A personal journey on cracking the genomic codes

Michael Q. Zhang

PDF(620 KB)
PDF(620 KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (1) : 8-22. DOI: 10.15302/J-QB-021-0245
FEATURE
FEATURE

A personal journey on cracking the genomic codes

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Michael Q. Zhang. A personal journey on cracking the genomic codes. Quant. Biol., 2021, 9(1): 8‒22 https://doi.org/10.15302/J-QB-021-0245

References

[1]
Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., (2001) Initial sequencing and analysis of the human genome. Nature, 409, 860–921
CrossRef Pubmed Google scholar
[2]
Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., (2001) The sequence of the human genome. Science, 291, 1304–1351
CrossRef Pubmed Google scholar
[3]
Zhang, M. Q. (1988) Nonequilibrium steady states of some stochastic lattice gas models. Nucl. Phys. B Proc. Suppl., 5, 278–283
CrossRef Google scholar
[4]
Zhang, M. Q., Wang, J. S., Lebowitz, J. L. and Valles, J. L. (1988) Power law decay of correlations in stationary nonequilibrium lattice gases with conservative dynamics. J. Stat. Phys., 52, 1461
CrossRef Google scholar
[5]
Krug, J., Lebowitz, J.L., Spohn, H., and Zhang, M. Q. (1986) The fast rate limit of diffusive system. J. Stat. Phys., 44, 535.308
[6]
Zhang, M. Q. (1989) A fast vectorized multispin coding algorithm for 3D monte carlo simulations using Kawasaki Spin-exchange dynamics. J. Stat. Phys., 56, 939–950
CrossRef Google scholar
[7]
Zhang, M. Q. (1987) Supersymmetrical approach to critical dynamics of relaxational models. Phys. Rev. B Condens. Matter, 36, 3824–3829
CrossRef Pubmed Google scholar
[8]
Mallick, K., Moshe, M. and Orland, H. (2011) A field-theoretic approach to non-equilibrium work identities. J. Phys. A, 44, 095002
CrossRef Google scholar
[9]
Zhang, M. Q. and Percus, J. K. (1989) Direct correlations of the capillary wave model and construction of free energy density functional for the liquid-vapor interface system. J. Chem. Phys., 90, 3795–3799
CrossRef Google scholar
[10]
Zhang, M. Q. and Percus, J. K. (1989) Inhomogeneous Ising model on a multiconnected networks. J. Stat. Phys., 56, 695–708
CrossRef Google scholar
[11]
Zhang, M. Q. and Percus, J. K. (1990) A Recursive density functional formalism of nonuniform fluids. J. Chem. Phys., 92, 6779–6785
CrossRef Google scholar
[12]
Zhang, M. Q. (1991) Exact response functions of a 2D fermion fluid. J. Math. Phys., 32, 1344–1349
CrossRef Google scholar
[13]
Zhang, M. Q. (1991) How to find the Lax Pairs from the Yang-Baxter equations. Commun. Math. Phys., 141, 523–531
CrossRef Google scholar
[14]
DeLisi, C. (1988) Computers in molecular biology: current applications and emerging trends. Science, 240, 47–52
CrossRef Pubmed Google scholar
[15]
Watson, J. D. (1990) The human genome project: past, present, and future. Science, 248, 44–49
CrossRef Pubmed Google scholar
[16]
Lander, E. S. and Waterman, M. S. (1988) Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics, 2, 231–239
CrossRef Pubmed Google scholar
[17]
Zhang, M. Q. and Marr, T. G. (1993) Genome mapping by nonrandom anchoring: a discrete theoretical analysis. Proc. Natl. Acad. Sci. USA, 90, 600–604
CrossRef Pubmed Google scholar
[18]
Zhang, M. Q. and Marr, T. G. (1994) Genome mapping with random anchored clones: A discrete theoretical analysis. J. Stat. Phys., 73, 611–623
CrossRef Google scholar
[19]
Zhang, M. Q. and Marr, T. G. (1994) Fission yeast gene structure and recognition. Nucleic Acids Res., 22, 1750–1759
CrossRef Pubmed Google scholar
[20]
Chen, T. and Zhang, M. Q. (1998) Pombe: A gene-finding and exon-intron structure prediction system for fission yeast. Yeast, 14, 701–710
