Plant-aphid interactions: recent trends in plant resistance to aphids

Kifle Gebreegziabiher Gebretsadik , Zhixin Liu , Jincheng Yang , Hao Liu , Aizhi Qin , Yaping Zhou , Enzhi Guo , Xiao Song , Peibo Gao , Yajie Xie , Ninkuu Vincent , Lam-Son Phan Tran , Xuwu Sun

Stress Biology ›› 2025, Vol. 5 ›› Issue (1) : 28

PDF
Stress Biology ›› 2025, Vol. 5 ›› Issue (1) : 28 DOI: 10.1007/s44154-025-00214-z
Review

Plant-aphid interactions: recent trends in plant resistance to aphids

Author information +
History +
PDF

Abstract

Aphids are highly destructive agricultural pests characterized by complex life cycles and phenotypic variability, facilitating their adaptation to diverse climates and host plants. Their feeding behavior leads to plant deformation, wilting, stunted growth, disease transmission, and significant yield losses. Given the economic risks aphids pose, regular updates on their seasonal behaviors, adaptive mechanisms, and destructive activities are critical for improving management strategies to mitigate crop losses. This review comprehensively synthesizes recent studies on aphids as plant pests, the extrinsic factors influencing their life cycles, and the intricate interactions between aphids and their hosts. It also highlights recent advancements in biological control measures, including natural enemies, antibiosis, and antixenosis. Additionally, we explore plant defense mechanisms against aphids, focusing on the roles of cell wall components such as lignin, pectin and callose deposition and the genetic regulations underlying these defenses. Aphids, however, can evolve specialized strategies to overcome general plant defenses, prompting the development of targeted mechanisms in plants, such as the use of resistance (R) genes against specific aphid species. Additionally, plant pattern recognition receptors (PRRs) recognize compounds in aphid saliva, which triggers enhanced phloem sealing and more focused immune responses. This work enhances understanding of aphid–plant interaction and plant resistance and identifies key research gaps for future studies.

Keywords

Economic damage / Host plant resistance / Defense mechanisms / Physical defense / Secondary metabolites / Phytohormone / Green leaf volatiles / Biological Sciences / Plant Biology / Agricultural and Veterinary Sciences / Crop and Pasture Production

Cite this article

Download citation ▾
Kifle Gebreegziabiher Gebretsadik, Zhixin Liu, Jincheng Yang, Hao Liu, Aizhi Qin, Yaping Zhou, Enzhi Guo, Xiao Song, Peibo Gao, Yajie Xie, Ninkuu Vincent, Lam-Son Phan Tran, Xuwu Sun. Plant-aphid interactions: recent trends in plant resistance to aphids. Stress Biology, 2025, 5(1): 28 DOI:10.1007/s44154-025-00214-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdelaziz O, Senoussi MM, Oufroukh A, Bi̇rgucu AK, Karaca I, Kouadri F, Naima B, Bensegueni A (2018) Pathogenicity of three entomopathogenic fungi, to the aphid species, Metopolophium dirhodum (Walker) (Hemiptera: Aphididae), and their Alkaline protease activities. J Biol Pest Control 28:1–5. https://api.semanticscholar.org/CorpusID:3933008

[2]

AdhikariS, AdhikariA, WeaverDK, BekkermanA, MenalledFD. Impacts of agricultural management systems on biodiversity and ecosystem services in highly simplified dryland landscapes. Sustainability, 2019, 11: 3223.

[3]

AdhikariS, SeamonE, WuY, SadeghiSE, EigenbrodeSD. Do invasive and naturalized aphid pest populations respond differently to climatic and landscape factors?. J Econ Entomol, 2022, 115: 1320-1330.

[4]

AgrawalAA. A scale-dependent framework for trade-offs, syndromes, and specialization in organismal biology. Ecology, 2020, 101. e02924

[5]

AhmadS, VeyratN, Gordon-WeeksR, ZhangY, MartinJ, SmartL, GlauserG, ErbM, FlorsV, FreyM, TonJ. Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiol, 2011, 157: 317-327.

[6]

AhmanI, KimSY, ZhuLH. Plant genes benefitting aphids-potential for exploitation in resistance breeding. Front Plant Sci, 2019, 10: 1452.

[7]

AhmedMA, BanN, HussainS, BatoolR, ZhangY-J, LiuT-X, CaoH-H. Preference and performance of the green peach aphid, Myzus persicae on three Brassicaceae vegetable plants and its association with amino acids and glucosinolates. PLoS ONE, 2022, 17. e0269736

[8]

AlvarezAE, GriffingLR. Are parenchymal cells a source of supplemental diet for aphids?. Entomolo Experimentalis Et Applicata, 2023, 171: 449-460.

[9]

AmeyeM, AllmannS, VerwaerenJ, SmaggheG, HaesaertG, SchuurinkRC, AudenaertK. Green leaf volatile production by plants: a meta-analysis. New Phytol, 2018, 220: 666-683.

[10]

AnC, ShengL, DuX, WangY, ZhangY, SongA, JiangJ, GuanZ, FangW, ChenF, ChenS. Overexpression of CmMYB15 provides chrysanthemum resistance to aphids by regulating the biosynthesis of lignin. Hortic Res, 2019, 6: 84.

[11]

AnQ, PanZ, AiniN, HanP, WuY, YouC, NieX. Identification of candidate genes for aphid resistance in upland cotton by QTL mapping and expression analysis. The Crop J, 2023, 11: 1600-1604.

[12]

AnsteadJA, BurdJD, ShufranKA. Over-summering and biotypic diversity of Schizaphis graminum (Homoptera: Aphididae) populations on noncultivated grass hosts. Environ Entomol, 2003, 32: 662-667.

[13]

AppuM, RamalingamP, SathiyanarayananA, HuangJ. An overview of plant defense-related enzymes responses to biotic stresses. Plant Gene, 2021, 27. 100302

[14]

AradottirGI, MartinJL, ClarkSJ, PickettJA, SmartLE. Searching for wheat resistance to aphids and wheat bulb fly in the historical Watkins and Gediflux wheat collections. Ann Appl Biol, 2017, 170: 179-188.

[15]

ArataniY, UemuraT, HagiharaT, MatsuiK, ToyotaM. Green leaf volatile sensory calcium transduction in Arabidopsis. Nat Commun, 2023, 14: 6236.

[16]

BadraZ, Larsson HerreraS, CappellinL, BiasioliF, DekkerT, AngeliS, TasinM. Species-specific induction of plant volatiles bytwo aphid species in apple: Real time measurement of plant emission and attraction of lacewings in the wind tunnel. J Chem Ecol, 2021, 47: 653-663.

[17]

BakA, CheungAL, YangC, WhithamSA, CasteelCL. A viral protease relocalizes in the presence of the vector to promote vector performance. Nat Commun, 2017, 8: 14493.

[18]

BatyrshinaZS, Cna'aniA, RozenbergT, SeifanM, TzinV. The combined impacts of wheat spatial position and phenology on cereal aphid abundance. PeerJ, 2020, 8. e9142

[19]

Bayındır ErolA, AbdelazizO, BirgücüAK, SenoussiMM, OufroukhA, Karacaİ. Effects of some entomopathogenic fungi on the aphid species, Aphis gossypii Glover (Hemiptera: Aphididae). Egypt J Biol Pest Control, 2020, 30: 108.

[20]

BecerraJX. Insects on plants: macroevolutionary chemical trends in host use. Science, 1997, 276: 253-256.

[21]

Benitez-AlfonsoY, SoanesBK, ZimbaS, SinanajB, GermanL, SharmaV, BohraA, KolesnikovaA, DunnJA, MartinAC, KhashiURM, Saati-SantamaríaZ, García-FraileP, FerreiraEA, FrazãoLA, CowlingWA, SiddiqueKHM, PandeyMK, FarooqM, VarshneyRK, ChapmanMA, BoeschC, Daszkowska-GolecA, FoyerCH. Enhancing climate change resilience in agricultural crops. Curr Biol, 2023, 33: R1246-r1261.

[22]

BerruetaLA, Sasia-ArribaA, MiñarroM, AntonMJ, Alonso-SalcesRM, MichelettiD, GalloB, DapenaE. Relationship between hydroxycinnamic acids and the resistance of apple cultivars to rosy apple aphid. Talanta, 2018, 187: 330-336.

