Rapid isolation of Yr9 via MutIsoSeq and QTL analysis of durable stripe rust resistance in wheat cultivar Xingzi 9104

Yibo Zhang , Shuo Huang , Yuqing Li , Shuaiwei Cao , Hui Ren , Mingjie Xiang , Haitao Dong , Jiangna Han , Ying Zhao , Xiangxue Zhang , Xunying Yuan , Qilin Wang , Yajun Wang , Yi Ouyang , Zujun Yang , Zhensheng Kang , Shengjie Liu , Jianhui Wu , Qingdong Zeng , Dejun Han

Stress Biology ›› 2025, Vol. 5 ›› Issue (1) : 29

PDF
Stress Biology ›› 2025, Vol. 5 ›› Issue (1) : 29 DOI: 10.1007/s44154-025-00226-9
Original Paper

Rapid isolation of Yr9 via MutIsoSeq and QTL analysis of durable stripe rust resistance in wheat cultivar Xingzi 9104

Author information +
History +
PDF

Abstract

The fungus Puccinia striiformis f. sp. tritici (Pst) is the causal agent of wheat stripe rust which constitutes a major limitation to wheat production. Cloning and applying disease-resistant genes are considered as an effective solution. Chinese wheat cultivar Xingzi 9104 (XZ9104) has exhibited durable resistance across multiple environments since its release. Through quantitative trait loci (QTL) analysis, eight QTL were found on chromosome arms 1BS, 1BL, 2AL, 2BL, 3BS, 4BL, 5BL and 7BL. YrXZ identified as 1RS.1BL translocation conferred race-specific all-stage resistance to Pst race CYR23. QYrxz.nwafu-1BL.6 and QYrxz.nwafu-3BS.7 were considered as the adult plant resistance genes Yr29 and Yr30, respectively. Notably, QYrxz.nwafu-2BL.5 accounted for 15.75–47.63% of the phenotypic variation across diverse environments and its pyramiding with Yr29 and Yr30 can confer high level of resistance. Other QTL were environment-dependent with minor effects. To clone the above resistance genes, we created a population of over 2,000 M5 mutants in XZ9104 using ethylmethane sulfonate (EMS) mutagenesis and screened various types of susceptible mutants. Using the MutIsoseq approach with five mutant lines susceptible to race CYR23, we rapid isolated a candidate gene for YrXZ encoding coiled-coil nucleotide-binding site leucine-rich repeat (CC-NBS-LRR) protein. Integrating cytological analysis, gene-based association analysis, transcriptomic profiling and virus-induced gene silencing (VIGS), we confirmed that the causal gene for YrXZ was indeed Yr9. This study demonstrated that multiple QTL with different effects contributed to the durable resistance in XZ9104. Understanding the molecular mechanisms and pathways involved in plant defense can inform future strategies for deploying resistance gene and engineering of genetic resistance against evolving diseases.

Keywords

Stripe rust / Durable resistance / QTL analysis / Xingzi 9104 / Yr9 / Biological Sciences / Genetics / Plant Biology

Cite this article

Download citation ▾
Yibo Zhang, Shuo Huang, Yuqing Li, Shuaiwei Cao, Hui Ren, Mingjie Xiang, Haitao Dong, Jiangna Han, Ying Zhao, Xiangxue Zhang, Xunying Yuan, Qilin Wang, Yajun Wang, Yi Ouyang, Zujun Yang, Zhensheng Kang, Shengjie Liu, Jianhui Wu, Qingdong Zeng, Dejun Han. Rapid isolation of Yr9 via MutIsoSeq and QTL analysis of durable stripe rust resistance in wheat cultivar Xingzi 9104. Stress Biology, 2025, 5(1): 29 DOI:10.1007/s44154-025-00226-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AthiyannanN, AbroukM, BoshoffWHP, CauetS, RoddeN, KudrnaD, MohammedN, BettgenhaeuserJ, BothaKS, DermanSS, WingRA, PrinsR, KrattingerSG. Long-Read Genome Sequencing of Bread Wheat Facilitates Disease Resistance Gene Cloning. Nat Genet, 2022, 543227-231.