CrossRef Pubmed Google scholar
[21]
Zhang, M. Q. (1997) Identification of protein coding regions in the human genome by quadratic discriminant analysis. Proc. Natl. Acad. Sci. USA, 94, 565–568
CrossRef Pubmed Google scholar
[22]
Zhang, M. Q. (1998) Statistical features of human exons and their flanking regions. Hum. Mol. Genet., 7, 919–932
CrossRef Pubmed Google scholar
[23]
Liu, H. X., Zhang, M. and Krainer, A. R. (1998) Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev., 12, 1998–2012
CrossRef Pubmed Google scholar
[24]
Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D. and Futcher, B. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell, 9, 3273–3297
CrossRef Pubmed Google scholar
[25]
Karlin, S. and Altschul, S. F. (1990) Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA, 87, 2264–2268
CrossRef Pubmed Google scholar
[26]
Burge, C. and Karlin, S. (1997) Prediction of complete gene structures in human genomic DNA. J. Mol. Biol., 268, 78–94
CrossRef Pubmed Google scholar
[27]
Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467–470
CrossRef Pubmed Google scholar
[28]
Lashkari, D. A., DeRisi, J. L., McCusker, J. H., Namath, A. F., Gentile, C., Hwang, S. Y., Brown, P. O. and Davis, R. W. (1997) Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc. Natl. Acad. Sci. USA, 94, 13057–13062
CrossRef Pubmed Google scholar
[29]
Getz, G., Levine, E., Domany, E. and Zhang, M. Q. (2000) Super-paramagnetic clustering of yeast gene expression profiles. Physica A, 279, 457–464
CrossRef Google scholar
[30]
Gilbert, W. (1991) Towards a paradigm shift in biology. Nature, 349, 99
CrossRef Pubmed Google scholar
[31]
Pennisi, E. (2003) Human genome: A low number wins the genedweep pool. Science, 300, 1484.
[32]
Guigó, R., Birney, E., Brent, M., Dermitzakis, E., Pachter, L., Roest Crollius, H., Solovyev, V. and Zhang, M. Q. (2004) Needed for completion of the human genome: hypothesis driven experiments and biologically realistic mathematical models. arXiv, q-bio/0410008
[33]
Zhu, J. and Zhang, M. Q. (1999) SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics, 15, 607–611
CrossRef Pubmed Google scholar
[34]
Zhang, M. Q. (1999) Promoter analysis of co-regulated genes in the yeast genome. Comput. Chem., 23, 233–250
CrossRef Pubmed Google scholar
[35]
Lydall, D., Ammerer, G. and Nasmyth, K. (1991) A new role for MCM1 in yeast: cell cycle regulation of SW15 transcription. Genes Dev., 5, 2405–2419
CrossRef Pubmed Google scholar
[36]
Zhu, G., Spellman, P.T., Volpe, T., Brown, P.O., Botstein, D., Davis, T.N. and Futcher, B. (2000) Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 406, 90–94
[37]
Iyer, V. and Struhl, K. (1995) Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. EMBO J., 14, 2570–2579
CrossRef Pubmed Google scholar
[38]
Blat, Y. and Kleckner, N. (1999) Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell, 98, 249–259
CrossRef Pubmed Google scholar
[39]
Ren, B., Robert, F., Wyrick, J.J., Aparico, O., Jennings, E.G., Simon, I., Zeitlinger, J., Schreiber, J., Hannett, N., Kanin, E., (2000) Science Genome-wide location and function of DNA binding proteins. Science, 290, 2306–2309
[40]
Iyer, V. R., Horak, C. E., Scafe, C. S., Botstein, D., Snyder, M. and Brown, P. O. (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature, 409, 533–538
CrossRef Pubmed Google scholar
[41]
Simon, I., Barnett, J., Hannett, N., Harbison, C. T., Rinaldi, N. J., Volkert, T. L., Wyrick, J. J., Zeitlinger, J., Gifford, D. K., Jaakkola, T. S., (2001) Serial regulation of transcriptional regulators in the yeast cell cycle. Cell, 106, 697–708
