A Fur-regulated type VI secretion system contributes to oxidative stress resistance and virulence in Yersinia pseudotuberculosis

Yuxin Zuo, Changfu Li, Danyang Yu, Kenan Wang, Yuqi Liu, Zhiyan Wei, Yantao Yang, Yao Wang, Xihui Shen, Lingfang Zhu

Stress Biology ›› 2023, Vol. 3 ›› Issue (1) : 2. DOI: 10.1007/s44154-022-00081-y
Original Paper

A Fur-regulated type VI secretion system contributes to oxidative stress resistance and virulence in Yersinia pseudotuberculosis

Author information +
History +

Abstract

The type VI secretion system (T6SS) is a widespread protein secretion apparatus deployed by many Gram-negative bacterial species to interact with competitor bacteria, host organisms, and the environment. Yersinia pseudotuberculosis T6SS4 was recently reported to be involved in manganese acquisition; however, the underlying regulatory mechanism still remains unclear. In this study, we discovered that T6SS4 is regulated by ferric uptake regulator (Fur) in response to manganese ions (Mn2+), and this negative regulation of Fur was proceeded by specifically recognizing the promoter region of T6SS4 in Y. pseudotuberculosis. Furthermore, T6SS4 is induced by low Mn2+ and oxidative stress conditions via Fur, acting as a Mn2+-responsive transcriptional regulator to maintain intracellular manganese homeostasis, which plays important role in the transport of Mn2+ for survival under oxidative stress. Our results provide evidence that T6SS4 can enhance the oxidative stress resistance and virulence for Y. pseudotuberculosis. This study provides new insights into the regulation of T6SS4 via the Mn2+-dependent transcriptional regulator Fur, and expands our knowledge of the regulatory mechanisms and functions of T6SS from Y. pseudotuberculosis.

Keywords

Type VI secretion system / Fur / Manganese / Oxidative stress / Virulence

Cite this article

Download citation ▾
Yuxin Zuo, Changfu Li, Danyang Yu, Kenan Wang, Yuqi Liu, Zhiyan Wei, Yantao Yang, Yao Wang, Xihui Shen, Lingfang Zhu. A Fur-regulated type VI secretion system contributes to oxidative stress resistance and virulence in Yersinia pseudotuberculosis. Stress Biology, 2023, 3(1): 2 https://doi.org/10.1007/s44154-022-00081-y