[23]

BezerraRHS, Sousa-SoutoL, SantanaAEG, AmbrogiBG. Indirect plant defenses: volatile organic compounds and extrafloral nectar. Arthropod-Plant Interactions, 2021, 15: 467-489.

[24]

BhusalSJ, KochRL, LorenzAJ. Variation in soybean aphid (Hemiptera: Aphididae) biotypes within fields. J Econ Entomol, 2021, 114: 1336-1344.

[25]

BohdarK, WrattensSD, NiemeyerHM. Effects of hydroxamic acids on the resistance of wheat to the aphid Sitobion avenae. Ann Appl Biol, 1986, 109: 193-198.

[26]

BothaA-M, LacockL, van NiekerkC, MatsiolokoMT, du PreezFB, LootsS, VenterE, KunertKJ, CullisCA. Is photosynthetic transcriptional regulation in Triticum aestivum L. cv. ‘TugelaDN’ a contributing factor for tolerance to Diuraphis noxia (Homoptera: Aphididae)?. Plant Cell Rep, 2006, 25: 41-54.

[27]

Bowling RD, Brewer MJ, Kerns DL, Gordy J, Seiter N, Elliott NE, Buntin GD, Way MO, Royer TA, Biles S, Maxson E (2016) Sugarcane aphid (Hemiptera: Aphididae): A new pest on sorghum in North America. J Integr Pest Manag 7:12. https://api.semanticscholar.org/CorpusID:18252865

[28]

BradyCM, WhiteJA. Cowpea aphid (Aphis craccivora) associated with different host plants has different facultative endosymbionts. Ecol Entomol, 2013, 38: 433-437.

[29]

Cai J, Xu Y, Zhang W, Ding S, Sun Y, Lyu J, Duan M, Liu S, Huang L, Zhou F (2020) A comprehensive comparison of residue-level methylation levels with the regression-based gene-level methylation estimations by ReGear. Brief Bioinform 22. https://doi.org/10.1093/bib/bbaa253

[30]

CaoHH, PanMZ, LiuHR, WangSH, LiuTX. Antibiosis and tolerance but not antixenosis to the grain aphid, Sitobion avenae (Hemiptera: Aphididae), are essential mechanisms of resistance in a wheat cultivar. Bull Entomol Res, 2015, 105: 448-455.

[31]

CardonaJB, GroverS, BustaL, SattlerSE, LouisJ. Sorghum cuticular waxes influence host plant selection by aphids. Planta, 2022, 257: 22.

[32]

CardonaJ, GroverS, BowmanM, BustaL, KunduP, KochK, SattlerS, LouisJ. Sugars and cuticular waxes impact sugarcane aphid (Melanaphis sacchari) colonization on different developmental stages of sorghum. Plant Sci, 2023, 330. 111646

[33]

CastañedaLE, FigueroaCC, Fuentes-ContrerasE, NiemeyerHM, NespoloRF. Energetic costs of detoxification systems in herbivores feeding on chemically defended host plants: a correlational study in the grain aphid, Sitobion avenae. J Exp Biol, 2009, 212: 1185-1190.

[34]

CastañedaLE, FigueroaCC, NespoloRF. Do insect pests perform better on highly defended plants? Costs and benefits of induced detoxification defenses in the aphid Sitobion avenae. J Evol Biol, 2010, 23: 2474-2483.

[35]

ChapmanKM, Marchi-WerleL, HuntTE, Heng-MossTM, LouisJ. Abscisic and jasmonic acids contribute to soybean tolerance to the soybean aphid (Aphis glycines Matsumura). Sci Rep, 2018, 8: 15148.

[36]

ChaudharyR, AtamianHS, ShenZ, BriggsSP, KaloshianI. GroEL from the endosymbiont Buchnera aphidicola betrays the aphid by triggering plant defense. Proc Natl Acad Sci U S A, 2014, 111: 8919-8924.

[37]

ChenJ. Aphids as plant pests: from biology to green control technology. Front Plant Sci, 2023, 14: 1337558.

[38]

ChenB, ZhangY, SunZ, LiuZ, ZhangD, YangJ, WangG, WuJ, KeH, MengC, WuL, YanY, CuiY, LiZ, WuL, ZhangG, WangX, MaZ. Tissue-specific expression of GhnsLTPs identified via GWAS sophisticatedly coordinates disease and insect resistance by regulating metabolic flux redirection in cotton. Plant J, 2021, 107: 831-846.

[39]

Chen H-h, Zhang R, Tan S-q, Wang Y, Liu X-l, Shi W-p (2023) Components and composition of active volatiles attract on Diorhabda tarsalis (Coleoptera: Chrysomelidae) from Glycyrrhiza uralensis (Rosales: Leguminoseae). Front Ecol Evol 10. https://doi.org/10.3389/fevo.2022.1080208

[40]

ChesnaisQ, Caballero VidalG, CoquelleR, YvonM, MauckK, BraultV, AmelineA. Post-acquisition effects of viruses on vector behavior are important components of manipulation strategies. Oecologia, 2020, 194: 429-440.

[41]

DampcJ, Kula-MaximenkoM, MolonM, DurakR. Enzymatic defense response of apple aphid Aphis pomi to increased temperature. Insects, 2020, 11: 436.

[42]

Dampc J, Mołoń M, Durak T, Durak R (2021) Changes in aphid-plant interactions under increased temperature. Biology 10. https://doi.org/10.3390/biology10060480

[43]

Dancewicz K, Szumny A, Wawrzeńczyk C, Gabryś B (2020) Repellent and antifeedant activities of citral-derived lactones against the peach potato aphid. Int J Mol Sci 21. https://doi.org/10.3390/ijms21218029

[44]

DehghanA. Genome-Wide Association Studies. Methods Mol Biol, 2018, 1793: 37-49.

[45]

Deshoux M, Monsion B, Pichon E, Jiménez J, Moreno A, Cayrol B, Thébaud G, Mugford ST, Hogenhout SA, Blanc S, Fereres A, Uzest M (2022) Role of acrostyle cuticular proteins in the retention of an aphid salivary effector. Int J Mol Sci 23. https://doi.org/10.3390/ijms232315337

[46]

DeutschCA, TewksburyJJ, TigchelaarM, BattistiDS, MerrillSC, HueyRB, NaylorRL. Increase in crop losses to insect pests in a warming climate. Sci, 2018, 361: 916-919.

[47]

DillwithJW, BerberetRC, BergmanDK, NeesePA, EdwardsRM, McNewRW. Plant biochemistry and aphid populations: Studies on the spotted alfalfa aphid, Therioaphis maculata. Arch Insect Biochem Physiol, 1991, 17: 235-251.

[48]

Divekar PA, Narayana S, Divekar BA, Kumar R, Gadratagi BG, Ray A, Singh AK, Rani V, Singh V, Singh AK, Kumar A, Singh RP, Meena RS, Behera TK (2022) Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int J Mol Sci 23. https://doi.org/10.3390/ijms23052690

[49]

DixitS, UpadhyaySK, SinghH, SidhuOP, VermaPC, K C,. Enhanced methanol production in plants provides broad-spectrum insect resistance. PLoS ONE, 2013, 8. e79664

[50]

DixonAFGAphid ecology : an optimization approach, 19982LondonChapman & Hall

[51]

DogimontC, ChovelonV, PauquetJ, BoualemA, BendahmaneA. The Vat locus encodes for a CC-NBS-LRR protein that confers resistance to Aphis gossypii infestation and A. gossypii-mediated virus resistance. Plant J, 2014, 80: 993-1004.

[52]

DongNQ, LinHX. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J Integr Plant Biol, 2021, 63: 180-209.

[53]

DongH, QuickJS. Inheritance and allelism of resistances to the Russian wheat aphid in seven wheat lines. Euphytica, 1995, 81: 299-303.

[54]

DorokhovYL, KomarovaTV, PetruniaIV, FrolovaOY, PozdyshevDV, GlebaYY. Airborne signals from a wounded leaf facilitate viral spreading and induce antibacterial resistance in neighboring plants. PLoS Pathog, 2012, 8. e1002640

[55]

Du ToitF. Inheritance of resistance in two Triticum aestivum lines to Russian wheat aphid (Hornoptera: Aphididae). J Econ Entomol, 1989, 82: 1251-1253.

