Simple and universal function of acetic acid to overcome the drought crisis
Toru Kudo, Taiko Kim To, Jong-Myong Kim
Simple and universal function of acetic acid to overcome the drought crisis
Acetic acid is a simple and universal compound found in various organisms. Recently, acetic acid was found to play an essential role in conferring tolerance to water deficit stress in plants. This novel mechanism of drought stress tolerance mediated by acetic acid via networks involving phytohormones, genes, and chromatin regulation has great potential for solving the global food crisis and preventing desertification caused by global warming. We highlight the functions of acetic acid in conferring tolerance to water deficit stress.
Acetic acid / Drought / Epigenetics / Jasmonic acid / Metabolism / Tolerance / Water deficit
[1] |
Allen MM, Allen DJ (2020) Biostimulant potential of acetic acid under drought stress is confounded by pH-dependent root growth inhibition. Front Plant Sci 11:647. https://doi.org/10.3389/fpls.2020.00647
|
[2] |
|
[3] |
|
[4] |
Cheng MC, Liao P-M, Kuo W-W, Lin T-P (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162:1566–1582. https://doi.org/10.1104/pp.113.221911
|
[5] |
|
[6] |
Fischle W, Wang Y, Allis CD (2003) Histone and chromatin crosstalk. Curr Opin Cell Biol 15:172–183. https://doi.org/10.1016/s0955-0674(03)00013-9
|
[7] |
Fu X, Yang H, Pangestu F, Nikolau BJ (2020) Failure to maintain acetate homeostasis by acetate-activating enzymes impacts plant development. Plant Physiol 182(3):1256–1271. https://doi.org/10.1104/pp.19.01162
|
[8] |
Fukuda H, Sano N, Horikoshi MS, M, (2006) Simple histone acetylation plays a complex role in the regulation of gene expression. Brief Funct Genomics Proteomics 5:190–208. https://doi.org/10.1093/bfgp/ell032
|
[9] |
Funayama K, Kojima S, Tabuchi-Kobayashi M, Sawa Y, Nakayama Y, Hayakawa T, Yamaya T (2013) Cytosolic glutamine synthetase1;2 is responsible for the primary assimilation of ammonium in rice roots. Plant Cell Physiol 54(6):934–943. https://doi.org/10.1093/pcp/pct046
|
[10] |
Füßl M, Lassowskat I, Née G, Koskela MM, Brünje A, Tilak P, Giese J, Leister D, Mulo P, Schwarzer D, Finkemeier I (2018) Beyond histones: new substrate proteins of lysine deacetylases in Arabidopsis nuclei. Front Plant Sci 9:461. https://doi.org/10.3389/fpls.2018.00461
|
[11] |
Heerah S, Katari M, Penjor R, Coruzzi G, Marshall-Colon A (2019) WRKY1 mediates transcriptional regulation of light and nitrogen signaling pathways. Plant Physiol 181(3):1371–1388. https://doi.org/10.1104/pp.19.00685
|
[12] |
Isaji S, Yoshinaga N, Teraishi M, Ogawa D, Kato E, Okumoto Y, Habu Y, Mori N (2018) Biosynthesis and accumulation of GABA in rice plants treated with acetic acid. J Pestic Sci 43(3):214–219. https://doi.org/10.1584/jpestics.d18-036
|
[13] |
Ivany JA (2010) Acetic acid for weed control in potato (Solanum tuberosum L.). Can J Plant Sci 90(4):537–542. https://doi.org/10.4141/CJPS09026
|
[14] |
|
[15] |
Katada S, Imhof A, Sassone-Corsi P (2012) Connecting threads: epigenetics and metabolism. Cell 148(1–2):24–28. https://doi.org/10.1016/j.cell.2012.01.001
|
[16] |
Kim JM, To TK, Ishida J, Morosawa T, Kawashima M, Matsui A, Toyoda T, Kimura H, Shinozaki K, Seki M (2008) Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol 49(10):1580–1588. https://doi.org/10.1093/pcp/pcn133
|
[17] |
Kim JM, To TK, Ishida J, Matsui A, Kimura H, Seki M (2011) Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana. Plant Cell Physiol 53(5):847–856. https://doi.org/10.1093/pcp/pcs053
|
[18] |
|
[19] |
Kishor PBK, Hong Z, Miao G-H, Hu CAA, Verma DPS (1995) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394. https://doi.org/10.1104/pp.108.4.1387
|
[20] |