References

[1]
AguirreJD, CulottaVC. Battles with iron: manganese in oxidative stress protection. J Biol Chem, 2012, 287(17):13541-13548
CrossRef Google scholar
[2]
AndersonMC, VonaeschP, SaffarianA, MarteynBS, SansonettiPJ. Shigella sonnei encodes a functional T6SS used for interbacterial competition and niche occupancy. Cell Host Microbe, 2017, 21(6):769-776 e763
CrossRef Google scholar
[3]
AskouraM, SarvanS, CoutureJF, StintziA. The campylobacter jejuni ferric uptake regulator promotes acid survival and cross-protection against oxidative stress. Infect Immun, 2016, 84(5):1287-1300
CrossRef Google scholar
[4]
BarneseK, GrallaEB, ValentineJS, CabelliDE. Biologically relevant mechanism for catalytic superoxide removal by simple manganese compounds. Proc Natl Acad Sci U S A, 2012, 109(18):6892-6897
CrossRef Google scholar
[5]
BaslerM, PilhoferM, HendersonGP, JensenGJ, MekalanosJJ. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature, 2012, 483(7388):182-186
CrossRef Google scholar
[6]
BeardenSW, PerryRD. The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol Microbiol, 1999, 32(2):403-414
CrossRef Google scholar
[7]
BeckerKW, SkaarEP. Metal limitation and toxicity at the interface between host and pathogen. FEMS Microbiol Rev, 2014, 38(6):1235-1249
CrossRef Google scholar
[8]
Brunet YR, Bernard CS, Cascales E (2020) Fur-dam regulatory interplay at an internal promoter of the enteroaggregative Escherichia coli type VI secretion sci1 gene cluster. J Bacteriol 202(10). https://doi.org/10.1128/JB.00075-20
[9]
BrunetYR, BernardCS, GavioliM, LloubesR, CascalesE. An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster. PLoS Genet, 2011, 7(7):e1002205
CrossRef Google scholar
[10]
CaiR, GaoF, PanJ, HaoX, YuZ, QuY, LiJ, WangD, WangY, ShenX, LiuX, YangY. The transcriptional regulator Zur regulates the expression of ZnuABC and T6SS4 in response to stresses in Yersinia pseudotuberculosis. Microbiol Res, 2021, 249: 126787
CrossRef Google scholar
[11]
ChakrabortyS, SivaramanJ, LeungKY, MokYK. Two-component PhoB-PhoR regulatory system and ferric uptake regulator sense phosphate and iron to control virulence genes in type III and VI secretion systems of Edwardsiella tarda. J Biol Chem, 2011, 286(45):39417-39430
CrossRef Google scholar
[12]
ChoJY, LiuR, MacbethJC, HsiaoA. The interface of vibrio cholerae and the gut microbiome. Gut Microbes, 2021, 13(1):1937015
CrossRef Google scholar
[13]
CianfanelliFR, MonlezunL, CoulthurstSJ. Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol, 2016, 24(1):51-62
CrossRef Google scholar
[14]
Diaz-OchoaVE, LamD, LeeCS, KlausS, BehnsenJ, LiuJZ, ChimN, NuccioSP, RathiSG, MastroianniJR, EdwardsRA, JacoboCM, CerasiM, BattistoniA, OuelletteAJ, GouldingCW, ChazinWJ, SkaarEP, RaffatelluM. Salmonella mitigates oxidative stress and thrives in the inflamed gut by evading calprotectin-mediated manganese sequestration. Cell Host Microbe, 2016, 19(6):814-825
CrossRef Google scholar
[15]
GueguenE, DurandE, ZhangXY, d'AmalricQ, JournetL, CascalesE. Expression of a Yersinia pseudotuberculosis type VI secretion system is responsive to envelope stresses through the OmpR transcriptional activator. PLoS One, 2013, 8(6):e66615
CrossRef Google scholar
[16]
HoBT, FuY, DongTG, MekalanosJJ. Vibrio cholerae type 6 secretion system effector trafficking in target bacterial cells. Proc Natl Acad Sci U S A, 2017, 114(35):9427-9432