[56]

EffahE, HolopainenJK, McCormickAC. Potential roles of volatile organic compounds in plant competition. Perspect Plant Ecol Evol Syst, 2019, 38: 58-63.

[57]

EffahE, SvendsenL, BarrettDP, Clavijo McCormickA. Exploring plant volatile-mediated interactions between native and introduced plants and insects. Sci Rep, 2022, 12: 15450.

[58]

EigenbrodeSD, Bosque-PérezNA, DavisTS. Insect-borne plant pathogens and their vectors: Ecology, Evolution, and complex interactions. Annu Rev Entomol, 2018, 63: 169-191.

[59]

ElekH, SmartL, MartinJ, AhmadS, Gordon-WeeksR, WelhamS, NádasyM, PickettJA, WernerCP. The potential of hydroxamic acids in tetraploid and hexaploid wheat varieties as resistance factors against the bird-cherry oat aphid, Rhopalosiphum padi. Ann Appl Biol, 2013, 162: 100-109.

[60]

EndersL, BegcyK. Unconventional routes to developing insect-resistant crops. Mol Plant, 2021, 14: 1439-1453.

[61]

FengZ, BartholomewES, LiuZ, CuiY, DongY, LiS, WuH, RenH, LiuX. Glandular trichomes: new focus on horticultural crops. Hortic Res, 2021, 8: 158.

[62]

FereresA, MorenoA. Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res, 2009, 141: 158-168.

[63]

Fingu-Mabola JC, Bawin T, Francis F (2021) Direct and indirect effect via endophytism of entomopathogenic fungi on the fitness of Myzus persicae and its ability tospread PLRV on tobacco. Insects 12. https://doi.org/10.3390/insects12020089

[64]

FinkelOM, CastrilloG, Herrera ParedesS, Salas GonzálezI, DanglJL. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol, 2017, 38: 155-163.

[65]

Francis F, Then C, Francis A, Gbangbo YAC, Iannello L, Ben Fekih I (2022) Complementary strategies for biological control of aphids and related virus transmission in sugar beet to replace neonicotinoids. Agriculture 12:1663. https://www.mdpi.com/2077-0472/12/10/1663

[66]

Franzen LD, Gutsche AR, Heng-Moss TM, Higley LG, Sarath G, Burd JD (2007) Physiological and biochemical responses of resistant and susceptible wheat to injury by Russian wheat aphid. J Econ Entomol 100:1692–1703. https://api.semanticscholar.org/CorpusID:4689742

[67]

GadhaveKR, GautamS, RasmussenDA, SrinivasanR. Aphid transmission of potyvirus: The largest plant-infecting RNA virus genus. Viruses, 2020, 12: 773.

[68]

GangeAC, KorichevaJ, CurrieAF, JaberLR, VidalS. Meta-analysis of the role of entomopathogenic and unspecialized fungal endophytes as plant bodyguards. New Phytol, 2019, 223: 2002-2010.

[69]

Gao L-l, Anderson JP, Klingler JP, Nair RM, Edwards O, Singh KB (2007) Involvement of the octadecanoid pathway in bluegreen aphid resistance in Medicago truncatula. Mol Plant Microbe Interact 20(1):82–93. https://api.semanticscholar.org/CorpusID:44328445

[70]

GaoG-Z, PerkinsLE, ZaluckiMP, LuZ-Z, MaJ-H. Effect of temperature on the biology of Acyrthosiphon gossypii Mordvilko (Homoptera: Aphididae) on cotton. J Pest Sci, 2013, 86: 167-172.

[71]

GaoJ, TaoT, ArthursSP, HussainM, YeF, MaoR. Saliva-Mediated Contrasting Effects of Two Citrus Aphid Species on Asian Citrus Psyllid Feeding Behavior and Plant Jasmonic Acid Pathway. Insects, 2023, 14: 672.

[72]

GebretsadikKG, ZhangY, ChenJ-l. Screening and evaluation for antibiosis resistance of the spring wheat accessions to the grain aphid, Sitobion miscanthi (Takahashi) (Hemiptera: Aphididae). JIA, 2022, 21: 2329-2344.

[73]

Gebretsadik KG, Zhang Y, Chen J (2022b) Screening and evaluation for antixenosis resistance in wheat accessions and varieties to grain aphid, Sitobion miscanthi (Takahashi) (Hemiptera: aphididae). Plants 11. https://doi.org/10.3390/plants11081094

[74]

Gill S, Kunkel BA (2021) Nursery management of two major below-ground feeding plant pests: Root mealybug, Rhizoecus sp. and rice root aphid, Rhopalosiphum rufiabdominalis (Sasaki) (Hemiptera: Pseudococcidae and Aphididae). J Environ Hortic 39:131–137. https://doi.org/10.24266/0738-2898-39.4.131

[75]

GivovichA, NiemeyerHM. Comparison of the effect of hydroxamic acids from wheat on five species of cereal aphids. Entomol Exp Appl, 1995, 74: 115-119.

[76]

GogginFL, FischerHD. Reactive oxygen species in plant interactions with aphids. Front Plant Sci, 2021, 12. 811105

[77]

GongB, ZhangG. Interactions between plants and herbivores: A review of plant defense. Acta Ecol Sin, 2014, 34: 325-336.

[78]

GongQ, WangY, HeL, HuangF, ZhangD, WangY, WeiX, HanM, DengH, LuoL, CuiF, HongY, LiuY. Molecular basis of methyl-salicylate-mediated plant airborne defence. Nature, 2023, 622: 139-148.

[79]

GongQ, WangY, ZhangX, ZhaoJ, LiuY, HongY. Plant airborne defense against insects, viruses, and beyond. Trends in Plant Sci, 2024, 29: 283-285.

[80]

GulsenO, ShearmanRC, Heng-MossTM, MutluN, LeeDJ, SarathG. Peroxidase gene polymorphism in buffalograss and other grasses. Crop Sci, 2007, 47: 767-772.

[81]

GuoH, ZhangY, TongJ, GeP, WangQ, ZhaoZ, Zhu-SalzmanK, HogenhoutSA, GeF, SunY. An aphid-secreted salivary protease activates plant defense inhloem. Curr Biol, 2020, 30: 4826-4836.e4827.

[82]

GuoH, ZhangY, LiB, LiC, ShiQ, Zhu-SalzmanK, GeF, SunY. Salivary carbonic anhydrase II in winged aphid morph facilitates plant infection by viruses. Proc Natl Acad Sci U S A, 2023, 120. e2222040120

[83]

Hafke JB, Furch ACU, Fricker MD, van Bel AJEJPS, Behavior (2009) Forisome dispersion in Vicia faba is triggered by Ca2+ hotspots created by concerted action of diverse Ca2+ channels in sieve element. Plant Signal Behav 4:32 - 968 - 972. https://doi.org/10.4161/psb.4.10.967

[84]

HamannE, BlevinsC, FranksSJ, JameelMI, AndersonJT. Climate change alters plant–herbivore interactions. New Phytol, 2021, 229: 1894-1910.

[85]

HandrickV, RobertCA, AhernKR, ZhouS, MachadoRA, MaagD, GlauserG, Fernandez-PennyFE, ChandranJN, Rodgers-MelnikE, SchneiderB, BucklerES, BolandW, GershenzonJ, JanderG, ErbM, KöllnerTG. Biosynthesis of 8-O-methylated benzoxazinoid defense compounds in maize. Plant Cell, 2016, 28: 1682-1700.

[86]

Harvey TL, Martin TJ (1990) Resistance to Russian wheat aphid, Diuraphis noxia, in wheat, (Triticum aestivum). Cereal Res Commun 18:127–129. https://api.semanticscholar.org/CorpusID:82833749

[87]

Heng-MossT, MacedoT, FranzenL, BaxendaleF, HigleyL, SarathG. Physiological responses of resistant and susceptible buffalograsses to Blissus occiduus (Hemiptera: Blissidae) feeding. J Econ Entomol, 2006, 99: 222-228.

[88]

HouS, LiuZ, ShenH, WuD. Damage-associated molecular pattern-triggered immunity in plants. Front Plant Sci, 2019, 10: 646.

