Tackling abiotic stress in plants: recent insights and trends

Heng Zhang , Zhaobo Lang , Jian-Kang Zhu , Pengcheng Wang

Stress Biology ›› 2025, Vol. 5 ›› Issue (1) : 8

PDF
Stress Biology ›› 2025, Vol. 5 ›› Issue (1) : 8 DOI: 10.1007/s44154-025-00216-x
Review

Tackling abiotic stress in plants: recent insights and trends

Author information +
History +
PDF

Abstract

Plants, as sessile organisms, must adapt to a range of abiotic stresses, including drought, salinity, heat, and cold, which are increasingly exacerbated by climate change. These stresses significantly impact crop productivity, posing challenges for sustainable agriculture and food security. Recent advances in omics studies and genetics have shed light on molecular mechanisms underlying plant stress responses, including the role of calcium (Ca2⁺) signaling, liquid–liquid phase separation (LLPS), and cell wall-associated sensors in detecting and responding to environmental changes. However, gaps remain in understanding how rapid stress signaling is integrated with slower, adaptive processes. Emerging evidence also highlights crosstalk between abiotic stress responses, plant immunity, and growth regulation, mediated by key components such as RAF-SnRK2 kinase cascades, DELLA proteins, etc. Strategies to enhance crop stress resistance without compromising yield include introducing beneficial alleles, spatiotemporal optimization of stress responses, and decoupling stress signaling from growth inhibition. This review emphasizes the importance of interdisciplinary approaches and innovative technologies to bridge fundamental research and practical agricultural applications, aiming to develop resilient crops for sustainable food production in an era of escalating environmental challenges.

Cite this article

Download citation ▾
Heng Zhang, Zhaobo Lang, Jian-Kang Zhu, Pengcheng Wang. Tackling abiotic stress in plants: recent insights and trends. Stress Biology, 2025, 5(1): 8 DOI:10.1007/s44154-025-00216-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP. Integration of plant responses to environmentally activated phytohormonal signals Science, 2006, 311(5757): 91-94.

[2]

Ahuja I, de Vos RC, Bones AM, Hall RD. Plant molecular stress responses face climate change Trends Plant Sci, 2010, 15(12): 664-674.

[3]

Allsup CM, George I, Lankau RA. Shifting microbial communities can enhance tree tolerance to changing climates Science, 2023, 380(6647): 835-840.

[4]

Belda-Palazon B, Adamo M, Valerio C, Ferreira LJ, Confraria A, Reis-Barata D, Rodrigues A, Meyer C, Rodriguez PL, Baena-Gonzalez E. A dual function of SnRK2 kinases in the regulation of SnRK1 and plant growth Nat Plants, 2020, 6(11): 1345-1353.

[5]

Benitez-Alfonso Y, Soanes BK, Zimba S, Sinanaj B, German L, Sharma V, Bohra A, Kolesnikova A, Dunn JA, Martin AC, u Rahman MK, Saati-Santamaría Z, García-Fraile P, Ferreira EA, Frazão LA, Cowling WA, Siddique KHM, Pandey MK, Farooq M, Varshney RK, Chapman MA, Boesch C, Daszkowska-Golec A, Foyer CH. Enhancing climate change resilience in agricultural crops Curr Biol, 2023, 33(23): R1246-R1261.

[6]

Bohn L, Huang J, Weidig S, Yang Z, Heidersberger C, Genty B, Falter-Braun P, Christmann A, Grill E. The temperature sensor TWA1 is required for thermotolerance in Arabidopsis Nature, 2024, 629(8014): 1126-1132.

[7]

Calanca PP (2017) Effects of Abiotic Stress in Crop Production. In: Ahmed M, Stockle CO (eds) Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Springer International Publishing, Cham, pp 165-180. https://doi.org/10.1007/978-3-319-32059-5_8

[8]

Cao MJ, Zhang YL, Liu X, Huang H, Zhou XE, Wang WL, Zeng A, Zhao CZ, Si T, Du J, Wu WW, Wang FX, Xu HE, Zhu JK. Combining chemical and genetic approaches to increase drought resistance in plants Nat Commun, 2017, 8(1): 1183.