[2]

BoukhatemN, BaretPV, MingeotD, JacqueminJM. Quantitative Trait Loci for Resistance Against Yellow Rust in Two Wheat-Derived Recombinant Inbred Line Populations. Theor Appl Genet, 2002, 1041111-118.

[3]

CaiX, LiuD. Identification of a 1B/1R Wheat-Rye Chromosome Translocation. Theor Appl Genet, 1989, 77: 81-83.

[4]

ChenX. Pathogens Which Threaten Food Security: Puccinia Striiformis, the Wheat Stripe Rust Pathogen. Food Security, 2020, 122239-251.

[5]

ChenW, WellingsC, ChenX, KangZ, LiuT. Wheat Stripe (Yellow) Rust Caused Byp Uccinia Striiformis F. Sp.Tritici. Mol Plant Pathol, 2014, 155433-446.

[6]

ChenXM. Epidemiology and Control of Stripe Rust [Puccinia Striiformis F. Sp. Tritici] On Wheat. Can J Plant Pathol, 2005, 273314-337.

[7]

ChengP, ChenXM. Molecular Mapping of a Gene for Stripe Rust Resistance in Spring Wheat Cultivar Ido377S. Theor Appl Genet, 2010, 1211195-204.

[8]

ChhetriM, MiahH, WongD, HaydenM, BansalU, BarianaH. Mapping of a Stripe Rust Resistance Gene Yr72 in the Common Wheat Landraces Aus27506 and Aus27894 From the Watkins Collection. Genes, 2023, 14111993.

[9]

Crespo-Herrera LA, Garkava-Gustavsson L, Åhman I (2017) A Systematic Review of Rye (Secale Cereale L.) As a Source of Resistance to Pathogens and Pests in Wheat (Triticum Aestivum L.). Hereditas 154:14. https://doi.org/10.1186/s41065-017-0033-5

[10]

DibleyK, JostM, McIntoshR, LagudahE, ZhangP. The Wheat Stripe Rust Resistance Gene Yrnam is Yr10. Nat Commun, 2024, 15: 3291.

[11]

FriebeB, HeunM, TuleenN, ZellerFJ, GillBS. Cytogenetically Monitored Transfer of Powdery Mildew Resistance From Rye Into Wheat. Crop Sci, 1994, 343621-625.

[12]

FuS, ChenL, WangY, LiM, YangZ, QiuL, YanB, RenZ, TangZ. Oligonucleotide Probes for Nd-Fish Analysis to Identify Rye and Wheat Chromosomes. Sci Rep, 2015, 5: 10552.

[13]

Harbor CS (2009) Cetyltrimethyl Ammonium Bromide (Ctab) Dna Miniprep for Plant Dna Isolation[S]. Cold Spring Harb Protoc 2009(3):pdb.prot5177. https://doi.org/10.1101/pdb.prot5177

[14]

HollenhorstMM, JoppaLR. Chromosomal Location of Genes for Resistance to Greenbug in 'Largo' and 'Amigo' Wheats. Crop Sci, 1983, 23: 1-93.

[15]

HsamSLK, CermetoMC, FriebetB. Transfer of Amigo Wheat Powdery Mildew Resistance Gene Pm17 From T1Al Irs to the T1Bl 1Rs Wheat-Rye Translocated Chromosome. Heredity, 1994, 745497-501.

[16]

HuiF, GuoS, LiuJ, LiM, GengM, XiaY, LiuX, LiQ, LiJ, ZhuT. Genome-Wide Identification and Characterization of Nlr Genes in Lamprey (Lethenteron Reissneri) and their Responses to Lipopolysaccharide/Poly(I:C) Challenge. Mol Immunol, 2022, 143: 122-134.

[17]

JanI, SaripalliG, KumarK, KumarA, SinghR, BatraR, SharmaPK, BalyanHS, GuptaPK. Meta-Qtls and Candidate Genes for Stripe Rust Resistance in Wheat. Sci Rep, 2021, 11122923.