CrossRef Google scholar
[17]
HohleTH, O'BrianMR. Metal-specific control of gene expression mediated by Bradyrhizobium japonicum Mur and Escherichia coli Fur is determined by the cellular context. Mol Microbiol, 2016, 101(1):152-166
CrossRef Google scholar
[18]
HsiehPF, LuYR, LinTL, LaiLY, WangJT. Klebsiella pneumoniae type VI secretion system contributes to bacterial competition, cell invasion, type-1 fimbriae expression, and in vivo colonization. J Infect Dis, 2019, 219(4):637-647
CrossRef Google scholar
[19]
IshikawaT, SabharwalD, BromsJ, MiltonDL, SjostedtA, UhlinBE, WaiSN. Pathoadaptive conditional regulation of the type VI secretion system in vibrio cholerae O1 strains. Infect Immun, 2012, 80(2):575-584
CrossRef Google scholar
[20]
KapiteinN, MogkA. Deadly syringes: type VI secretion system activities in pathogenicity and interbacterial competition. Curr Opin Microbiol, 2013, 16(1):52-58
CrossRef Google scholar
[21]
Kehl-FieTE, ChitayatS, HoodMI, DamoS, RestrepoN, GarciaC, MunroKA, ChazinWJ, SkaarEP. Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. Cell Host Microbe, 2011, 10(2):158-164
CrossRef Google scholar
[22]
KehresDG, JanakiramanA, SlauchJM, MaguireME. Regulation of Salmonella enterica serovar typhimurium mntH transcription by H2O2, Fe2+, and Mn2+. J Bacteriol, 2002, 184(12):3151-3158
CrossRef Google scholar
[23]
KimYH, YuMH. Overexpression of reactive cysteine-containing 2-nitrobenzoate nitroreductase (NbaA) and its mutants alters the sensitivity of Escherichia coli to reactive oxygen species by reprogramming a regulatory network of disulfide-bonded proteins. J Proteome Res, 2012, 11(6):3219-3230
CrossRef Google scholar
[24]
KitphatiW, Ngok-NgamP, SuwanmaneeratS, SukchawalitR, MongkolsukS. Agrobacterium tumefaciens fur has important physiological roles in iron and manganese homeostasis, the oxidative stress response, and full virulence. Appl Environ Microbiol, 2007, 73(15):4760-4768
CrossRef Google scholar
[25]
KoskiniemiS, LamoureuxJG, NikolakakisKC, t’Kint de RoodenbekeC, KaplanMD, LowDA, HayesCS. Rhs proteins from diverse bacteria mediate intercellular competition. Proc Natl Acad Sci U S A, 2013, 110(17):7032-7037
CrossRef Google scholar
[26]
LampsLW, MadhusudhanKT, HavensJM, GreensonJK, BronnerMP, ChilesMC, DeanPJ, ScottMA. Pathogenic Yersinia DNA is detected in bowel and mesenteric lymph nodes from patients with Crohn's disease. Am J Surg Pathol, 2003, 27(2):220-227
CrossRef Google scholar
[27]
LiC, PanD, LiM, WangY, SongL, YuD, ZuoY, WangK, LiuY, WeiZ, LuZ, ZhuL, ShenX. Aerobactin-mediated iron acquisition enhances biofilm formation, oxidative stress resistance, and virulence of Yersinia pseudotuberculosis. Front Microbiol, 2021, 12: 699913
CrossRef Google scholar
[28]
Li C, Zhu L, Pan D, Li S, Xiao H, Zhang Z, Shen X, Wang Y, Long M (2019) Siderophore-mediated iron acquisition enhances resistance to oxidative and aromatic compound stress in Cupriavidus necator JMP134. Appl Environ Microbiol 85(1). https://doi.org/10.1128/AEM.01938-18
[29]
LiC, ZhuL, WangD, WeiZ, HaoX, WangZ, LiT, ZhangL, LuZ, LongM, WangY, WeiG, ShenX. T6SS secretes an LPS-binding effector to recruit OMVs for exploitative competition and horizontal gene transfer. ISME J, 2022, 16(2):500-510
CrossRef Google scholar
[30]