[9]

Chen K, Gao J, Sun S, Zhang Z, Yu B, Li J, Xie C, Li G, Wang P, Song CP, Bressan RA, Hua J, Zhu JK, Zhao Y. BONZAI proteins control global osmotic stress responses in plants Curr Biol, 2020, 30(24): 4815-4825.e4814.

[10]

Colin L, Ruhnow F, Zhu JK, Zhao C, Zhao Y, Persson S. The cell biology of primary cell walls during salt stress Plant Cell, 2023, 35(1): 201-217.

[11]

de Vries FT, Griffiths RI, Knight CG, Nicolitch O, Williams A. Harnessing rhizosphere microbiomes for drought-resilient crop production Science, 2020, 368(6488): 270-274.

[12]

Dorone Y, Boeynaems S, Flores E, Jin B, Hateley S, Bossi F, Lazarus E, Pennington JG, Michiels E, De Decker M, Vints K, Baatsen P, Bassel GW, Otegui MS, Holehouse AS, Exposito-Alonso M, Sukenik S, Gitler AD, Rhee SY. A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation Cell., 2021, 184(16): 4284-4298 e4227.

[13]

Gorgues L, Li X, Maurel C, Martinière A, Nacry P. Root osmotic sensing from local perception to systemic responses Stress Biol, 2022, 2(1): 36.

[14]

Jiang Z, Zhou X, Tao M, Yuan F, Liu L, Wu F, Wu X, Xiang Y, Niu Y, Liu F, Li C, Ye R, Byeon B, Xue Y, Zhao H, Wang HN, Crawford BM, Johnson DM, Hu C, Pei C, Zhou W, Swift GB, Zhang H, Vo-Dinh T, Hu Z, Siedow JN, Pei ZM. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx Nature, 2019, 572(7769): 341-346.

[15]

Jojoa-Cruz S, Saotome K, Murthy SE, Tsui CCA, Sansom MSP, Patapoutian A, Ward AB. Cryo-EM structure of the mechanically activated ion channel OSCA1.2 eLife., 2018, 7: e41845.

[16]

Jung JH, Domijan M, Klose C, Biswas S, Ezer D, Gao M, Khattak AK, Box MS, Charoensawan V, Cortijo S, Kumar M, Grant A, Locke JCW, Schäfer E, Jaeger KE, Wigge PA. Phytochromes function as thermosensors in Arabidopsis Science, 2016, 354(6314): 886-889.

[17]

Kan Y, Mu XR, Zhang H, Gao J, Shan JX, Ye WW, Lin HX. TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis Nat Plants, 2022, 8(1): 53-67.

[18]

Khaipho-Burch M, Cooper M, Crossa J, de Leon N, Holland J, Lewis R, McCouch S, Murray SC, Rabbi I, Ronald P, Ross-Ibarra J, Weigel D, Buckler ES. Genetic modification can improve crop yields - but stop overselling it Nature, 2023, 621(7979): 470-473.

[19]

Kopecká R, Kameniarová M, Černý M, Brzobohatý B, Novák J. Abiotic stress in crop production Int J Mol Sci, 2023, 24(7): 6603.

[20]

Kuhn A, Roosjen M, Mutte S, Dubey SM, Carrillo Carrasco VP, Boeren S, Monzer A, Koehorst J, Kohchi T, Nishihama R, Fendrych M, Sprakel J, Friml J, Weijers D. RAF-like protein kinases mediate a deeply conserved, rapid auxin response Cell, 2023, 187(1): 130-148.e117.

[21]

Laohavisit A, Wakatake T, Ishihama N, Mulvey H, Takizawa K, Suzuki T, Shirasu K. Quinone perception in plants via leucine-rich-repeat receptor-like kinases Nature, 2020, 587(7832): 92-97.

[22]

Li GJ, Chen K, Sun S, Zhao Y. Osmotic signaling releases PP2C-mediated inhibition of Arabidopsis SnRK2s via the receptor-like cytoplasmic kinase BIK1 EMOB J, 2024, 43(23): 6076-6103.

[23]

Lin Z, Li Y, Zhang Z, Liu X, Hsu CC, Du Y, Sang T, Zhu C, Wang Y, Satheesh V, Pratibha P, Zhao Y, Song CP, Tao WA, Zhu JK, Wang P. A RAF-SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants Nat Commun, 2020, 11(1): 613.

