Herbicide 2,4-dichlorophenoxyacetic acid interferes with MAP kinase signaling in Fusarium graminearum and is inhibitory to fungal growth and pathogenesis
Kaili Duan, Qifang Shen, Yu Wang, Ping Xiang, Yutong Shi, Chenfei Yang, Cong Jiang, Guanghui Wang, Jin-Rong Xu, Xue Zhang
Herbicide 2,4-dichlorophenoxyacetic acid interferes with MAP kinase signaling in Fusarium graminearum and is inhibitory to fungal growth and pathogenesis
Herbicide 2,4-D was found to inhibit growth, DON biosynthesis, and plant infection in Fusarium graminearum. Whereas ROS accumulation and FgHog1 activation were stimulated, Gpmk1 phosphorylation was reduced by 2,4-D treatments.
Fungal pathogenesis / MAP kinase pathways / 2,4-D / Fusarium graminearum
[1] |
|
[2] |
|
[3] |
Barreto MC, Vilas Boas L, Carneiro LC, San Romão MV (2011) Volatile compounds in samples of cork and also produced by selected fungi. J Agric Food Chem 59:6568–6574. https://doi.org/10.1021/jf200560e.
|
[4] |
Becker M, Becker Y, Green K, Scott B (2016) The endophytic symbiont Epichloë festucae establishes an epiphyllous net on the surface of Lolium perenne leaves by development of an expressorium, an appressorium-like leaf exit structure. New Phytol 211:240–254. https://doi.org/10.1111/nph.13931.
|
[5] |
Bernat P, Nykiel-Szymańska J, Gajewska E, Różalska S, Stolarek P, Dackowa J, Słaba M (2018) Trichoderma harzianum diminished oxidative stress caused by 2,4-dichlorophenoxyacetic acid (2,4-D) in wheat, with insights from lipidomics. J Plant Physiol 229:158–163. https://doi.org/10.1016/j.jplph.2018.07.010.
|
[6] |
Bernat P, Nykiel-Szymańska J, Stolarek P, Słaba M, Szewczyk R, Różalska S (2018) 2,4-dichlorophenoxyacetic acid-induced oxidative stress: Metabolome and membrane modifications in Umbelopsis isabellina, a herbicide degrader. PLoS One 13:e0199677. https://doi.org/10.1371/journal.pone.0199677.
|
[7] |
Bönnighausen J, Schauer N, Schäfer W, Bormann J (2019) Metabolic profiling of wheat rachis node infection by Fusarium graminearum-decoding deoxynivalenol-dependent susceptibility. New Phytol 221:459–469. https://doi.org/10.1111/nph.15377.
|
[8] |
Buhrow LM, Liu Z, Cram D, Sharma T, Foroud NA, Pan Y, Loewen MC (2021) Wheat transcriptome profiling reveals abscisic and gibberellic acid treatments regulate early-stage phytohormone defense signaling, cell wall fortification, and metabolic switches following Fusarium graminearum-challenge. BMC Genomics 22:798. https://doi.org/10.1186/s12864-021-08069-0.
|
[9] |
|
[10] |
Cuomo CA, Güldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A et al (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400–1402. https://doi.org/10.1126/science.1143708.
|
[11] |
|
[12] |
|
[13] |
Dimont E, Shi J, Kirchner R, Hide W (2015) edgeRun: an R package for sensitive, functionally relevant differential expression discovery using an unconditional exact test. Bioinformatics 31:2589–90. https://doi.org/10.1093/bioinformatics/btv209.
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
Gupta R, Anand G, Pizarro L, Laor D, Kovetz N, Sela N, Yehuda T, Gazit E, Bar M (2021) Cytokinin inhibits fungal development and virulence by targeting the cytoskeleton and cellular trafficking. mBio 12:e0306820. https://doi.org/10.1128/mBio.03068-20.
|
[19] |
|
[20] |
|
[21] |
Hou Z, Xue C, Peng Y, Katan T, Kistler HC, Xu JR (2002) A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol Plant Microbe Interact 15:1119–1127. https://doi.org/10.1094/mpmi.2002.15.11.1119.
|
[22] |
|
[23] |
Jenczmionka NJ, Maier FJ, Lösch AP, Schäfer W (2003) Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmk1. Curr Genet 43:87–95. https://doi.org/10.1007/s00294-003-0379-2.
|
[24] |
Jia SJ, Jiang DJ, Hu CP, Zhang XH, Deng HW, Li YJ (2006) Lysophosphatidylcholine-induced elevation of asymmetric dimethylarginine level by the NADPH oxidase pathway in endothelial cells. Vascul Pharmacol 44:143–148. https://doi.org/10.1016/j.vph.2005.09.005.
