Coming of age for the rhizosphere microbiome transplantation
Alexandre Jousset, Seon-Woo Lee
Coming of age for the rhizosphere microbiome transplantation
Microbiome transplants have the potential to disrupt agriculture and medicine by transferring the microbial genetic pool (and hence capabilities) from one host to another. Yet, for this technology to become reality, we need to understand the drivers shaping the success of microbiome transplant. We highlight here recent findings by Dr. Gaofei Jiang and colleagues. Using disease suppression as a model function, they highlight the microbiome characteristics making a successful transplant possible. We see this study is a seminal work making microbiome transplant an informed process that will replace the current error-prone trial procedures. We anticipate that the insights may catalyse a paradigm shift in microbiome management in agriculture and medicine.
Microbiome transplant / Coalescence / Ralstonia / Biodiversity / Crop health
[1] |
Choi,K., Choi,J., Lee,P.A., Roy,N., Khan,R., Lee,H.J., Weon,H.Y., Kong,H.G., Lee,S.W., 2020. Alteration of bacterial wilt resistance in tomato plant by microbiota transplant. Frontiers in Plant Science 11, 1186.
|
[2] |
Duran,P., Thiergart,T., Garrido-Oter,R., Agler,M., Kemen,E., Schulze-Lefert,P., Hacquard,S., 2018. Microbial interkingdom interactions in roots promote Arabidopsis survival . Cell 175, 973– 983 e14
|
[3] |
Gu,S., Wei,Z., Shao,Z., Friman,V.P., Cao,K., Yang,T., Kramer,J., Wang,X., Li,M., Mei,X., Xu,Y., Shen,Q., Kümmerli,R., Jousset,A., 2020. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nature Microbiology 5, 1002– 1010.
|
[4] |
Jiang,G., Zhang,Y., Gan,G., Li,W., Wan,W., Jiang,Y., Yang,T., Zhang,Y., Xu,Y., Wang,Y., Shen,Q., WeiZ., Dini-AndreoteF., 2022. Exploring rhizo-microbiome transplants as a tool for protective plant-microbiome manipulation. ISME Communications 2, 10.
|
[5] |
Jiang,G., Wei,Z., Xu,J., Chen,H., Zhang,Y., She,X., Macho,A.P., Ding,W., Liao,B., 2017. Bacterial wilt in China: History, current status, and future perspectives. Frontiers in Plant Science 8, 1549.
|
[6] |
Kwak,M.J., Kong,H.G., Choi,K., Kwon,S.K., Song,J.Y., Lee,J., Lee,P.A., Choi,S.Y., Seo,M., Lee,H.J., Jung,E.J., Park,H., Roy,N., Kim,H., Lee,M.M., Rubin,E.M., Lee,S.W., Kim,J.F., 2018. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology 36, 1100– 1109.
|
[7] |
Niu,B., Wang,W., Yuan,Z., Sederoff,R.R., Sederoff,H., Chiang,V.L., Borriss,R., 2020. Microbial interactions within multiple-strain biological control agents impact soil-borne plant disease. Frontiers in Microbiology 11, 585404.
|
[8] |
Rillig,M.C., A.,Tsang, J.,Roy, 2016. Microbial community coalescence for microbiome engineering. Frontiers in Microbiology 7, 1967.
|
[9] |
Schlatter,D., Kinkel,L., Thomashow,L., Weller,D., Paulitz,T., 2017. Disease suppressive soils: New insights from the soil microbiome. Phytopathology 107, 1284– 1297.
|
[10] |
Wei,Z., Gu,Y., Friman,V.P., Kowalchuk,G.A., Xu,Y., Shen,Q., Jousset,A., 2019. Initial soil microbiome composition and functioning predetermine future plant health. Science Advances 5, eaaw0759.
|
/
〈 | 〉 |