Kiyomiya S, Nakanishi H, Uchida H, Tsuji A, Nishiyama S, Futatsubashi M, Tsukada H, Ishioka NS, Watanabe S, Ito T, Mizuniwa C, Osa A, Matsuhashi S, Hashimoto S, Sekine T, Mori S (2001) Real time visualization of 13N-translocation in rice under different environmental conditions using positron emitting Ttacer imaging system. Plant Physiol 125(4):1743–1753. https://doi.org/10.1104/pp.125.4.1743
|
[21] |
Kürsteiner O, Dupuis I, Kuhlemeier C (2003) The pyruvate decarboxylase1 gene of Arabidopsis is required during anoxia but not other environmental stresses. Plant Physiol 132(2):968–978. https://doi.org/10.1104/pp.102.016907
|
[22] |
Langer MR, Fry CJ, Peterson CL, Denu JM (2002) Modulating acetyl-CoA binding in the GCN5 family of histone acetyltransferases. J Biol Chem 277(30):27337–27344. https://doi.org/10.1074/jbc.m203251200
|
[23] |
Matsui A, Todaka D, Tanaka M, Mizunashi K, Takahashi S, Sunaoshi Y, Tsuboi Y, Ishida J, Bashir K, Kikuchi J, Kusano M, Kobayashi M, Kawaura K, Seki M (2022) Ethanol induces heat tolerance in plants by stimulating unfolded protein response. Plant Mol Biol 110(1-2):130-145. https://doi.org/10.1007/s11103-022-01291-8
|
[24] |
Millar CB, Grunstein M (2006) Genome-wide patterns of histone modifications in yeast. Nat Rev Mol Cell Biol 7:657–666. https://doi.org/10.1038/nrm1986
|
[25] |
Ogawa D, Suzuki Y, Yokoo T, Katoh E, Teruya M, Muramatsu M, Ma JF, Yoshida Y, Isaji S, Ogo Y, Miyao M, Kim JM, Kojima M, Takebayashi Y, Sakakibara H, Takeda S, Okada K, Mori N, Seki M, Habu Y (2021) Acetic-acid-induced jasmonate signaling in root enhances drought avoidance in rice. Sci Rep 11(1):6280. https://doi.org/10.1038/s41598-021-85355-7
|
[26] |
Pietrocola F, Galluzzi L, Pedro JMB-S, Madeo F, Kroemer G (2015) Acetyl coenzyme A: A central metabolite and second messenger. Cell Metab 21(6):805–821. https://doi.org/10.1016/j.cmet.2015.05.014
|
[27] |
Qiao Z, Li CL, Zhang W (2016) WRKY1 regulates stomatal movement in drought-stressed Arabidopsis thaliana. Plant Mol Biol 91(1–2):53–65. https://doi.org/10.1007/s11103-016-0441-3
|
[28] |
|
[29] |
Rahman MM, Mostofa MG, Rahman MA, Islam MR, Keya SS, Das AK, Miah MG, Kawser AQMR, Ahsan SM, Hashem A, Tabassum B, Abd Allah EF, Tran LP (2019) Acetic acid: a cost-effective agent for mitigation of seawater-induced salt toxicity in mung bean. Sci Rep 9(1):15186. https://doi.org/10.1038/s41598-019-51178-w
|
[30] |
Rasheed S, Bashir K, Kim JM, Ando M, Tanaka M, Seki M (2018) The modulation of acetic acid pathway genes in Arabidopsis improves survival under drought stress. Sci Rep 8(1):7831. https://doi.org/10.1038/s41598-018-26103-2
|
[31] |
Tanner KG, Langer MR, Kim Y, Denu JM (2000) Kinetic Mechanism of the histone acetyltransferase GCN5 from yeast. J Biol Chem 275(29):220048–222055. https://doi.org/10.1074/jbc.m002893200
|
[32] |
Utsumi Y, Utsumi C, Tanaka M, Ha CV, Takahashi S, Matsui A, Matsunaga TM, Matsunaga S, Kanno Y, Seo M, Okamoto Y, Moriya E, Seki M (2019) Acetic acid treatment enhances drought avoidance in Cassava (Manihot esculenta Crantz). Front Plant Sci 10:521. https://doi.org/10.3389/fpls.2019.00521
|
[33] |
Vu AT, Utsumi Y, Utsumi C, Tanaka M, Takahashi S, Todaka D, Kanno Y, Seo M, Ando E, Sako K, Bashir K, Kinoshita T, Pham XH, Seki M (2022) Ethanol treatment enhances drought stress avoidance in cassava (Manihot esculenta Crantz). Plant Mol Biol 20(1):269-285. https://doi.org/10.1007/s11103-022-01300-w
|
[34] |
Vincent SA, Kim JM, Pérez-Salamó I, To TK, Torii C, Ishida J, Tanaka M, Endo TA, Bhat P, Devlin PF, Seki M (2022) Devoto A. Jasmonates and Histone deacetylase 6 activate Arabidopsis genome-wide histone acetylation and methylation during the early acute stress response. BMC Biol. 20(1):83. https://doi.org/10.1186/s12915-022-01273-8
|
/
〈 | 〉 |