|
[25] |
Jiang C, Zhang C, Wu C, Sun P, Hou R, Liu H, Wang C, Xu JR (2016) TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum. Environ Microbiol 18:3689–3701. https://doi.org/10.1111/1462-2920.13279.
|
[26] |
Jiang C, Zhang X, Liu H, Xu JR (2018) Mitogen-activated protein kinase signaling in plant pathogenic fungi. PLoS Pathog 14:e1006875. https://doi.org/10.1371/journal.ppat.1006875.
|
[27] |
Jiang C, Cao S, Wang Z, Xu H, Liang J, Liu H, Wang G, Ding M, Wang Q, Gong C, Feng C, Hao C, Xu JR (2019) An expanded subfamily of G-protein-coupled receptor genes in Fusarium graminearum required for wheat infection. Nat Microbiol 4:1582–1591. https://doi.org/10.1038/s41564-019-0468-8.
|
[28] |
Kang Z, Buchenauer H, Huang L, Han Q, Zhang H (2008) Cytological and immunocytochemical studies on responses of wheat spikes of the resistant Chinese cv. Sumai 3 and the susceptible cv. Xiaoyan 22 to infection by Fusarium graminearum. Eur J Plant Pathol 120:383–396. https://doi.org/10.1007/s10658-007-9230-9.
|
[29] |
Kidd BN, Kadoo NY, Dombrecht B, Tekeoglu M, Gardiner DM, Thatcher LF, Aitken EA, Schenk PM, Manners JM, Kazan K (2011) Auxin signaling and transport promote susceptibility to the root-infecting fungal pathogen Fusarium oxysporum in Arabidopsis. Mol Plant Microbe Interact 24:733–748. https://doi.org/10.1094/mpmi-08-10-0194.
|
[30] |
Kim Y, Kim H, Son H, Choi GJ, Kim JC, Lee YW (2014) MYT3, a Myb-like transcription factor, affects fungal development and pathogenicity of Fusarium graminearum. PLoS One 9:e94359. https://doi.org/10.1371/journal.pone.0094359.
|
[31] |
|
[32] |
Liang J, Fu X, Hao C, Bian Z, Liu H, Xu JR, Wang G (2021) FgBUD14 is important for ascosporogenesis and involves both stage-specific alternative splicing and RNA editing during sexual reproduction. Environ Microbiol 23:5052–5068. https://doi.org/10.1111/1462-2920.15446.
|
[33] |
|
[34] |
Liu P, Luo L, Guo J, Liu H, Wang B, Deng B, Long CA, Cheng Y (2010) Farnesol induces apoptosis and oxidative stress in the fungal pathogen Penicillium expansum. Mycologia 102:311–318. https://doi.org/10.3852/09-176.
|
[35] |
Liu N, Wu S, Dawood DH, Tang G, Zhang C, Liang J, Chen Y, Ma Z (2019) The b-ZIP transcription factor FgTfmI is required for the fungicide phenamacril tolerance and pathogenecity in Fusarium graminearum. Pest Manag Sci 75:3312–3322. https://doi.org/10.1002/ps.5454.
|
[36] |
Lou Y, Zhang J, Wang G, Fang W, Wang S, Abubakar YS, Zhou J, Wang Z, Zheng W (2021) Genome-wide characterization of PX domain-containing proteins involved in membrane trafficking-dependent growth and pathogenicity of Fusarium graminearum. mBio 12:e0232421. https://doi.org/10.1128/mBio.02324-21.
|
[37] |
Lu P, Chen D, Qi Z, Wang H, Chen Y, Wang Q, Jiang C, Xu JR, Liu H (2022) Landscape and regulation of alternative splicing and alternative polyadenylation in a plant pathogenic fungus. New Phytol 235:674–689. https://doi.org/10.1111/nph.18164.
|
[38] |
Luo K, Rocheleau H, Qi PF, Zheng YL, Zhao HY, Ouellet T (2016) Indole-3-acetic acid in Fusarium graminearum: Identification of biosynthetic pathways and characterization of physiological effects. Fungal Biol 120:1135–1145. https://doi.org/10.1016/j.funbio.2016.06.002.
|
[39] |
Luo K, DesRoches CL, Johnston A, Harris LJ, Zhao HY, Ouellet T (2017) Multiple metabolic pathways for metabolism of ltryptophan in Fusarium graminearum. Can J Microbiol 63:921–927. https://doi.org/10.1139/cjm-2017-0383.
|
[40] |
Manzo-Valencia MK, Valdés-Santiago L, Sánchez-Segura L, Guzmán-de-Peña DL (2016) Naphthalene acetic acid potassium salt (NAA-K( )) affects conidial germination, sporulation, mycelial growth, cell surface morphology, and viability of Fusarium oxysporum f. sp. radici-lycopersici and F. oxysporum f. sp. cubense in vitro. J Agric Food Chem 64:8315–8323. https://doi.org/10.1021/acs.jafc.6b03105.