[89]

HuQ, MinL, YangX, JinS, ZhangL, LiY, MaY, QiX, LiD, LiuH, LindseyK, ZhuL, ZhangX. Laccase GhLac1 modulates broad-spectrum biotic stress tolerance via manipulating phenylpropanoid pathway and jasmonic acid synthesis. Plant Physiol, 2018, 176: 1808-1823.

[90]

HuZ, ZhongX, ZhangH, LuoX, WangY, WangY, LiuT, ZhangY, WangX, AnH, XuD, WanP, YangY, ZhangJ. GhMYB18 confers Aphis gossypii Glover resistance through regulating the synthesis of salicylic acid and flavonoids in cotton plants. Plant Cell Rep, 2023, 42: 355-369.

[91]

HuC, LiY-T, LiuY-X, HaoG-F, YangX-Q. Molecular interaction network of plant-herbivorous insects. Advanced Agrochem, 2024, 3: 74-82.

[92]

HuangHJ, WangYZ, LiLL, LuHB, LuJB, WangX, YeZX, ZhangZL, HeYJ, LuG, ZhuoJC, MaoQZ, SunZT, ChenJP, LiJM, ZhangCX. Planthopper salivary sheath protein LsSP1 contributes to manipulation of rice plant defenses. Nat Commun, 2023, 14: 737.

[93]

IngwellLL, EigenbrodeSD, Bosque-PerezNA. Plant viruses alter insect behavior to enhance their spread. Sci Rep, 2012, 2: 578.

[94]

Jasrotia P, Sharma S, Nagpal M, Kamboj D, Kashyap PL, Kumar S, Mishra CN, Kumar S, Singh GP (2022) Comparative transcriptome analysis of wheat in response to corn leaf aphid, Rhopalosiphum maidis F. infestation. Front Plant Sci 13. https://doi.org/10.3389/fpls.2022.989365

[95]

JiangY, ZhangCX, ChenR, HeSY. Challenging battles of plants with phloem-feeding insects and prokaryotic pathogens. Proc Nat Acad Sci U S A, 2019, 116: 23390-23397.

[96]

Jiang M, Zhang Y, Li P, Jian J, Zhao C, Wen G (2022) Mitogen-activated protein kinase and substrate identification in plant growth and development. Int J Mol Sci 23. https://doi.org/10.3390/ijms23052744

[97]

Jin J, Zhao M, Jing T, Zhang M, Lu M, Yu G, Wang J, Guo D, Pan Y, Hoffmann TD, Schwab W, Song C (2023) Volatile compound-mediated plant-plant interactions under stress with the tea plant as a model. Hortic Res 10:uhad143. https://doi.org/10.1093/hr/uhad143

[98]

KaloshianI. Gene-for-gene disease resistance: bridging insect pest and pathogen defense. J Chem Ecol, 2004, 30: 2419-2438.

[99]

KaurS, SamotaMK, ChoudharyM, ChoudharyM, PandeyAK, SharmaA, ThakurJ. How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. PHysiol Mol Biol Plants, 2022, 28: 485-504.

[100]

KazemiMH, van EmdenHF. Partial antibiosis to Rhopalosiphum padi in wheat and some phytochemical correlations. Ann Appl Biol, 1992, 121: 1-9.

[101]

KeithR, Mitchell-OldsT. Genetic variation for resistance to herbivores and plant pathogens: hypotheses, mechanisms and evolutionary implications. Plant Pathol, 2013, 62: 122-132.

[102]

Kim S-Y, Bengtsson T, Olsson N, Hot V, Zhu L-H, Åhman I (2020) Mutations in Two Aphid-Regulated β-1,3-Glucanase Genes by CRISPR/Cas9 Do Not Increase Barley Resistance to Rhopalosiphum padi L. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.01043

[103]

Kinley C, Banu AN, Raut A, Wahengbam J, Jamtsho T (2021) A review on past, present and future approaches for aphids management. J Entomol Res 45:336–346. https://api.semanticscholar.org/CorpusID:238017452

[104]

Kishi-KaboshiM, SeoS, TakahashiA, HirochikaH. The MAMP-responsive MYB transcription factors MYB30, MYB55 and MYB110 activate the HCAA synthesis pathway and eenhance immunity in rice. Plant Cell Physiol, 2018, 59: 903-915.

[105]

KistenL, TolmayVL, MathewI, SydenhamSL, VenterE. Genome-wide association analysis of Russian wheat aphid (Diuraphis noxia) resistance in Dn4 derived wheat lines evaluated in South Africa. PLoS ONE, 2020, 15. e0244455

[106]

Kloth KJ, Kormelink R (2020) Defenses against virus and vector: A phloem-biological perspective on RTM- and SLI1-mediated resistance to potyviruses and aphids. Viruses 12. https://doi.org/10.3390/v12020129

[107]

KnollJE, UchimiyaM, Harris-ShultzKR. Juice chemical properties of 24 sorghum cultivars under varying levels of sugarcane aphid (Melanaphis sacchari) infestation. Arthropod Plant Interact, 2021, 15: 707-719.

[108]

Koch KG, Chapman K, Louis J, Heng-Moss T, Sarath G (2016) Plant tolerance: A unique approach to control hemipteran pests. Pests Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01363

[109]

KumaraswamyS, HuangY. Molecular interactions between plants and aphids: Recent advances and future perspectives. Insects, 2024, 15: 935.

[110]

KumariP, JasrotiaP, KumarD, KashyapPL, KumarS, MishraCN, KumarS, SinghGP. Biotechnological approaches for host plant resistance to insect pests. Front Genet, 2022, 13. 914029

[111]

KunduP, GroverS, PerezA, Raya VacaJD, KariyatR, LouisJ. Sorghum defense responses to sequential attack by insect herbivores of different feeding guilds. Planta, 2023, 258: 35.

[112]

KusiF, PadiFK, Obeng-OforiD, AsanteSK, AgyareRY, SugriI, TimkoMP, KoebnerR, HuynhB-L, SantosJRP, CloseTJ, RobertsPA. A novel aphid resistance locus in cowpea identified by combining SSR and SNP markers. Plant Breeding, 2018, 137: 203-209.

[113]

KuttyNN, MishraM. Dynamic distress calls: volatile info chemicals induce and regulate defense responses during herbivory. Front Plant Sci, 2023, 14: 1135000.

[114]

LaceyLA, GrzywaczD, Shapiro-IlanDI, FrutosR, BrownbridgeM, GoettelMS. Insect pathogens as biological control agents: Back to the future. J Invertebr Pathol, 2015, 132: 1-41.

[115]

Lefebvre V, Boissot N, Gallois J-L (2020) Host Plant Resistance to Pests and Pathogens, the Genetic Leverage in Integrated Pest and Disease Management. In: Gullino ML, Albajes R, Nicot PC (eds) Integrated Pest and Disease Management in Greenhouse Crops. Springer, Cham, pp 259–283. https://doi.org/10.1007/978-3-030-22304-5_9

[116]

LeszczynskiB, MatokH, DixonAF. Resistance of cereals to aphids: The interaction between hydroxamic acids and UDP-glucose transferases in the aphidSitobion avenue (Homoptera: Aphididae). J Chem Ecol, 1992, 18: 1189-1200.

[117]

LeszczynskiB, MatokM, DixonAF. Detoxification of cereal plant allelochemicals by aphids: Activity and molecular weights of glutathioneS-transferase in three species of cereal aphids. J Chem Ecol, 1994, 20: 387-394.

[118]

LeybourneDJ, AradottirGI. Common resistance mechanisms are deployed by plants against sap-feeding herbivorous insects: insights from a meta-analysis and systematic review. Sci Rep, 2022, 12: 17836.

[119]

LiQ, XieQG, Smith-BeckerJ, NavarreDA, KaloshianI. Mi-1-mediated aphid resistance involves salicylic acid and mitogen-activated protein kinase signaling cascades. Mol Plant Microbe Interact, 2006, 19: 655-664.

[120]

LiY, HillCB, CarlsonSR, DiersBW, HartmanGL. Soybean aphid resistance genes in the soybean cultivars Dowling and Jackson map to linkage group M. M Breeding, 2007, 19: 25-34.