[18]

Juliana P, Rutkoski JE, Poland JA, Singh RP, Murugasamy S, Natesan S, Barbier H, Sorrells ME (2015) Genome-Wide Association Mapping for Leaf Tip Necrosis and Pseudo-Black Chaff in Relation to Durable Rust Resistance in Wheat. Plant Genome 8(2):plantgenome2015.01.0002. https://doi.org/10.3835/plantgenome2015.01.0002

[19]

KlymiukV, YanivE, HuangL, RaatsD, FatiukhaA, ChenS, FengL, FrenkelZ, KrugmanT, LidzbarskyG, ChangW, JääskeläinenMJ, SchudomaC, PaulinL, LaineP, BarianaH, SelaH, SaleemK, SørensenCK, HovmøllerMS, DistelfeldA, ChalhoubB, DubcovskyJ, KorolAB, SchulmanAH, FahimaT. Cloning of the Wheat Yr15 Resistance Gene Sheds Light On the Plant Tandem Kinase-Pseudokinase Family. Nat Commun, 2018, 913735.

[20]

KlymiukV, ChawlaHS, WiebeK, EnsJ, FatiukhaA, GovtaL, FahimaT, PozniakCJ. Discovery of Stripe Rust Resistance with Incomplete Dominance in Wild Emmer Wheat Using Bulked Segregant Analysis Sequencing. Commun Biol, 2022, 51826.

[21]

Kosambi DD (2016) The Estimation of Map Distances From Recombination Values. In: RAMASWAMY R (eds) D.D. Kosambi. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3676-4_16

[22]

KrattingerSG, LagudahES, SpielmeyerW, SinghRP, Huerta-EspinoJ, McFaddenH, BossoliniE, SelterLL, KellerB. A Putative Abc Transporter Confers Durable Resistance to Multiple Fungal Pathogens in Wheat. Science, 2009, 32359191360-1363.

[23]

LiJ, DundasI, DongC, LiG, TrethowanR, YangZ, HoxhaS, ZhangP. Identification and Characterization of a New Stripe Rust Resistance Gene Yr83 On Rye Chromosome 6R in Wheat. Theor Appl Genet, 2020, 13341095-1107.

[24]

LiuHM, LiuTG, XuSC, QunLD, ChenWQ. Inheritance of Yellow Rust Resistance in an Elite Wheat Germplasm Xingzi 9104. Acta Agron Sin, 2006, 32111742-1745

[25]

LiuS, WangX, ZhangY, JinY, XiaZ, XiangM, HuangS, QiaoL, ZhengW, ZengQ, WangQ, YuR, SinghRP, BhavaniS, KangZ, HanD, WangC, WuJ. Enhanced Stripe Rust Resistance Obtained by Combining Yr30 with a Widely Dispersed, Consistent Qtl On Chromosome Arm 4Bl. Theor Appl Genet, 2022, 1351351-365.

[26]

LiuW, FrickM, HuelR, NykiforukCL, WangX, GaudetDA, EudesF, ConnerRL, KuzykA, ChenQ, KangZ, LarocheA. The Stripe Rust Resistance Gene Yr10 Encodes an Evolutionary-Conserved and Unique Cc–Nbs–Lrr Sequence in Wheat. Mol Plant, 2014, 7121740-1755.

[27]

MagoR, MiahH, LawrenceGJ, WellingsCR, SpielmeyerW, BarianaHS, McIntoshRA, PryorAJ, EllisJG. High-Resolution Mapping and Mutation Analysis Separate the Rust Resistance Genes Sr31, Lr26 and Yr9 On the Short Arm of Rye Chromosome 1. Theor Appl Genet, 2005, 112141-50.

[28]

MaraisGF, HornM, Du TorrF. Intergeneric Transfer (Rye to Wheat) of a Gene(S) for Russian Wheat Aphid Resistance. Plant Breeding, 1994, 113: 265-271.

[29]

MarchalC, ZhangJ, ZhangP, FenwickP, SteuernagelB, AdamskiNM, BoydL, McIntoshR, WulffBBH, BerryS, LagudahE, UauyC. Bed-Domain-Containing Immune Receptors Confer Diverse Resistance Spectra to Yellow Rust. Nature Plants, 2018, 4: 662-668.

[30]

MaterY, BaenzigerS, GillK, GrayboschR, WhitcherL, BakerC, SpechtJ, DweikatI. Linkage Mapping of Powdery Mildew and Greenbug Resistance Genes On Recombinant 1Rs From 'Amigo' and 'Kavkaz' Wheat–Rye Translocations of Chromosome 1Rs.1Al. Genome, 2004, 472292-8.