[24]

Lin Z, Guo Y, Zhang R, Li Y, Wu Y, Sheen J, Liu Kh. ABA-activated low-nanomolar Ca2+–CPK signalling controls root cap cycle plasticity and stress adaptation Nat Plants, 2024.

[25]

Liu L, Song W, Huang S, Jiang K, Moriwaki Y, Wang Y, Men Y, Zhang D, Wen X, Han Z, Chai J, Guo H. Extracellular pH sensing by plant cell-surface peptide-receptor complexes Cell., 2022, 185(18): 3341-3355 e3313.

[26]

Liu Z, Hou S, Rodrigues O, Wang P, Luo D, Munemasa S, Lei J, Liu J, Ortiz-Morea FA, Wang X, Nomura K, Yin C, Wang H, Zhang W, Zhu-Salzman K, He SY, He P, Shan L. Phytocytokine signalling reopens stomata in plant immunity and water loss Nature, 2022, 605(7909): 332-339.

[27]

Liu X, Zhu JK, Zhao C. Liquid-liquid phase separation as a major mechanism of plant abiotic stress sensing and responses Stress Biol, 2023, 3(1): 56.

[28]

Liu MJ, Yeh FLJ, Yvon R, Simpson K, Jordan S, Chambers J, Wu HM, Cheung AY. Extracellular pectin-RALF phase separation mediates FERONIA global signaling function Cell, 2024, 187(2): 312-330.

[29]

Lou H, Li S, Shi Z, Zou Y, Zhang Y, Huang X, Yang D, Yang Y, Li Z, Xu C (2024) Engineering source-sink relations by prime editing confers heat-stress resilience in tomato and rice. Cell in press. https://doi.org/10.1016/j.cell.2024.11.005

[30]

Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo X, Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S, Chong K. COLD1 confers chilling tolerance in rice Cell, 2015, 160(6): 1209-1221.

[31]

Miao C, Xiao L, Hua K, Zou C, Zhao Y, Bressan RA, Zhu JK. Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity Proc Natl Acad Sci USA, 2018, 115(23): 6058-6063.

[32]

Murthy SE, Dubin AE, Whitwam T, Jojoa-Cruz S, Cahalan SM, Mousavi SAR, Ward AB, Patapoutian A. OSCA/TMEM63 are an evolutionarily conserved family of mechanically activated ion channels eLife, 2018, 7: e41844.

[33]

Papanatsiou M, Petersen J, Henderson L, Wang Y, Christie JM, Blatt MR. Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth Science, 2019, 363(6434): 1456-1459.

[34]

Pei S, Tao Q, Li W, Qi G, Wang B, Wang Y, Dai S, Shen Q, Wang X, Wu X, Xu S, Theprungsirikul L, Zhang J, Liang L, Liu Y, Chen K, Shen Y, Crawford BM, Cheng M, Zhang Q, Wang Y, Liu H, Yang B, Krichilsky B, Pei J, Song K, Johnson DM, Jiang Z, Wu F, Swift GB, Yang H, Liu Z, Zou X, Vo-Dinh T, Liu F, Pei ZM, Yuan F. Osmosensor-mediated control of Ca2+ spiking in pollen germination Nature, 2024, 629(8014): 1118-1125.

[35]

Peng Y, Ming Y, Jiang B, Zhang X, Fu D, Lin Q, Zhang X, Wang Y, Shi Y, Gong Z, Ding Y, Yang S. Differential phosphorylation of Ca2+-permeable channel CYCLIC NUCLEOTIDE–GATED CHANNEL20 modulates calcium-mediated freezing tolerance in Arabidopsis Plant Cell, 2024, 36(10): 4356-4371.

[36]

Sang T, Chen CW, Lin Z, Ma Y, Du Y, Lin P-Y, Hadisurya M, Zhu JK, Lang Z, Tao WA, Hsu CC, Wang P. DIA-based phosphoproteomics identifies early phosphorylation events in response to EGTA and mannitol in Arabidopsis Mol Cell Proteomics, 2024, 23(8): 100804.

[37]

Terán F, Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM. Facing climate change: plant stress mitigation strategies in agriculture Physiol Plant, 2024, 176(4): e14484.