CrossRef Pubmed Google scholar
[42]
Kato, M., Hata, N., Banerjee, N., Futcher, B. and Zhang, M. Q. (2004) Identifying combinatorial regulation of transcription factors and binding motifs. Genome Biol., 5, R56
CrossRef Pubmed Google scholar
[43]
Ioshikhes, I., Trifonov, E. N. and Zhang, M. Q. (1999) Periodical distribution of transcription factor sites in promoter regions and connection with chromatin structure. Proc. Natl. Acad. Sci. USA, 96, 2891–2895
CrossRef Pubmed Google scholar
[44]
Ioshikhes, I. P. and Zhang, M. Q. (2000) Large-scale human promoter mapping using CpG islands. Nat. Genet., 26, 61–63
CrossRef Pubmed Google scholar
[45]
Davuluri, R. V., Suzuki, Y., Sugano, S. and Zhang, M. Q. (2000) CART classification of human 5′ UTR sequences. Genome Res., 10, 1807–1816
CrossRef Pubmed Google scholar
[46]
Davuluri, R. V., Grosse, I. and Zhang, M. Q. (2001) Computational identification of promoters and first exons in the human genome. Nat. Genet., 29, 412–417
CrossRef Pubmed Google scholar
[47]
Kel, A. E., Kel-Margoulis, O. V., Farnham, P. J., Bartley, S. M., Wingender, E. and Zhang, M. Q. (2001) Computer-assisted identification of cell cycle-related genes: new targets for E2F transcription factors. J. Mol. Biol., 309, 99–120
CrossRef Pubmed Google scholar
[48]
Weinmann, A. S., Bartley, S. M., Zhang, T., Zhang, M. Q. and Farnham, P. J. (2001) Use of chromatin immunoprecipitation to clone novel E2F target promoters. Mol. Cell. Biol., 21, 6820–6832
CrossRef Pubmed Google scholar
[49]
Ren, B., Cam, H., Takahashi, Y., Volkert, T., Terragni, J., Young, R. A. and Dynlacht, B. D. (2002) E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev., 16, 245–256
CrossRef Pubmed Google scholar
[50]
Cawley, S., Bekiranov, S., Ng, H. H., Kapranov, P., Sekinger, E. A., Kampa, D., Piccolboni, A., Sementchenko,V., Cheng, J., Williams, A. J., (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell, 116, 499–509
CrossRef Pubmed Google scholar
[51]
Kim, T. H., Barrera, L. O., Zheng, M., Qu, C., Singer, M. A., Richmond, T. A., Wu, Y., Green, R. D. and Ren, B. (2005) A high-resolution map of active promoters in the human genome. Nature, 436, 876–880
CrossRef Pubmed Google scholar
[52]
Alkema, W. and Wasserman, W. W. (2003) Understanding the language of gene regulation. Genome Biol., 4, 327
CrossRef Pubmed Google scholar
[53]
Bussemaker, H. J., Li, H. and Siggia, E. D. (2001) Regulatory element detection using correlation with expression. Nat. Genet., 27, 167–171
CrossRef Pubmed Google scholar
[54]
Das, D., Banerjee, N. and Zhang, M. Q. (2004) Interacting models of cooperative gene regulation. Proc. Natl. Acad. Sci. USA, 101, 16234–16239
CrossRef Pubmed Google scholar
[55]
Das, D., Nahle, Z. and Zhang, M. Q. (2006) Adaptively inferring human transcriptional subnetworks. Mol. Sys. Biol., 2:2006.0029
[56]
Das, D. and Zhang, M. Q. (2007) Predictive Models of Gene Regulation: Application of Regression Methods to Microarray Data, ed. Korenberg, M., 377: 95, In: Methods in Molecular Biology. Springer
[57]
Sumazin, P., Chen, G., Hata, N., Smith,A. D., Zhang, T. and Zhang, M. Q. (2005) DWE: discriminating word enumerator. Bioinformatics, 21, 31–38
CrossRef Pubmed Google scholar
[58]
Smith, A. D., Sumazin, P. and Zhang, M. Q. (2005) Identifying tissue-selective transcription factor binding sites in vertebrate promoters. Proc. Natl. Acad. Sci. USA, 102, 1560–1565
CrossRef Pubmed Google scholar
[59]
Smith, A. D., Sumazin, P., Das, D. and Zhang, M. Q. (2005) Mining ChIP-chip data for transcription factor and cofactor binding sites. Bioinformatics, 21, i403–i412
CrossRef Pubmed Google scholar