[31]

MaS, WangM, WuJ, GuoW, ChenY, LiG, WangY, ShiW, XiaG, FuD, KangZ, NiF. Wheatomics: A Platform Combining Multiple Omics Data to Accelerate FunctionalGenomics Studies in Wheat. Mol Plant, 2021, 14121965-1968.

[32]

MengL, LiH, ZhangL, WangJ. Qtl Icimapping: Integrated Software for Genetic Linkage Map Construction and Quantitative Trait Locus Mapping in Biparental Populations. The Crop Journal, 2015, 33269-283.

[33]

MooreJW, Herrera-FoesselS, LanC, SchnippenkoetterW, AyliffeM, Huerta-EspinoJ, LillemoM, ViccarsL, MilneR, PeriyannanS, KongX, SpielmeyerW, TalbotM, BarianaH, PatrickJW, DoddsP, SinghR, LagudahE. A Recently Evolved Hexose Transporter Variant Confers Resistance to Multiple Pathogens in Wheat. Nat Genet, 2015, 47121494-1498.

[34]

MuJ, HuangS, LiuS, ZengQ, DaiM, WangQ, WuJ, YuS, KangZ, HanD. Genetic Architecture of Wheat Stripe Rust Resistance Revealed by Combining Qtl Mapping Using Snp-Based Genetic Maps and Bulked Segregant Analysis. Theor Appl Genet, 2019, 1322443-455.

[35]

NiF, ZhengY, LiuX, YuY, ZhangG, EpsteinL, MaoX, WuJ, YuanC, LvB, YuH, LiJ, ZhaoQ, YangQ, LiuJ, QiJ, FuD, WuJ. Sequencing Trait-Associated Mutations to Clone Wheat Rust-Resistance Gene Yrnam. Nat Commun, 2023, 1414353.

[36]

RenT, JiangQ, SunZ, RenZ, TanF, YangW, LiZ. Development and Characterization of Novel Wheat-Rye 1Rs·1Bl Translocation Lines with High Resistance Topuccinia Striiformis F. Sp.Tritici. Phytopathology®, 2022, 11261310-1315.

[37]

Sánchez-MartínJ, SteuernagelB, GhoshS, HerrenG, HurniS, AdamskiN, VránaJ, KubalákováM, KrattingerSG, WickerT, DoleželJ, KellerB, WulffBBH. Rapid Gene Isolation in Barley and Wheat by Mutant Chromosome Sequencing. Genome Biol., 2016, 171221.

[38]

SharmaD, AvniR, Gutierrez-GonzalezJ, KumarR, SelaH, PrustyMR, Shatil-CohenA, MolnárI, HolušováK, SaidM, DoleželJ, MilletE, Khazan-KostS, LandauU, BethkeG, SharonO, EzratiS, RonenM, MaatukO, EilamT, ManisterskiJ, Ben-YehudaP, AniksterY, MatnyO, SteffensonBJ, MascherM, BrabhamHJ, MoscouMJ, LiangY, YuG, WulffBBH, MuehlbauerG, Minz-DubA, SharonA. A Single Nlr Gene Confers Resistance to Leaf and Stripe Rust in Wheat. Nat Commun, 2024, 1519925.

[39]

ShiferawB, SmaleM, BraunH, DuveillerE, ReynoldsM, MurichoG. Crops that Feed the World 10. Past Successes and Future Challenges to the Role Played by Wheat in Global Food Security. Food Security, 2013, 53291-317.

[40]

SinghRP, NelsonJC, SorrellsME. Mapping Yr28 and Other Genes for Resistance to Stripe Rust in Wheat. Crop Sci, 2000, 4041148-1155.

[41]

Singh H, Kaur J, Bala R, Srivastava P, Sharma A, Grover G, Dhillon GS, Singh RP, Chhuneja P, Bains NS (2022) Residual Effect of Defeated Stripe Rust Resistance Genes/Qtls in Bread Wheat Against Prevalent Pathotypes of Puccinia Striiformis F. Sp Tritici Plos One 17(4). https://doi.org/10.1371/journal.pone.0266482

[42]

SrinivasK, SinghVK, SrinivasB, SameriyaKK, PrasadL, SinghGP. Determining the Impact of Stripe Rust and Leaf Rust On Grain Yield and Yield Components' Losses in Indian Wheat Cultivars. Cereal Research Communications, 2024, 522733-746.