[121]

LiY, HuZ, LiZ, KongY, PiyaratneMKDK, WangB, ZhaoH. Generalized population dynamics model of aphids in wheat based on catastrophe theory. Biosystems, 2020, 198. 104217

[122]

Li N, Lin Z, Yu P, Zeng Y, Du S, Huang L-J (2023) The multifarious role of callose and callose synthase in plant development and environment interactions. Front Plant Sci 14. https://doi.org/10.3389/fpls.2023.1183402

[123]

LiY, BaoT, ZhangJ, LiH, ShanX, YanH, KimaniS, ZhangL, GaoX. The coordinated interaction or regulation between floral pigments and volatile organic compounds. HPJ, 2024.

[124]

LinR, YangM, YaoB. The phylogenetic and evolutionary analyses of detoxification gene families in Aphidinae species. PLoS ONE, 2022, 17. e0263462

[125]

LiuXM, SmithCM, GillBS, TolmayV. Microsatellite markers linked to six Russian wheat aphid resistance genes in wheat. Theor Appl Genet, 2001, 102: 504-510.

[126]

LiuXM, SmithCM, FriebeBR, GillBS. Molecular mapping and allelic relationships of Russian wheat aphid–resistance genes. Crop Sci, 2005, 45: 2273-2280.

[127]

LiuJ, DuH, DingX, ZhouY, XieP, WuJ. Mechanisms of callose deposition in rice regulated by exogenous abscisic acid and its involvement in rice resistance to Nilaparvata lugens Stål (Hemiptera: Delphacidae). Pest Manag Sci, 2017, 73: 2559-2568.

[128]

Liu Q, Luo L, Zheng L (2018) Lignins: biosynthesis and biological functions in plants. Int J Mol Sci 19. https://doi.org/10.3390/ijms19020335

[129]

LiuX, MaX, KouX, BaiJ, ZhangH, WangC, WangY, ZhaoJ, TianZ, JiW. Molecular characterization and functional analysis of wheat TtLOX gene involved in aphid resistance. Agronomy, 2020, 10: 780.

[130]

LiuQ, KawaiT, InukaiY, AokiD, FengZ, XiaoY, FukushimaK, LinX, ShiW, BuschW, MatsushitaY, LiB. A lignin-derived material improves plant nutrient bioavailability and growth through its metal chelating capacity. Nat Commun, 2023, 14: 4866.

[131]

LiuS, LiuX-B, ZhangT-T, BaiS-X, HeK-L, ZhangY-J, FrancisF, WangZ-Y. Effects of host plants on aphid feeding behavior, fitness, and Buchnera aphidicola titer. Insect Science n/a, 2024.

[132]

LlaveC. Dynamic cross-talk between host primary metabolism and viruses during infections in plants. Curr Opin Virol, 2016, 19: 50-55.

[133]

LoretoF, D'AuriaS. How do plants sense volatiles sent by other plants?. Trends Plant Sci, 2022, 27: 29-38.

[134]

Losvik A, Beste L, Glinwood R, Ivarson E, Stephens J, Zhu LH, Jonsson L (2017) Overexpression and down-regulation of barley lipoxygenase LOX2.2 affects jasmonate-regulated genes and aphid fecundity. Int J MolSci 18. https://doi.org/10.3390/ijms18122765

[135]

LoxdaleHD, BalogA, BironDG. Aphids in focus: unravelling their complex ecology and evolution using genetic and molecular approaches. Biol J Linn Socy, 2020, 129: 507-531.

[136]

Luo K, Zhao H, Wang X, Kang Z (2022) Prevalent pest management strategies for grain aphids: Opportunities and challenges. Front Plant Sci 12. https://doi.org/10.3389/fpls.2021.790919

[137]

LvN, YangQ-Y, LiC-C, ZhangT-W, AliS, LiuC-Z, AbidI, Ragab AbdelGawwadM. Effects of different host plants on population fitness of pea aphid ( Acyrthosiphon pisum ). Journal of King Saud University - Science, 2023, 35. 102764

[138]

MaK, LiF, TangQ, LiangP, LiuY, ZhangB, GaoX. CYP4CJ1-mediated gossypol and tannic acid tolerance in Aphis gossypii Glover. Chemosphere, 2019, 219: 961-970.

[139]

Maanju S, Jasrotia P, Yadav SS, Sharma P, Kashyap PL, Kumar S, Jat MK, Singh GP (2023) Genetic diversity and population structure analyses in barley (Hordeum vulgare) against corn-leaf aphid, Rhopalosiphum maidis (Fitch). Front Plant Sci 14. https://doi.org/10.3389/fpls.2023.1188627

[140]

MakowskaB, BakeraB, Rakoczy-TrojanowskaM. The genetic background of benzoxazinoid biosynthesis in cereals. Acta Physiol Plant, 2015, 37: 176.

[141]

MatsuiK, EngelberthJ. Green leaf volatiles-The forefront of plant responses against biotic attack. Plant Cell Physiol, 2022, 63: 1378-1390.

[142]

MauckKE, De MoraesCM, MescherMC. Biochemical and physiological mechanisms underlying effects of Cucumber mosaic virus on host-plant traits that mediate transmission by aphid vectors. Plant Cell Environ, 2014, 37: 1427-1439.

[143]

MauckKE, ChesnaisQ, ShapiroLR. Evolutionary determinants of host and vector manipulation by plant viruses. Adv Virus Res, 2018, 101: 189-250.

[144]

MbizaNIT, HuZ, ZhangH, ZhangY, LuoX, WangY, WangY, LiuT, LiJ, WangX, ZhangJ, YuY. GhCalS5 is involved in cotton response to aphid attack through mediating callose formation. Front Plant Sci, 2022, 13. 892630

[145]

MertensD, Fernández de BobadillaM, RusmanQ, BloemJ, DoumaJC, PoelmanEH. Plant defence to sequential attack is adapted to prevalent herbivores. Nat Plants, 2021, 7: 1347-1353.

[146]

MillerHL, NeesePA, KetringDL, DillwithJW. Involvement of ethylene in aphid infestation of barley. J Plant Growth Regul, 1994, 13: 167-171.

[147]

Mitchell C, Brennan RM, Graham J, Karley AJ (2016) Plant Defense against Herbivorous Pests: Exploiting Resistance and Tolerance Traits for Sustainable Crop Protection. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01132

[148]

Mithofer A, Maffei ME (2017) General Mechanisms of Plant Defense and Plant Toxins. In: Carlini CR, Ligabue-Braun R, Gopalakrishnakone P (eds) Plant Toxins. Springer Netherlands, Dordrecht, pp 3–24. https://doi.org/10.1007/978-94-007-6464-4_21

[149]

MorkunasI, MaiVC, GabrysB. Phytohormonal signaling in plant responses to aphid feeding. Acta Physiol Plant, 2011, 33: 2057-2073.

[150]

MouD-F, KunduP, PingaultL, PuriH, ShindeS, LouisJ. Monocot crop–aphid interactions: plant resilience and aphid adaptation. Curr Opin Insect Sci, 2023, 57. 101038

[151]

MukherjeeA, GhoshSK. An eco-friendly approach of biocontrol of aphid (Aphis gossypii Glover) by Trichoderma harzianum. Environ Monit Assess, 2022, 195: 102.

[152]

NalamV, LouisJ, ShahJ. Plant defense against aphids, the pest extraordinaire. Plant Sci, 2019, 279: 96-107.

[153]

NawazM, SunJ, ShabbirS, KhattakWA, RenG, NieX, BoY, JavedQ, DuD, SonneC. A review of plants strategies to resist biotic and abiotic environmental stressors. Sci Total Environ, 2023, 900. 165832

[154]

NeupaneS, PurintunJM, MathewFM, VarenhorstAJ, NepalMP. Molecular basis of soybean resistance to soybean aphids and soybean syst nematodes. Plants, 2019, 8: 374.

[155]

NicholsonSJ, NickersonML, DeanM, SongY, HoytPR, RheeH, KimC, PuterkaGJ. The genome of Diuraphis noxia, a global aphid pest of small grains. BMC Genomics, 2015, 16: 429.

[156]

NicolD, WrattenSD. The effect of hydoroxamic acid concentration at late growth stages of wheat on the performance of the aphid Sitobion avenae. Ann Appl Biol, 1997, 130: 387-396.