[60]
Smith, A. D., Sumazin, P., Xuan, Z. and Zhang, M. Q. (2006) DNA motifs in human and mouse proximal promoters predict tissue-specific expression. Proc. Natl. Acad. Sci. USA, 103, 6275–6280
CrossRef Pubmed Google scholar
[61]
Smith, A. D., Sumazin, P. and Zhang, M. Q. (2007) Tissue-specific regulatory elements in mammalian promoters. Mol. Syst. Biol., 3, 73
CrossRef Pubmed Google scholar
[62]
Stamm, S., Zhang, M. Q., Marr, T. G. and Helfman, D. M. (1994) A sequence compilation and comparison of exons that are alternatively spliced in neurons. Nucleic Acids Res., 22, 1515–1526
CrossRef Pubmed Google scholar
[63]
Stamm, S., Zhu, J., Nakai, K., Stoilov,P., Stoss, O. and Zhang, M. Q. (2000) A database and statistical analysis of aternative exons. DNA Cell Biol., 19, 739–756
CrossRef Pubmed Google scholar
[64]
Zhang, M. Q. (2001) Discriminant analysis and its application in DNA sequence motif recognition. Brief. Bioinform., 1, 331–342
CrossRef Pubmed Google scholar
[65]
Wu, Q. and Maniatis, T. (1999) A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell, 97, 779–790
CrossRef Pubmed Google scholar
[66]
Wu, Q., Zhang, T., Cheng, J.-F., Kim, Y., Grimwood, J., Schmutz, J., Dickson, M., Noonan, J. P., Zhang, M. Q., Myers, R. M., (2001) Comparative DNA sequence analysis of mouse and human protocadherin gene clusters. Genome Res., 11, 389–404
CrossRef Pubmed Google scholar
[67]
Guo, Y., Xu, Q., Canzio, D., Shou, J., Li, J., Gorkin, D. U., Jung, I., Wu, H., Zhai, Y., Tang, Y., (2015) CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell, 162, 900–910
CrossRef Pubmed Google scholar
[68]
Prasanth, K. V., Prasanth, S. G., Xuan, Z., Hearn, S., Freier, S. M., Bennett, C. F., Zhang, M. Q., Spector, D. L. and Spector, D. L. (2005) Regulating gene expression through RNA nuclear retention. Cell, 123, 249–263
CrossRef Pubmed Google scholar
[69]
Bernard, D., Prasanth, K. V., Tripathi, V., Colasse, S., Nakamura, T., Xuan, Z., Zhang, M. Q., Sedel, F., Jourdren, L., Coulpier, F., (2010) A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J., 29, 3082–3093
CrossRef Pubmed Google scholar
[70]
Chen, G., Li, W., Zhang, Q.-S., Regulski, M., Sinha, N., Barditch, J., Tully, T., Krainer, A. R., Zhang, M. Q. and Dubnau, J. (2008) Identification of synaptic targets of Drosophila pumilio. PLOS Comput. Biol., 4, e1000026
CrossRef Pubmed Google scholar
[71]
Xie, P., Liu, Y., Li, Y., Zhang, M. Q. and Wang, X. (2014) MIROR: a method for cell-type specific microRNA occupancy rate prediction. Mol. Biosyst., 10, 1377–1384
CrossRef Pubmed Google scholar
[72]
Yuan, Y., Liu, B., Xie, P., Zhang,M. Q., Li, Y., Xie, Z. and Wang, X. (2015) Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit. Proc. Natl. Acad. Sci. USA, 112, 3158–3163
CrossRef Pubmed Google scholar
[73]
He, M., Liu, Y., Wang, X., Zhang, M. Q., Hannon, G. J. and Huang, Z. J. (2012) Cell-type-based analysis of microRNA profiles in the mouse brain. Neuron, 73, 35–48
CrossRef Pubmed Google scholar
[74]
Zhang, M. Q. and Marr, T. G. (1993) A weight array method for splicing signal analysis. Comput. Appl. Biosci., 9, 499–509
CrossRef Pubmed Google scholar
[75]
Cartegni, L., Wang, J., Zhu, Z., Zhang, M. Q. and Krainer, A. R. (2003) ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res., 31, 3568–3571
CrossRef Pubmed Google scholar
[76]
Zhang, C., Hastings, M. L., Krainer, A. R. and Zhang, M. Q. (2007) Dual-specificity splice sites function alternatively as 5′ and 3′ splice sites. Proc. Natl. Acad. Sci. USA, 104, 15028–15033
CrossRef Pubmed Google scholar
[77]
Zhang, C., Krainer, A. R. and Zhang, M. Q. (2007) Evolutionary impact of limited splicing fidelity in mammalian genes. Trends Genet., 23, 484–488