[43]

SteuernagelB, PeriyannanSK, Hernández-PinzónI, WitekK, RouseMN, YuG, HattaA, AyliffeM, BarianaH, JonesJDG, LagudahES, WulffBBH. Rapid Cloning of Disease-Resistance Genes in Plants Using Mutagenesis and Sequence Capture. Nat Biotechnol, 2016, 346652-655.

[44]

SuenagaK, SinghRP, Huerta-EspinoJ, WilliamHM. Microsatellite Markers for Genes Lr34/Yr18 and Other Quantitative Trait Loci for Leaf Rust and Stripe Rust Resistance in Bread Wheat. Phytopathology, 2003, 937881-890.

[45]

Tang Z, Yang Z, Fu S (2014) Oligonucleotides Replacing the Roles of Repetitive Sequences Pas1, Psc119.2, Pta-535, Pta71, Ccs1, and Pawrc.1 for Fish Analysis. J Appl Genet 55(3):313~318. https://doi.org/10.1007/s13353-014-0215-z

[46]

TylerJM, WebsterJA, MerklOG. Designations for Genes in Wheat Germplasm Iconferring Greenbug Resistance. Crop Sci, 1987, 27: 526-527.

[47]

UauyC, BrevisJC, ChenX, KhanI, JacksonL, ChicaizaO, DistelfeldA, FahimaT, DubcovskyJ. High-Temperature Adult-Plant (Htap) Stripe Rust Resistance Gene Yr36 From Triticum Turgidum Ssp. Dicoccoides is Closely Linked to the Grain Protein Content Locus Gpc-B1. Theor Appl Genet, 2005, 112197-105.

[48]

VoorripsRE. Mapchart: Software for the Graphical Presentation of Linkage Maps and Qtls. J Hered, 2022, 93: 77-78.

[49]

WangF, ZhangM, HuY, GanM, JiangB, HaoM, NingS, YuanZ, ChenX, ChenX, ZhangL, WuB, LiuD, HuangL. Pyramiding of Adult-Plant Resistance Genes Enhances All-Stage Resistance to Wheat Stripe Rust. Plant Dis, 2023, 1073879-885.

[50]

WangY, AbroukM, GourdoupisS, KooD, KarafiátováM, MolnárI, HolušováK, DoleželJ, AthiyannanN, Cavalet-GiorsaE, JaremkoA, PolandJ, KrattingerSG. An Unusual Tandem Kinase Fusion Protein Confers Leaf Rust Resistance in Wheat. Nat Genet, 2023, 556914-920.

[51]

WangH, ZouS, LiY, LinF, TangD. An Ankyrin-Repeat and Wrky-Domain-Containing Immune Receptor Confers Stripe Rust Resistance in Wheat. Nat Commun, 2020, 111353.

[52]

WangX, XiangM, LiH, LiX, MuK, HuangS, ZhangY, ChengX, YangS, YuanX, SinghRP, BhavaniS, ZengQ, WuJ, KangZ, LiuS, HanD. High-Density Mapping of Durable and Broad-Spectrum Stripe Rust Resistance Gene Yr30 in Wheat. Theor Appl Genet, 2024, 1377152.

[53]

WickerT, YahiaouiN, KellerB. Illegitimate Recombination is a Major Evolutionary Mechanism for Initiating Size Variation in Plant Resistance Genes. Plant J, 2007, 514631-641.

[54]

WilliamHM, SinghRP, Huerta-EspinoJ, PalaciosG, SuenagaK. Characterization of Genetic Loci Conferring Adult Plant Resistance to Leaf Rust and Stripe Rust in Spring Wheat. Genome, 2006, 498977-990.

[55]

SuiXX. Molecular Mapping of a Stripe Rust Resistance Gene in Spring Wheat Cultivar Zak. Phytopathology, 2009, 99: 1209.