[157]

Nieto-LopezRM, BlakeTK. Russian wheat aphid resistance in barley: inheritance and linked molecular markers. Crop Sci, 1994, 34: 655-659.

[158]

NietupskiM, LudwiczakE, OlszewskiJ, GabryśB, KordanB. Effect of aphid foraging on the intensity of photosynthesis and transpiration of selected crop plants in Its early stages of srowing. Agronomy, 2022, 12: 2370.

[159]

Ninkuu V, Yan J, Fu Z, Yang T, Ziemah J, Ullrich MS, Kuhnert N, Zeng H (2022) Lignin and its pathway-associated phytoalexins modulate plant defense against fungi. J Fungi 9. https://doi.org/10.3390/jof9010052

[160]

NinkuuV, YanJ, FuZ, YangT, ZhangL, RenJ, LiG, ZengH. Genome-wide identification, phylogenomics, and expression analysis of benzoxazinoids gene family in rice (Oryza sativa). Plant Stress, 2023, 10. 100214

[161]

OllivierR, GloryI, CloteauR, Le GallicJF, DenisG, MorlièreS, MiteulH, RivièreJP, LesnéA, KleinA, AubertG, KreplakJ, BurstinJ, Pilet-NayelML, SimonJC, SugioA. A major-effect genetic locus, ApRVII, controlling resistance against both adapted and non-adapted aphid biotypes in pea. Theor Appl Genet, 2022, 135: 1511-1528.

[162]

OsorioS, CastillejoC, QuesadaMA, Medina-EscobarN, BrownseyGJ, SuauR, HerediaA, BotellaMA, ValpuestaV. Partial demethylation of oligogalacturonides by pectin methyl esterase 1 is required for eliciting defence responses in wild strawberry (Fragaria vesca). Plant J, 2008, 54: 43-55.

[163]

Painter RH (1951) Insect resistance in crop plants. New York: Macmillan Co:481.

[164]

PalialS, KumarS, AtriC, SharmaS, BangaSS. Antixenosis and antibiosis mechanisms of resistance to turnip aphid, Lipaphis erysimi (Kaltenbach) in Brassica juncea-fruticulosa introgression lines. J Pest Sci, 2022, 95: 749-760.

[165]

PanLL, MiaoH, WangQ, WallingLL, LiuSS. Virus-induced phytohormone dynamics and their effects on plant-insect interactions. New Phytol, 2021, 230: 1305-1320.

[166]

PanL, LuZ, YanL, ZengW, ShenZ, YuM, BuL, CuiG, NiuL, WangZ. NLR1 is a strong candidate for the Rm3 dominant green peach aphid (Myzus persicae) resistance trait in peach. J Exp Bot, 2022, 73: 1357-1369.

[167]

ParkSJ, HuangY, AyoubiP. Identification of expression profiles of sorghum genes in response to greenbug phloem-feeding using cDNA subtraction and microarray analysis. Planta, 2006, 223: 932-947.

[168]

PaulmannM, WegnerL, GershenzonJ, FurchA, KunertG. Pea aphid (Acyrthosiphon pisum) host races reduce Heat-induced forisome dispersion in Vicia faba and Trifolium pratense. Plants, 2023, 12: 1888.

[169]

PeccoudJ, SimonJ-C, von DohlenC, Coeur d’acier A, Plantegenest M, Vanlerberghe-Masutti F, Jousselin E,. Evolutionary history of aphid-plant associations and their role in aphid diversification. CR Biol, 2010, 333: 474-487.

[170]

PengH-C, WalkerGP. Sieve element occlusion provides resistance against Aphis gossypii in TGR-1551 melons. Insect Sci, 2020, 27: 33-48.

[171]

PereiraJF, SarriaALF, PowersSJ, AradottirGI, CaulfieldJC, MartinJ, SmartLE, PickettJA, BirkettMA, PereiraPRVS. DIMBOA levels in hexaploid Brazilian wheat are not associated with antibiosis against the cereal aphids Rhopalosiphum padi and Sitobion avenae. Theor Exp Plant Physiol, 2017, 29: 61-75.

[172]

PerkovichC, WardD. Differentiated plant defense strategies: Herbivore community dynamics affect plant–herbivore interactions. Ecosphere, 2022, 13. e3935

[173]

Peterson GC, Nwanze KF, Teetes GL, Pendleton BB (1998) Genetic diversity of sorghum: A source of insect-resistant germplasm. In: Global Plant Genetic Resources for Insect-Resistant Crops. CRC Press, pp 63–85. https://api.semanticscholar.org/CorpusID:89552420

[174]

PetersonRKD, VarellaAC, HigleyLG. Tolerance: the forgotten child of plant resistance. PeerJ, 2017, 5. e3934

[175]

PrinceDC, DrureyC, ZipfelC, HogenhoutSA. The leucine-rich repeat receptor-like kinase BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 and the cytochrome P450 PHYTOALEXIN DEFICIENT3 contribute to innate immunity to aphids in Arabidopsis. Plant Physiol, 2014, 164: 2207-2219.

[176]

PuterkaGJ, BurdJD, BurtonRL. Biotypic variation in a worldwide collection of Russian wheat aphid (Homoptera: Aphididae). J Econ Entomol, 1992, 85: 1497-1506.

[177]

Radchenko EE, Abdullaev RA, Anisimova IN (2022) Genetic resources of cereal crops for aphid resistance. Plants 11. https://doi.org/10.3390/plants11111490

[178]

RahmanMM, PorterLD, MaY, CoyneCJ, ZhengP, Chaves-CordobaB, NaiduRA. Resistance in pea (Pisum sativum) genetic resources to the pea aphid, Acyrthosiphon pisum. Entomol Exp Appl, 2023, 171: 435-448.

[179]

RamalhoFS, FernandesFS, NascimentoARB, JúniorJLN, MalaquiasJB, SilvaC. Feeding damage from cotton aphids, Aphis gossypii Glover (Hemiptera: Heteroptera: Aphididae), in cotton with colored Fiber intercropped with fennel. Ann Entomol Soc Am, 2012, 105: 20-27.

[180]

ReytG, RamakrishnaP, Salas-GonzálezI, FujitaS, LoveA, TiemessenD, LapierreC, MorreelK, Calvo-PolancoM, FlisP, GeldnerN, BoursiacY, BoerjanW, GeorgeMW, CastrilloG, SaltDE. Two chemically distinct root lignin barriers control solute and water balance. Nat Commun, 2021, 12: 2320.

[181]

Royer TA, Pendleton BB, Elliott NC, Giles KL (2015) Greenbug (Hemiptera: Aphididae) biology, ecology, and management in wheat and sorghum. J Integr Pest Manag 6. https://doi.org/10.1093/jipm/pmv018

[182]

Saidi A, Quick JS (1996) Inheritance and allelic relationships among Russian wheat aphid resistance genes in winter wheat. Crop Sci 36:256–258. https://api.semanticscholar.org/CorpusID:83503215

[183]

SanaB, MurtazaG, MahmoodH, Amjad BashirM, BatoolM, NisarMS, AzizI, AlajmiRA, MehmoodA, Al-ZuaibrF, HashemM, AlasmariA, AlshehriMA, Yahia QattanM, AbbasR, AlamriS. Population dynamics of aphids and its predators alongwith its management. J King Saud Univ Sci, 2022, 34. 102024

[184]

SaruhanI. Efficacy of some entomopathogenic fungi against Aphis fabae Scopoli (Hemiptera: Aphididae). Egypt J Biol Pest Control, 2018, 28: 89.

[185]

SaugeM-H, LacrozeJ-P, PoësselJ-L, PascalT, KervellaJ. Induced resistance by Myzus persicae in the peach cultivar ‘Rubira’. Entomol Exp App, 2002, 102: 29-37.

[186]

SaugeM-H, MusF, LacrozeJ-P, PascalT, KervellaJ, PoësselJ-L. Genotypic variation in induced resistance and induced susceptibility in the peach-Myzus persicae aphid system. Oikos, 2006, 113: 305-313.