CrossRef Pubmed Google scholar
[78]
Zhang, C., Zhang, Z., Castle, J., Sun, S., Johnson, J., Krainer, A. R. and Zhang, M. Q. (2008) Defining the regulatory network of the tissue-specific splicing factors Fox-1 and Fox-2. Genes Dev., 22, 2550–2563
CrossRef Pubmed Google scholar
[79]
Weyn-Vanhentenryck, S., Sun, S., Yan, Q., Mele, A., Farny, N., Silver, Z., Zhang,M. Q., Krainer, A.R., Darnell, R.B. and Zhang, C. (2014) HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. Cell Rep., 6, 1139–1152
[80]
Castle, J. C., Zhang, C., Shah, J. K., Kulkarni, A. V., Cooper, T. A. and Johnson, J. M. (2008) Differential expression of 24,426 human alternative splicing events and predicted cis-regulation in 48 tissues. Nat. Genet., 40, 1416
CrossRef Pubmed Google scholar
[81]
Wu, J., Akerman, M., Sun, S., McCombie, W. R., Krainer, A. R. and Zhang, M. Q. (2011) SpliceTrap: a method to quantify alternative splicing under single cellular conditions. Bioinformatics, 27, 3010–3016
CrossRef Pubmed Google scholar
[82]
Wu, J., Anczuków, O., Krainer, A. R., Zhang, M. Q. and Zhang, C. (2013) OLego: fast and sensitive mapping of spliced mRNA-Seq reads using small seeds. Nucleic Acids Res., 41, 5149–5163
CrossRef Pubmed Google scholar
[83]
Akerman, M., Fregoso, O. I., Das, S., Ruse, C., Jensen, M. A., Pappin, D. J., Zhang, M. Q. and Krainer, A. R. (2015) Differential connectivity of splicing activators and repressors to the human spliceosome. Genome Biol., 16, 119
CrossRef Pubmed Google scholar
[84]
Rollins, R. A., Haghighi, F., Edwards, J. R., Das, R., Zhang, M. Q., Ju, J. and Bestor, T. H. (2006) Large-scale structure of genomic methylation patterns. Genome Res., 16, 157–163
CrossRef Pubmed Google scholar
[85]
Das, R., Dimitrova, N., Xuan, Z., Rollins, R. A., Haghighi, F., Edwards, J. R., Ju, J., Bestor, T. H. and Zhang, M. Q. (2006) Computational prediction of methylation status in human genomic sequences. Proc. Natl. Acad. Sci. USA, 103, 10713–10716
CrossRef Pubmed Google scholar
[86]
Hodges, E., Smith, A.D., Kendall, J., Xuan, Z., Ravi, K., Rooks, M., Zhang, M.Q., Ye, K., Bhattacharjee, A., Brizuela, L., (2009) High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. Genome Res., 19,1593–1605
[87]
Zhang, M. Q. and Smith, A. D. (2010) Challenges in understanding genome-wide DNA methylation. J. Comp. & Tech., 25, 26–34
CrossRef Google scholar
[88]
Harris, R. A., Wang, T., Coarfa, C., Nagarajan,R. P., Hong, C., Downey, S. L., Johnson, B. E., Fouse, S. D., Delaney, A., Zhao, Y., (2010) Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat. Biotechnol., 28, 1097–1105
CrossRef Pubmed Google scholar
[89]
Chung, W.-Y., Schmitz, R. J., Biorac, T., Ye, D., Dudas, M., Meredith, G. D., Adams, C. C., Ecker, J. R. and Zhang, M. Q. (2013) Constructing hepitypes: phasing local genotype and DNA methylation. JNSNE, 4, 335–346
CrossRef Google scholar
[90]
Wu, D., Gu, J. and Zhang, M. Q. (2013) FastDMA: an infinium humanmethylation450 beadchip analyzer. PLoS One, 8, e74275
CrossRef Pubmed Google scholar
[91]
Ma, X., Wang, Y. W., Zhang, M. Q. and Gazdar, A. F. (2013) DNA methylation data analysis and its application to cancer research. Epigenomics, 5, 301–316
CrossRef Pubmed Google scholar
[92]
Zhang, Y.A., Ma, X., Sathe, A., Fujimoto, J., Wistuba, I.I., Lam, S., Yatabe, Y., Wang, Y.W., Stastny V, Gao, B., (2016) Validation of SCT Methylation As a Hallmark Biomarker for Lung Cancers. J. Thorac. Oncol., 11, 346–360
[93]
Guo, W., Fiziev, P., Yan, W., Cokus, S., Sun, X., Zhang, M. Q., Chen, P. Y. and Pellegrini, M. (2013) BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC Genomics, 14, 774