Lin J, Xu L, Yang J, Wang Z, Shen X (2021) Beyond dueling: roles of the type VI secretion system in microbiome modulation, pathogenesis and stress resistance. Stress Biol 1(1). https://doi.org/10.1007/s44154-021-00008-z
[31]
LinJ, ZhangW, ChengJ, YangX, ZhuK, WangY, WeiG, QianPY, LuoZQ, ShenX. A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat Commun, 2017, 8: 14888
CrossRef Google scholar
[32]
MiyataST, KitaokaM, BrooksTM, McAuleySB, PukatzkiS. Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect Immun, 2011, 79(7):2941-2949
CrossRef Google scholar
[33]
Monjaras FeriaJ, ValvanoMA. An overview of anti-eukaryotic T6SS effectors. Front Cell Infect Microbiol, 2020, 10: 584751
CrossRef Google scholar
[34]
MorrisseyJA, CockayneA, BrummellK, WilliamsP. The staphylococcal ferritins are differentially regulated in response to iron and manganese and via PerR and Fur. Infect Immun, 2004, 72(2):972-979
CrossRef Google scholar
[35]
MougousJD, CuffME, RaunserS, ShenA, ZhouM, GiffordCA, GoodmanAL, JoachimiakG, OrdonezCL, LoryS, WalzT, JoachimiakA, MekalanosJJ. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science, 2006, 312(5779):1526-1530
CrossRef Google scholar
[36]
MurphyEC, FriedmanAJ. Hydrogen peroxide and cutaneous biology: translational applications, benefits, and risks. J Am Acad Dermatol, 2019, 81(6):1379-1386
CrossRef Google scholar
[37]
Pasqua M, Visaggio D, Lo Sciuto A, Genah S, Banin E, Visca P, Imperi F (2017) Ferric uptake regulator Fur is conditionally essential in Pseudomonas aeruginosa. J Bacteriol 199(22). https://doi.org/10.1128/JB.00472-17
[38]
PlateroR, PeixotoL, O'BrianMR, FabianoE. Fur is involved in manganese-dependent regulation of mntA (sitA) expression in Sinorhizobium meliloti. Appl Environ Microbiol, 2004, 70(7):4349-4355
CrossRef Google scholar
[39]
PorcheronG, GarenauxA, ProulxJ, SabriM, DozoisCM. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Front Cell Infect Microbiol, 2013, 3: 90
CrossRef Google scholar
[40]
Radin JN, Zhu J, Brazel EB, McDevitt CA, Kehl-Fie TE (2019) Synergy between nutritional immunity and independent host defenses contributes to the importance of the MntABC manganese transporter during Staphylococcus aureus infection. Infect Immun 87(1). https://doi.org/10.1128/IAI.00642-18
[41]
RiderCV, ChanP, HerbertRA, KisslingGE, FombyLM, HejtmancikMR, WittKL, WaidyanathaS, TravlosGS, KadiiskaMB. Dermal exposure to cumene hydroperoxide: assessing its toxic relevance and oxidant potential. Toxicol Pathol, 2016, 44(5):749-762
CrossRef Google scholar
[42]
Ruiz-LagunaJ, Prieto-AlamoMJ, PueyoC. Oxidative mutagenesis in Escherichia coli strains lacking ROS-scavenging enzymes and/or 8-oxoguanine defenses. Environ Mol Mutagen, 2000, 35(1):22-30 https://doi.org/10.1002/(sici)1098-2280(2000)35:1<22::aid-em4>3.0.co;2-x
CrossRef Google scholar
[43]
RussellAB, HoodRD, BuiNK, LeRouxM, VollmerW, MougousJD. Type VI secretion delivers bacteriolytic effectors to target cells. Nature, 2011, 475(7356):343-347
CrossRef Google scholar
[44]
SanaTG, FlaugnattiN, LugoKA, LamLH, JacobsonA, BaylotV, DurandE, JournetL, CascalesE, MonackDM. Salmonella typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci U S A, 2016, 113(34):E5044-E5051
CrossRef Google scholar
[45]
SanaTG, HachaniA, BuciorI, SosciaC, GarvisS, TermineE, EngelJ, FillouxA, BlevesS. The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and Fur and modulates internalization in epithelial cells. J Biol Chem, 2012, 287(32):27095-27105
