan of Heilongjiang Province(GZ2024ZX02B13)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/