Running safety assessment of a train traversing a three-tower cable-stayed bridge under spatially varying ground motion
Wei Gong, Zhihui Zhu, Yu Liu, Ruitao Liu, Yongjiu Tang, Lizhong Jiang
Railway Engineering Science ›› 2020, Vol. 28 ›› Issue (2) : 184-198.
Running safety assessment of a train traversing a three-tower cable-stayed bridge under spatially varying ground motion
To explore the influence of spatially varying ground motion on the dynamic behavior of a train passing through a three-tower cable-stayed bridge, a 3D train–track–bridge coupled model is established for accurately simulating the train–bridge interaction under earthquake excitation, which is made up of a vehicle model built by multi-body dynamics, a track–bridge finite element model, and a 3D rolling wheel–rail contact model. A conditional simulation method, which takes into consideration the wave passage effect, incoherence effect, and site-response effect, is adopted to simulate the spatially varying ground motion under different soil conditions. The multi-time-step method previously proposed by the authors is also adopted to improve computational efficiency. The dynamic responses of the train running on a three-tower cable-stayed bridge are calculated with differing earthquake excitations and train speeds. The results indicate that (1) the earthquake excitation significantly increases the responses of the train–bridge system, but at a design speed, all the running safety indices meet the code requirements; (2) the incoherence and site-response effects should also be considered in the seismic analysis for long-span bridges though there is no fixed pattern for determining their influences; (3) different train speeds that vary the vibration characteristics of the train–bridge system affect the vibration frequencies of the car body and bridge.
[1.] |
|
[2.] |
|
[3.] |
|
[4.] |
|
[5.] |
|
[6.] |
|
[7.] |
|
[8.] |
|
[9.] |
|
[10.] |
|
[11.] |
|
[12.] |
|
[13.] |
|
[14.] |
|
[15.] |
|
[16.] |
|
[17.] |
Konakli A (2011) Stochastic dynamic analysis of bridges subjected to spatially varying ground motions. Dissertation, UC Berkeley
|
[18.] |
|
[19.] |
|
[20.] |
|
[21.] |
|
[22.] |
|
[23.] |
|
[24.] |
|
[25.] |
|
[26.] |
|
[27.] |
|
[28.] |
|
[29.] |
|
[30.] |
|
[31.] |
|
[32.] |
|
[33.] |
|
[34.] |
|
[35.] |
|
[36.] |
|
[37.] |
|
[38.] |
|
/
〈 |
|
〉 |