CrossRef Google scholar
[46]
SchellMA, UlrichRL, RibotWJ, BrueggemannEE, HinesHB, ChenD, LipscombL, KimHS, MrazekJ, NiermanWC, DeshazerD. Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol, 2007, 64(6):1466-1485
CrossRef Google scholar
[47]
SchweerJ, KulkarniD, KochutA, PezoldtJ, PisanoF, PilsMC, GenthH, HuehnJ, DerschP. The cytotoxic necrotizing factor of Yersinia pseudotuberculosis (CNFY) enhances inflammation and Yop delivery during infection by activation of Rho GTPases. PLoS Pathog, 2013, 9(11):e1003746
CrossRef Google scholar
[48]
SeoSW, KimD, LatifH, O'BrienEJ, SzubinR, PalssonBO. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli. Nat Commun, 2014, 5: 4910
CrossRef Google scholar
[49]
SepterAN, LyellNL, StabbEV. The iron-dependent regulator fur controls pheromone signaling systems and luminescence in the squid symbiont Vibrio fischeri ES114. Appl Environ Microbiol, 2013, 79(6):1826-1834
CrossRef Google scholar
[50]
ShneiderMM, ButhSA, HoBT, BaslerM, MekalanosJJ, LeimanPG. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature, 2013, 500(7462):350-353
CrossRef Google scholar
[51]
SiM, WangY, ZhangB, ZhaoC, KangY, BaiH, WeiD, ZhuL, ZhangL, DongTG, ShenX. The type VI secretion system engages a redox-regulated dual-functional heme transporter for zinc acquisition. Cell Rep, 2017, 20(4):949-959
CrossRef Google scholar
[52]
SiM, ZhaoC, BurkinshawB, ZhangB, WeiD, WangY, DongTG, ShenX. Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis. Proc Natl Acad Sci U S A, 2017, 114(11):E2233-E2242
CrossRef Google scholar
[53]
SilvermanJM, BrunetYR, CascalesE, MougousJD. Structure and regulation of the type VI secretion system. Annu Rev Microbiol, 2012, 66: 453-472
CrossRef Google scholar
[54]
SongL, PanJ, YangY, ZhangZ, CuiR, JiaS, WangZ, YangC, XuL, DongTG, WangY, ShenX. Contact-independent killing mediated by a T6SS effector with intrinsic cell-entry properties. Nat Commun, 2021, 12(1):423
CrossRef Google scholar
[55]
SongY, XiaoX, LiC, WangT, ZhaoR, ZhangW, ZhangL, WangY, ShenX. The dual transcriptional regulator RovM regulates the expression of AR3- and T6SS4-dependent acid survival systems in response to nutritional status in Yersinia pseudotuberculosis. Environ Microbiol, 2015, 17(11):4631-4645
CrossRef Google scholar
[56]
StoreyD, McNallyA, AstrandM, Sa-Pessoa Graca SantosJ, Rodriguez-EscuderoI, ElmoreB, PalaciosL, MarshallH, HobleyL, MolinaM, CidVJ, SalminenTA, BengoecheaJA. Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent. PLoS Pathog, 2020, 16(3):e1007969
CrossRef Google scholar
[57]
TownsleyL, Sison MangusMP, MehicS, YildizFH. Response of vibrio cholerae to low-temperature shifts: CspV regulation of type VI secretion, biofilm formation, and association with zooplankton. Appl Environ Microbiol, 2016, 82(14):4441-4452
CrossRef Google scholar
[58]
TroxellB, HassanHM. Transcriptional regulation by ferric uptake regulator (Fur) in pathogenic bacteria. Front Cell Infect Microbiol, 2013, 3: 59
CrossRef Google scholar
[59]
TrunkK, PeltierJ, LiuYC, DillBD, WalkerL, GowNAR, StarkMJR, QuinnJ, StrahlH, TrostM, CoulthurstSJ. The type VI secretion system deploys antifungal effectors against microbial competitors. Nat Microbiol, 2018, 3(8):920-931
CrossRef Google scholar
[60]