[38]

Vaidya AS, Helander JDM, Peterson FC, Elzinga D, Dejonghe W, Kaundal A, Park SY, Xing Z, Mega R, Takeuchi J, Khanderahoo B, Bishay S, Volkman BF, Todoroki Y, Okamoto M, Cutler SR. Dynamic control of plant water use using designed ABA receptor agonists Science, 2019, 366(6464): eaaw8848.

[39]

Wang P. Emerging multiple function of B-RAFs in plants Trends Plant Sci, 2024, 29(9): 958-961.

[40]

Wang P. Plant physiology: RAF kinases claim a conserved role in rapid auxin responses Curr Biol, 2024, 34(5): R204-206.

[41]

Wang P, Zhu JK. Plant water stress sensing: osmosensors start to make sense Sci Bull, 2025.

[42]

Wang P, Zhao Y, Li Z, Hsu C-C, Liu X, Fu L, Hou Y-J, Du Y, Xie S, Zhang C, Gao J, Cao M, Huang X, Zhu Y, Tang K, Wang X, Tao WA, Xiong Y, Zhu JK. Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response Mol Cell, 2018, 69(1): 100-112.e106.

[43]

Wang Z, Yang Q, Zhang D, Lu Y, Wang Y, Pan Y, Qiu Y, Men Y, Yan W, Xiao Z, Sun R, Li W, Huang H, Guo H. A cytoplasmic osmosensing mechanism mediated by molecular crowding–sensitive DCP5 Science, 2024, 386(6721): eadk9067.

[44]

Wang Y, Li S, Mokbel M, May AI, Liang Z, Zeng Y, Wang W, Zhang H, Yu F, Sporbeck K, Jiang L, Aland S, Agudo-Canalejo J, Knorr RL, Fang X (2024d) Biomolecular condensates mediate bending and scission of endosome membranes. Nature. https://doi.org/10.1038/s41586-024-07990-0

[45]

Wu F, Chi Y, Jiang Z, Xu Y, Xie L, Huang F, Wan D, Ni J, Yuan F, Wu X, Zhang Y, Wang L, Ye R, Byeon B, Wang W, Zhang S, Sima M, Chen S, Zhu M, Pei J, Johnson DM, Zhu S, Cao X, Pei C, Zai Z, Liu Y, Liu T, Swift GB, Zhang W, Yu M, Hu Z, Siedow JN, Chen X, Pei ZM. Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis Nature, 2020, 578(7796): 577-581.

[46]

Yang Y, Tan YQ, Wang X, Li J-J, Du B-Y, Zhu M, Wang P, Wang Y-F. OPEN STOMATA1 phosphorylates CYCLIC NUCLEOTIDE-GATED CHANNELs to trigger Ca2+ signaling for ABA-induced stomatal closure in Arabidopsis Plant Cell, 2024, 36(6): 2328-2358.

[47]

Yuan F, Yang H, Xue Y, Kong D, Ye R, Li C, Zhang J, Theprungsirikul L, Shrift T, Krichilsky B, Johnson DM, Swift GB, He Y, Siedow JN, Pei ZM. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis Nature, 2014, 514(7522): 367-371.

[48]

Zhang H, Zhou JF, Kan Y, Shan JX, Ye WW, Dong NQ, Guo T, Xiang YH, Yang YB, Li YC, Zhao HY, Yu HX, Lu ZQ, Guo SQ, Lei JJ, Liao B, Mu XR, Cao YJ, Yu JJ, Lin Y, Lin HX. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance Science, 2022, 376(6599): 1293-1300.

[49]

Zhang H, Yu F, Xie P, Sun S, Qiao X, Tang S, Chen C, Yang S, Mei C, Yang D, Wu Y, Xia R, Li X, Lu J, Liu Y, Xie X, Ma D, Xu X, Liang Z, Feng Z, Huang X, Yu H, Liu G, Wang Y, Li J, Zhang Q, Chen C, Ouyang Y, Xie Q (2023) A Gγ protein regulates alkaline sensitivity in crops. Science 379(6638). https://doi.org/10.1126/science.ade8416

Funding

Key Technologies Research and Development Program(2021YFA1300400)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

324

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/