[56]

XuLS, WangMN, ChengP, KangZS, HulbertSH, ChenXM. Molecular Mapping of Yr53, a New Gene for Stripe Rust Resistance in Durum Wheat Accession Pi 480148 and its Transfer to Common Wheat. Theor Appl Genet, 2013, 1262523-533.

[57]

YangS, ZhangX, YueJ, TianD, ChenJ. Recent Duplications Dominate Nbs-Encoding Gene Expansion in Two Woody Species. Mol Genet Genomics, 2008, 2803187-198.

[58]

YangEN, RosewarneGM, Herrera-FoesselSA, Huerta-EspinoJ, TangZX, SunCF, RenZL, SinghRP. Qtl Analysis of the Spring Wheat “Chapio” Identifies Stable Stripe Rust Resistance Despite Inter-Continental Genotype × Environment Interactions. Theor Appl Genet, 2013, 12671721-1732.

[59]

YuG, MatnyO, GourdoupisS, RayapuramN, AljedaaniFR, WangYL, NürnbergerT, JohnsonR, CreanEE, SaurIML, GardenerC, YueY, KangaraN, SteuernagelB, HaytaS, SmedleyM, HarwoodW, PatpourM, WuS, PolandJ, JonesJDG, ReuberTL, RonenM, SharonA, RouseMN, XuS, HolušováK, BartošJ, MolnárI, KarafiátováM, HirtH, BlilouI, JaremkoA, DoleželJ, SteffensonBJ, WulffBBH. The Wheat Stem Rust Resistance Gene Sr43 Encodes an Unusual Protein Kinase. Nat Genet, 2023, 556921-926.

[60]

YuG, MatnyO, ChampouretN, SteuernagelB, MoscouMJ, Hernández-PinzónI, GreenP, HaytaS, SmedleyM, HarwoodW, KangaraN, YueY, GardenerC, BanfieldMJ, OliveraPD, WelchinC, SimmonsJ, MilletE, Minz-DubA, RonenM, AvniR, SharonA, PatpourM, JustesenAF, JayakodiM, HimmelbachA, SteinN, WuS, PolandJ, EnsJ, PozniakC, KarafiátováM, MolnárI, DoleželJ, WardER, ReuberTL, JonesJDG, MascherM, SteffensonBJ, WulffBBH. Aegilops Sharonensis Genome-Assisted Identification of Stem Rust Resistance Gene Sr62. Nat Commun, 2022, 131607.

[61]

ZhangC, HuangL, ZhangH, HaoQ, LyuB, WangM, EpsteinL, LiuM, KouC, QiJ, ChenF, LiM, GaoG, NiF, ZhangL, HaoM, WangJ, ChenX, LuoM, ZhengY, WuJ, LiuD, FuD. An Ancestral Nb-Lrr with Duplicated 3′Utrs Confers Stripe Rust Resistance in Wheat and Barley. Nat Commun, 2019, 1014023.

[62]

ZhangJ, HewittTC, BoshoffWHP, DundasI, UpadhyayaN, LiJ, PatpourM, ChandramohanS, PretoriusZA, HovmøllerM, SchnippenkoetterW, ParkRF, MagoR, PeriyannanS, BhattD, HoxhaS, ChakrabortyS, LuoM, DoddsP, SteuernagelB, WulffBBH, AyliffeM, McIntoshRA, ZhangP, LagudahES. A Recombined Sr26 and Sr61 Disease Resistance Gene Stack in Wheat Encodes Unrelated Nlr Genes. Nat Commun, 2021, 1213378.

[63]

Zhu Z, Cao Q, Han D, Wu J, Wu L, Tong J, Xu X, Yan J, Zhang Y, Xu K, Wang F, Dong Y, Gao C, He Z, Xia X, Hao Y (2023) Molecular Characterization and Validation of Adult-Plant Stripe Rust Resistance Gene Yr86 in Chinese Wheat Cultivar Zhongmai 895. Theor Appl Genet 136(6). https://doi.org/10.1007/s00122-023-04374-2

Funding

National Key R&D Program of China(2021YFD1401000)

Key Research and Development Program of Shaanxi(ProgramNo.2024NC2-GJHX-36)

Innovation Capability Support Program of Shaanxi(Program No. 2023-CX-TD-56)

China Agriculture Research System(CARS-3)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/