|
[41] |
Mao X, Wu Z, Bi C, Wang J, Zhao F, Gao J, Hou Y, Zhou M (2020) Molecular and biochemical characterization of pydiflumetofen-resistant mutants of Didymella bryoniae. J Agric Food Chem 68:9120–9130. https://doi.org/10.1021/acs.jafc.0c03690.
|
[42] |
|
[43] |
Menke J, Weber J, Broz K, Kistler HC (2013) Cellular development associated with induced mycotoxin synthesis in the filamentous fungus Fusarium graminearum. PLoS One 8:e63077. https://doi.org/10.1371/journal.pone.0063077.
|
[44] |
Nicastro R, Raucci S, Michel AH, Stumpe M, Garcia Osuna GM, Jaquenoud M, Kornmann B, De Virgilio C (2021) Indole-3-acetic acid is a physiological inhibitor of TORC1 in yeast. PLoS Genet 17:e1009414. https://doi.org/10.1371/journal.pgen.1009414.
|
[45] |
|
[46] |
Oparka M, Walczak J, Malinska D, van Oppen LMPE, Szczepanowska J, Koopman WJH, Wieckowski MR (2016) Quantifying ROS levels using CM-H(2)DCFDA and HyPer. Methods 109:3–11. https://doi.org/10.1016/j.ymeth.2016.06.008.
|
[47] |
Petti C, Reiber K, Ali SS, Berney M, Doohan FM (2012) Auxin as a player in the biocontrol of Fusarium head blight disease of barley and its potential as a disease control agent. BMC Plant Biol 12:224. https://doi.org/10.1186/1471-2229-12-224.
|
[48] |
|
[49] |
Proctor RH, Hohn TM, McCormick SP, Desjardins AE (1995) Tri6 encodes an unusual zinc finger protein involved in regulation of trichothecene biosynthesis in Fusarium sporotrichioides. Appl Environ Microbiol 61:1923–1930. https://doi.org/10.1128/aem.61.5.1923-1930.1995.
|
[50] |
Reineke G, Heinze B, Schirawski J, Buettner H, Kahmann R, Basse CW (2008) Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Mol Plant Pathol 9:339–355. https://doi.org/10.1111/j.1364-3703.2008.00470.x.
|
[51] |
Ren J, Li C, Gao C, Xu JR, Jiang C, Wang G (2019) Deletion of FgHOG1 Is suppressive to the mgv1 mutant by stimulating Gpmk1 activation and avoiding intracellular turgor elevation in Fusarium graminearum. Front Microbiol 10:1073. https://doi.org/10.3389/fmicb.2019.01073.
|
[52] |
Ren J, Zhang Y, Wang Y, Li C, Bian Z, Zhang X, Liu H, Xu JR, Jiang C (2022) Deletion of all three MAP kinase genes results in severe defects in stress responses and pathogenesis in Fusarium graminearum. Stress Biol 2:6. https://doi.org/10.1007/s44154-021-00025-y.
|
[53] |
Romero-Puertas MC, Peláez-Vico M, Pazmiño DM, Rodríguez-Serrano M, Terrón-Camero L, Bautista R, Gómez-Cadenas A, Claros MG, León J, Sandalio LM (2022) Insights into ROS-dependent signalling underlying transcriptomic plant responses to the herbicide 2,4-D. Plant Cell Environ 45:572–590. https://doi.org/10.1111/pce.14229.
|
[54] |
Shin YK, Kim DW, Lee SW, Lee MJ, Gi Baek S, Lee T, Yun SH (2022) Functional roles of all five putative hydrophobin genes in growth, development, and secondary metabolism in Fusarium graminearum. Fungal Genet Biol 160:103683. https://doi.org/10.1016/j.fgb.2022.103683.
|
[55] |
|
[56] |
Son H, Seo YS, Min K, Park AR, Lee J, Jin JM et al (2011) A phenome-based functional analysis of transcription factors in the cereal head blight fungus. Fusarium graminearum. PLoS Pathog 7:e1002310. https://doi.org/10.1371/journal.ppat.1002310.
|
[57] |
Spicer R, Salek RM, Moreno P, Cañueto D, Steinbeck C (2017) Navigating freely-available software tools for metabolomics analysis. Metabolomics 13:106. https://doi.org/10.1007/s11306-017-1242-7.
|
[58] |
Sun S, Shen Y, Wang J, Li J, Cao J, Zhang J (2021) Identification and validation of autophagy-related genes in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 16:67–78. https://doi.org/10.2147/copd.s288428.
|
[59] |
|
[60] |
Takeda N, Handa Y, Tsuzuki S, Kojima M, Sakakibara H, Kawaguchi M (2015) Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus. Plant Physiol 167:545–557. https://doi.org/10.1104/pp.114.247700.