VazeND, ParkS, BrooksAD, FridmanA, JoshiSG. Involvement of multiple stressors induced by non-thermal plasma-charged aerosols during inactivation of airborne bacteria. PLoS One, 2017, 12(2):e0171434
CrossRef Google scholar
[61]
Wang S, Yang D, Wu X, Yi Z, Wang Y, Xin S, Wang D, Tian M, Li T, Qi J, Ding C, Yu S (2019) The ferric uptake regulator represses type VI secretion system function by binding directly to the clpV promoter in Salmonella enterica Serovar typhimurium. Infect Immun 87(10). https://doi.org/10.1128/IAI.00562-19
[62]
WangT, SiM, SongY, ZhuW, GaoF, WangY, ZhangL, ZhangW, WeiG, LuoZQ, ShenX. Type VI secretion system transports Zn2+ to combat multiple stresses and host immunity. PLoS Pathog, 2015, 11(7):e1005020
CrossRef Google scholar
[63]
WeberJ, FinlaysonNB, MarkJB. Mesenteric lymphadenitis and terminal ileitis due to Yersinia pseudotuberculosis. N Engl J Med, 1970, 283(4):172-174
CrossRef Google scholar
[64]
XuH, YangJ, GaoW, LiL, LiP, ZhangL, GongYN, PengX, XiJJ, ChenS, WangF, ShaoF. Innate immune sensing of bacterial modifications of rho GTPases by the pyrin inflammasome. Nature, 2014, 513(7517):237-241
CrossRef Google scholar
[65]
XuS, PengZ, CuiB, WangT, SongY, ZhangL, WeiG, WangY, ShenX. FliS modulates FlgM activity by acting as a non-canonical chaperone to control late flagellar gene expression, motility and biofilm formation in Yersinia pseudotuberculosis. Environ Microbiol, 2014, 16(4):1090-1104
CrossRef Google scholar
[66]
YangX, LiuH, ZhangY, ShenX. Roles of type VI secretion system in transport of metal ions. Front Microbiol, 2021, 12: 756136
CrossRef Google scholar
[67]
Yu KW, Xue P, Fu Y, Yang L (2021) T6SS mediated stress responses for bacterial environmental survival and host adaptation. Int J Mol Sci 22(2). https://doi.org/10.3390/ijms22020478
[68]
ZhangW, WangY, SongY, WangT, XuS, PengZ, LinX, ZhangL, ShenX. A type VI secretion system regulated by OmpR in Yersinia pseudotuberculosis functions to maintain intracellular pH homeostasis. Environ Microbiol, 2013, 15(2):557-569
CrossRef Google scholar
[69]
ZhangW, XuS, LiJ, ShenX, WangY, YuanZ. Modulation of a thermoregulated type VI secretion system by AHL-dependent quorum sensing in Yersinia pseudotuberculosis. Arch Microbiol, 2011, 193(5):351-363
CrossRef Google scholar
[70]
ZhouD, QinL, HanY, QiuJ, ChenZ, LiB, SongY, WangJ, GuoZ, ZhaiJ, DuZ, WangX, YangR. Global analysis of iron assimilation and Fur regulation in Yersinia pestis. FEMS Microbiol Lett, 2006, 258(1):9-17
CrossRef Google scholar
[71]
ZhuC, ChenJ, WangY, WangL, GuoX, ChenN, ZhengP, SunJ, MaY. Enhancing 5-aminolevulinic acid tolerance and production by engineering the antioxidant defense system of Escherichia coli. Biotechnol Bioeng, 2019, 116(8):2018-2028
CrossRef Google scholar
[72]
Zhu L, Xu L, Wang C, Li C, Li M, Liu Q, Wang X, Yang W, Pan D, Hu L, Yang Y, Lu Z, Wang Y, Zhou D, Jiang Z, Shen X (2021) T6SS translocates a micropeptide to suppress STING-mediated innate immunity by sequestering manganese. Proc Natl Acad Sci U S A 118(42). https://doi.org/10.1073/pnas.2103526118
Funding
National Key R&D Program of China(2018YFA0901200); National Natural Science Foundation of China(32100149); Postdoctoral Research Foundation of China(2020M673501); Scientific Startup Foundation for Doctors of Northwest A and F University(Z1090122002); Young Talent Support Program of Shaanxi Province University(20220206)

Accesses

Citations

Detail

Sections
Recommended

/