[187]

SerbaDD, MengX, SchnableJ, BashirE, MichaudJP, Vara PrasadPV, PerumalR. Comparative transcriptome analysis reveals genetic mechanisms of sugarcane aphid resistance in grain sorghum. Int J Mol Sci, 2021, 22: 7129.

[188]

ShanLT, FengMG. Evaluation of the biocontrol potential of various Metarhizium isolates against green peach aphid Myzus persicae (Homoptera: Aphididae). Pest Manag Sci, 2010, 66: 669-675.

[189]

ShavitR, BatyrshinaZS, DotanN, TzinV. Cereal aphids differently affect benzoxazinoid levels in durum wheat. PLoS ONE, 2018, 13. e0208103

[190]

ShawAK, PeaceA, PowerAG, Bosque-PérezNA. Vector population growth and condition-dependent movement drive the spread of plant pathogens. Ecology, 2017, 98: 2145-2157.

[191]

ShiX, GaoY, YanS, TangX, ZhouX, ZhangD, LiuY. Aphid performance changes with plant defense mediated by Cucumber mosaic virus titer. Virol J, 2016, 13: 70.

[192]

ShihPY, SugioA, SimonJC. Molecular mechanisms underlying host plant specificity in aphids. Annu Rev Entomol, 2023, 68: 431-450.

[193]

SilvaAM, SampaioMV, de OliveiraRS, KorndorferAP, FerreiraSE, PolastroGC, DiasPA. Antibiosis and non-preference of Sitobion avenae (F.) (Hemiptera: Aphididae) on leaves and ears of commercial cultivars of wheat (Triticum aestivum). Neotrop Entomol, 2013, 42: 304-310.

[194]

Silva-SanzanaC, Celiz-BalboaJ, GarzoE, MarcusSE, Parra-RojasJP, RojasB, OlmedoP, RubilarMA, RiosI, ChorbadjianRA, FereresA, KnoxP, Saez-AguayoS, Blanco-HerreraF. Pectin methylesterases modulate plant homogalacturonan status in defenses against the aphid Myzus persicae. Plant Cell, 2019, 31: 1913-1929.

[195]

Silva-SanzanaC, EstevezJM, Blanco-HerreraF. Influence of cell wall polymers and their modifying enzymes during plant-aphid interactions. J Exp Bot, 2020, 71: 3854-3864.

[196]

SimonAL, CaulfieldJC, Hammond-KosackKE, FieldLM, AradottirGI. Identifying aphid resistance in the ancestral wheat Triticum monococcum under field conditions. Sci Rep, 2021, 11: 13495.

[197]

SinghH, JoshiN. Management of the aphid, Myzus persicae (Sulzer) and the whitefly, Bemisia tabaci (Gennadius), using biorational on capsicum under protected cultivation in India. Egypt J Biol Pest Control, 2020, 30: 67.

[198]

SinghB, SimonA, HalseyK, KurupS, ClarkS, AradottirGI. Characterisation of bird cherry-oat aphid (Rhopalosiphum padi L.) behaviour and aphid host preference in relation to partially resistant and susceptible wheat landraces. Ann Appl Biol, 2020, 177: 184-194.

[199]

SinghA, DilkesB, SelaH, TzinV. The effectiveness of physical and chemical Defense responses of wild emmer wheat against aphids depends on leaf position and genotype. Front Plant Sci, 2021, 12. 667820

[200]

SinghB, BhatiaD, NarangD, KaurR, ChhunejaP. High-resolution genetic mapping of QTL governing resistance to corn leaf aphid, Rhopalosiphum maidis (Fitch) in barley. Cereal Research Communications, 2023, 51: 379-389.

[201]

Singh B, Jasrotia P, Crespo-Herreraa L (2022) Breeding for aphid resistance in wheat: status and future prospects. In: Kashyap PL, Gupta V, Prakash Gupta O et al (eds) New Horizons in Wheat and Barley Research: Global Trends, Breeding and Quality Enhancement. Springer Singapore, Singapore, pp 381–399. https://doi.org/10.1007/978-981-16-4449-8_16

[202]

Skendzic S, Zovko M, Pajac Zivkovic I, Lesic V, Lemic D (2021) Effect of climate change on introduced and native agricultural invasive insect pests in Europe. Insects 12. https://doi.org/10.3390/insects12050440

[203]

Skovgård H, Stoddard FL (2023) Reproductive potential of the black bean aphid (Aphis fabae Scop.) on a range of faba bean (Vicia faba L.) accessions. Legum sci 5:e199. https://doi.org/10.1002/leg3.199

[204]

SmithCM, ChuangWP. Plant resistance to aphid feeding: Behavioral, physiological, genetic and molecular cues regulate aphid host selection and feeding. Pest Manag Sci, 2014, 70: 528-540.

[205]

SmithCM, ClementSL. Molecular bases of plant resistance to arthropods. Annu Rev Entomol, 2012, 57: 309-328.

[206]

Smith CM (ed) (2006) Plant resistance to arthropods: Molecular and conventional approaches. Springer Dordrecht. https://doi.org/10.1007/1-4020-3702-3

[207]

SmithCM, QuisenberrySS, ToitFd. The value of conserved wheat germplasm evaluated for arthropod resistance. Global Plant Genetic Resources for Insect-Resistant Crops, 1998.

[208]

SmithCM, LiuX, WangLJ, LiuX, ChenM-S, StarkeyS, BaiJ. Aphid Feeding Activates Expression of a Transcriptome of Oxylipin-based Defense Signals in Wheat Involved in Resistance to Herbivory. J Chem Ecol, 2010, 36: 260-276.

[209]

Son H, Jung YJ, Park SC, Kim IR, Park JH, Jang MK, Lee JR (2022) Functional characterization of an arabidopsis profilin protein as a molecular chaperone under heat shock stress. Molecules 27. https://doi.org/10.3390/molecules27185771

[210]

Song H, Dong Z, Li L, Lu Z, Li C, Yu Y, Men X (2021) Relationships among the feeding behaviors of a mirid bug on cotton leaves of different ages and plant biochemical substances. J Insect Sci 21. https://doi.org/10.1093/jisesa/ieab007

[211]

StecK, KordanB, GabryśB. Effect of soy leaf flavonoids on pea aphid probing behavior. Insects, 2021, 12: 756.

[212]

Stratilova B, Kozmon S, Stratilova E, Hrmova M (2020) Plant xyloglucan xyloglucosyl transferases and the cell wall structure: Subtle but significant. Molecules 25. https://doi.org/10.3390/molecules25235619

[213]

SubediB, PoudelA, AryalS. The impact of climate change on insect pest biology and ecology: Implications for pest management strategies, crop production, and food security. Agric Food Sci, 2023, 14. 100733

[214]

Sugimoto K, Iijima Y, Takabayashi J, Matsui K (2021) Processing of airborne green leaf volatiles for their glycosylation in the exposed plants. Front Plant Sci 12. https://doi.org/10.3389/fpls.2021.721572

[215]

SunM, VoorripsRE, Van't WestendeW, van KaauwenM, VisserRGF, VosmanB. Aphid resistance in Capsicum maps to a locus containing LRR-RLK gene analogues. Theor Appl Genet, 2020, 133: 227-237.

[216]

Sun J, Tan X, Li Q, Francis F, Chen J (2022) Effects of different temperatures on the development and reproduction of Sitobion miscanthi from six different regions in China. Front Ecol Evol 10. https://doi.org/10.3389/fevo.2022.794495

[217]

SunR, HongB, ReicheltM, LuckK, MaiDT, JiangX, GershenzonJ, VassãoDG. Metabolism of plant-derived toxins from its insect host increases the success of the entomopathogenic fungus Beauveria bassiana. ISME J, 2023, 17: 1693-1704.

[218]

TanakaY, FujitaK, DateM, WatanabeB, MatsuiK. Structure-activity relationship of volatile compounds that induce defense-related genes in maize seedlings. Plant Signal Behav, 2023, 18: 2234115.

[219]

ThackrayDJ, WrattentSD, EdwardsPJ, NiemeyerHM. Resistance to the aphids Sitobion avenae and Rhopalosiphum padi in Gramineae in relation to hydroxamic acid levels. Ann Appl Biol, 1990, 116: 573-582.