|
[61] |
Tatebayashi K, Yamamoto K, Tomida T, Nishimura A, Takayama T, Oyama M, Kozuka-Hata H, Adachi-Akahane S, Tokunaga Y, Saito H (2020) Osmostress enhances activating phosphorylation of Hog1 MAP kinase by mono-phosphorylated Pbs2 MAP2K. Embo j 39:e103444. https://doi.org/10.15252/embj.2019103444.
|
[62] |
|
[63] |
Wang C, Zhang S, Hou R, Zhao Z, Zheng Q, Xu Q et al (2011) Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. PLoS Pathog 7:e1002460. https://doi.org/10.1371/journal.ppat.1002460.
|
[64] |
Wang L, Mogg C, Walkowiak S, Joshi M, Subramaniam R (2014) Characterization of NADPH oxidase genes NoxA and NoxB in Fusarium graminearum. Can J Plant Pathol 36:12–21. https://doi.org/10.1080/07060661.2013.868370.
|
[65] |
Wang Q, Chen D, Wu M, Zhu J, Jiang C, Xu JR, Liu H (2018) MFS transporters and GABA metabolism are involved in the self-defense against DON in Fusarium graminearum. Front Plant Sci 9:438. https://doi.org/10.3389/fpls.2018.00438.
|
[66] |
Wang H, Chen D, Li C, Tian N, Zhang J, Xu JR, Wang C (2019) Stage-specific functional relationships between Tub1 and Tub2 beta-tubulins in the wheat scab fungus Fusarium graminearum. Fungal Genet Biol 132:103251. https://doi.org/10.1016/j.fgb.2019.103251.
|
[67] |
Wen Z, Wang J, Jiao C, Shao W, Ma Z (2022) Biological and molecular characterizations of field fludioxonil-resistant isolates of Fusarium graminearum. Pestic Biochem Physiol 184:105101. https://doi.org/10.1016/j.pestbp.2022.105101.
|
[68] |
|
[69] |
Wu AB, Li HP, Zhao CS, Liao YC (2005) Comparative pathogenicity of Fusarium graminearum isolates from China revealed by wheat coleoptile and floret inoculations. Mycopathologia 160:75–83. https://doi.org/10.1007/s11046-005-1153-4.
|
[70] |
|
[71] |
Yin J, Hao C, Niu G, Wang W, Wang G, Xiang P, Xu JR, Zhang X (2020) FgPal1 regulates morphogenesis and pathogenesis in Fusarium graminearum. Environ Microbiol 22:5373–5386. https://doi.org/10.1111/1462-2920.15266.
|
[72] |
Yu HY, Seo JA, Kim JE, Han KH, Shim WB, Yun SH, Lee YW (2008) Functional analyses of heterotrimeric G protein G alpha and G beta subunits in Gibberella zeae. Microbiology (Reading) 154:392–401. https://doi.org/10.1099/mic.0.2007/012260-0.
|
[73] |
Zhang Y, Lamm R, Pillonel C, Lam S, Xu JR (2002) Osmoregulation and fungicide resistance: the Neurospora crassa os-2 gene encodes a HOG1 mitogen-activated protein kinase homologue. Environ Microbiol 68:532–538. https://doi.org/10.1128/aem.68.2.532-538.2002.
|
[74] |
Zhang C, Wang Y, Wang J, Zhai Z, Zhang L, Zheng W et al (2013) Functional characterization of Rho family small GTPases in Fusarium graminearum. Fungal Genet Biol 61:90–99. https://doi.org/10.1016/j.fgb.2013.09.001.
|
[75] |
Zhang X, Liu W, Li Y, Li G, Xu JR (2017) Expression of HopAI interferes with MAP kinase signalling in Magnaporthe oryzae. Environ Microbiol 19:4190–4204. https://doi.org/10.1111/1462-2920.13884.
|
[76] |
|
[77] |
Zhang X, Wang Z, Jiang C, Xu JR (2021) Regulation of biotic interactions and responses to abiotic stresses by MAP kinase pathways in plant pathogenic fungi. Stress Biol 1:5. https://doi.org/10.1007/s44154-021-00004-3.
|
[78] |
Zheng D, Zhang S, Zhou X, Wang C, Xiang P, Zheng Q, Xu JR (2012) The FgHOG1 pathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum. PLoS One 7:e49495. https://doi.org/10.1371/journal.pone.0049495.
|
[79] |
Zhou X, Heyer C, Choi YE, Mehrabi R, Xu JR (2010) The CID1 cyclin C-like gene is important for plant infection in Fusarium graminearum. Fungal Genet Biol 47:143–151. https://doi.org/10.1016/j.fgb.2009.11.001.
|
/
〈 | 〉 |