[220]

Tlak Gajger I, Dar SA (2021) Plant allelochemicals as sources of insecticides. Insects 12. https://doi.org/10.3390/insects12030189

[221]

TrinhDN, HaTKL, QiuD. Biocontrol potential of some entomopathogenicfungal strains against bean aphid Megoura japonica (Matsumura). Agriculture, 2020, 10: 114.

[222]

TwayanaM, GirijaAM, MohanV, ShahJ. Phloem: At the center of action in plant defense against aphids. J Plant Physiol, 2022, 273. 153695

[223]

Varsani S, Grover S, Zhou S, Koch KG, Huang P-C, Kolomiets MV, Williams WP, Heng-Moss T, Sarath G, Luthe DS, Jander G, Louis J (2019) 12-Oxo-Phytodienoic Acid Acts as a Regulator of Maize Defense against Corn Leaf Aphid. Plant Physiol 179:1402–1415. https://doi.org/10.1104/pp.18.01472

[224]

WangY, HerewardJP, ZhangG. High spatial genetic structure and genetic diversity in Chinese populations of Sitobion miscanthi (Hemiptera: Aphididae). J Econ Entomol, 2016, 109: 375-384.

[225]

Wang Y, Sheng L, Zhang H, Du X, An C, Xia X, Chen F, Jiang J, Chen S (2017) CmMYB19 over-expression improves aphid tolerance in chrysanthemum by promoting lignin synthesis. Int J Mol Sci 18:619. https://www.mdpi.com/1422-0067/18/3/619

[226]

Wang S, Guo H, Ge F, Sun Y (2020) Apoptotic neurodegeneration in whitefly promotes the spread of TYLCV. Elife 9. https://doi.org/10.7554/eLife.56168

[227]

WangG, ZhouJJ, LiY, GouY, QuandahorP, LiuC. Trehalose and glucose levels regulate feeding behavior of the phloem-feeding insect, the pea aphid Acyrthosiphon pisum Harris. Sci Rep, 2021, 11: 15864.

[228]

WangZ, Q, ZhangL, ZhangM, ChenL, ZouS, ZhangC, DongH. Aphid salivary protein Mp1 facilitates infestation by binding phloem protein 2–A1 in Arabidopsis. Biochem Biophys Res Commun, 2021, 572: 105-111.

[229]

WarAR, PaulrajMG, AhmadT, BuhrooAA, HussainB, IgnacimuthuS, SharmaHC. Mechanisms of plant defense against insect herbivores. Plant Signal Behav, 2012, 7: 1306-1320.

[230]

WardS, van HeldenM, HeddleT, RidlandPM, PirtleE, UminaPA. Biology, ecology and management of Diuraphis noxia (Hemiptera: Aphididae) in Australia. Austral Entomol, 2020, 59: 238-252.

[231]

WillT, VilcinskasA. The structural sheath protein of aphids is required for phloem feeding. Insect Biochem Mol Biol, 2015, 57: 34-40.

[232]

WooleySC, SmithDS, LonsdorfEV, BrownSC, WhithamTG, ShusterSM, LindrothRL. Local adaptation and rapid evolution of aphids in response to genetic interactions with their cottonwood hosts. Ecol Evol, 2020, 10: 10532-10542.

[233]

WuY, DavisTS, EigenbrodeSD. Aphid behavioral responses to virus-infected plants are similar despite divergent fitness effects. Entomol Exp Appl, 2014, 153: 246-255.

[234]

XiaC, XueW, LiZ, ShiJ, YuG, ZhangY. Presenting the secrets: Exploring endogenous defense mechanisms in chrysanthemums against aphids. Horticulturae, 2023, 9: 937.

[235]

XieX-Z, XueY-J, ZhouJ-J, ZhangB, ChangH, TakanoM. Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe grisea. Mol Plant, 2011, 4: 688-696.

[236]

YadavS, ChattopadhyayD. Lignin: the Building block of defense responses to stress in plants. J Plant Growth Regul, 2023, 42: 6652-6666.

[237]

YangQ, UminaPA, WeiS, BassC, YuW, RobinsonKL, GillA, ZhanD, WardSE, van RooyenA, HoffmannAA. Diversity and regional variation of endosymbionts in the green peach aphid, Myzus persicae (Sulzer). Diversity, 2023, 15: 206.

[238]

YangX, ZhangL, LiY, LiuX, ChenC, DengY, ZhouW, SohailH, QiuL, GuJ, LiuF, ChenX, ChenX. Fortifying crop defenses: unraveling the molecular arsenal against aphids. Hortic Adv, 2024, 2: 22.

[239]

YunHG, KimDJ, GwakWS, ShinTY, WooSD. Entomopathogenic fungi as dual control agents against both the pest Myzus persicae and phytopathogen Botrytis cinerea. Mycobiology, 2017, 45: 192-198.

[240]

Zhan X, Chen Z, Chen R, Shen C (2022) Environmental and genetic factors involved in plant protection-associated secondary metabolite biosynthesis pathways. Front Plant Sci 13. https://doi.org/10.3389/fpls.2022.877304

[241]

ZhangM, ZhangS. Mitogen-activated protein kinase cascades in plant signaling. J Integr Plant Biol, 2022, 64: 301-341.

[242]

ZhangS, ZhangZ, BalesC, GuC, DiFonzoC, LiM, SongQ, CreganP, YangZ, WangD. Mapping novel aphid resistance QTL from wild soybean, Glycine soja 85–32. Theor Appl Genet, 2017, 130: 1941-1952.

[243]

ZhangL, LuG, HuangX, GuoH, SuX, HanL, ZhangY, QiZ, XiaoY, ChengH. Overexpression of the caryophyllene synthase gene GhTPS1 in cotton negatively affects multiple pests while attracting parasitoids. Pest Manag Sci, 2020, 76: 1722-1730.

[244]

Zhang Z, Lan H, Cao H, Hu X, Fan Y, Song Y, Wu L, Liu TX (2021) Impacts of constitutive and induced benzoxazinoids levels on wheat resistance to the grain aphid (sitobion avenae). Metabolites 11. https://doi.org/10.3390/metabo11110783

[245]

ZhangH, LinR, LiuQ, LuJ, QiaoG, HuangX. Transcriptomic and proteomic analyses provide insights into host adaptation of a bamboo-feeding aphid. Front Plant Sci, 2022, 13: 1098751.

[246]

Zhang K-X, Li H-Y, Quandahor P, Gou Y-P, Li C-C, Zhang Q-Y, Haq IU, Ma Y, Liu C-Z (2022b) Responses of Six Wheat Cultivars (Triticum aestivum) to Wheat Aphid (Sitobion avenae) Infestation. Insects 13:508. https://www.mdpi.com/2075-4450/13/6/508

[247]

ZhangY, WangY, LiuT, LuoX, WangY, ChuL, LiJ, AnH, WanP, XuD, YangY, ZhangJ. GhMYC1374 regulates the cotton defense response to cotton aphids by mediating the production of flavonoids and free gossypol. Plant Physiol Biochem, 2023, 205. 108162

[248]

ZhaoZ, FanJ, YangP, WangZ, OpiyoSO, MackeyD, XiaY. Involvement of Arabidopsis Acyl carrier protein 1 in PAMP-triggered immunity. Mol Plant Microbe Interact, 2022, 35: 681-693.

[249]

ZhouS, JanderG. Molecular ecology of plant volatiles in interactions with insect herbivores. J Exp Bot, 2022, 73: 449-462.

[250]

ZhouS, RichterA, JanderG. Beyonddefense: Multiple functions of benzoxazinoids in maize metabolism. Plant Cell Physiol, 2018, 59: 1528-1537.

[251]

ZhuLC, SmithCM, ReeseJC. Categories of resistance to greenbug (Homoptera: Aphididae) biotype K in wheat lines containing Aegilops tauschii genes. J Econ Entomol, 2005, 98: 2260-2265.

[252]

ZustT, AgrawalAA. Mechanisms and evolution of plant resistance to aphids. Nature Plants, 2016, 2: 15206.

[253]

ZytynskaSE, TighiouartK, FragoE. Benefits and costs of hosting facultative symbionts in plant-sucking insects: A meta-analysis. Mol Ecol, 2021, 30: 2483-2494.

Funding

National Key Research and Development Program of China(2022YFD1200300)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

191

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/