CrossRef Pubmed Google scholar
[94]
Guo, W., Chung, W. Y., Qian, M., Pellegrini, M. and Zhang, M. Q. (2014) Characterizing the strand-specific distribution of non-CpG methylation in human pluripotent cells. Nucleic Acids Res., 42, 3009–3016
CrossRef Pubmed Google scholar
[95]
Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Peng, W., Zhang, M. Q., (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet., 40, 897–903
CrossRef Pubmed Google scholar
[96]
Xie, W., Schultz, M. D., Lister, R., Hou, Z., Rajagopal, N., Ray, P., Whitaker, J. W., Tian, S., Hawkins, R. D., Leung, D., (2013) Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell, 153, 1134–1148
CrossRef Pubmed Google scholar
[97]
Leung, D., Jung, I., Rajagopal, N., Schmitt, A., Selvaraj, S., Lee, A. Y., Yen, C. A., Lin, S., Lin, Y., Qiu,Y., (2015) Integrative analysis of haplotype-resolved epigenomes across human tissues. Nature, 518, 350–354
CrossRef Pubmed Google scholar
[98]
Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., Ziller, M. J., (2015) Integrative analysis of 111 reference human epigenomes. Nature, 518, 317–330
CrossRef Pubmed Google scholar
[99]
Zhao, X., Xuan, Z. and Zhang, M. Q. (2007) Boosting with stumps for predicting transcription start sites. Genome Biol., 8, R17
CrossRef Pubmed Google scholar
[100]
Wang, X., Xuan, Z., Zhao, X., Li, Y. and Zhang, M. Q. (2009) High-resolution human core-promoter prediction with CoreBoost_HM. Genome Res., 19, 266–275
CrossRef Pubmed Google scholar
[101]
Xing, H., Liao, W., Mo, Y. and Zhang, M. Q. (2012) A novel Bayesian change-point algorithm for genome-wide analysis of diverse ChIPseq data types. J. Vis. Exp., 70, e4273
[102]
Xing, H., Mo, Y., Liao, W. and Zhang, M. Q. (2012) Genomewide localization of protein-DNA binding and histone modification by BCP with ChIP-seq data. PLoS. Comput. Biol., 8, e1002613
[103]
Thomas, R., Thomas, S., Holloway, A. K. and Pollard, K. S. (2017) Features that define the best ChIP-seq peak calling algorithms. Brief Bioinform., 18, 441–450
Pubmed
[104]
Ouyang, W., Liao, W., Luo, C. T., Yin,N., Huse, M., Kim, M. V., Peng, M., Chan, P., Ma,Q., Mo, Y., (2012) Novel Foxo1-dependent transcriptional programs control T(reg) cell function. Nature, 491, 554–559
CrossRef Pubmed Google scholar
[105]
Xuan, Z. and Zhang, M. Q. (2005) From worm to human: bioinformatics approaches to identify FOXO target genes. Mech. Ageing Dev., 126, 209–215
CrossRef Pubmed Google scholar
[106]
Renault, V. M., Thekkat, P. U., Hoang, K. L., White, J. L., Brady, C. A., Kenzelmann Broz, D., Venturelli, O. S., Johnson, T. M., Oskoui, P. R., Xuan, Z., (2011) The pro-longevity gene FoxO3 is a direct target of the p53 tumor suppressor. Oncogene, 30, 3207–3221
CrossRef Pubmed Google scholar
[107]
Kim, T. H., Abdullaev, Z. K., Smith, A. D., Ching, K. A., Loukinov, D. I., Green, R. D., Zhang, M. Q., Lobanenkov,V. V. and Ren, B. (2007) Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell, 128, 1231–1245
CrossRef Pubmed Google scholar
[108]
Barrera, L. O., Li, Z., Smith, A. D., Arden, K. C., Cavenee, W. K., Zhang, M. Q., Green, R. D. and Ren, B. (2008) Genome-wide mapping and analysis of active promoters in mouse embryonic stem cells and adult organs. Genome Res., 18, 46–59
CrossRef Pubmed Google scholar
[109]
He, C., Zhang, M. Q. and Wang, X. (2015) MICC: an R package for identifying chromatin interactions from ChIA-PET data. Bioinformatics, 31, 3832–3834
CrossRef Pubmed Google scholar
[110]
Li, G., Chen, Y., Snyder, M. P. and Zhang, M. Q. (2017) ChIA-PET2: a versatile and flexible pipeline for ChIA-PET data analysis. Nucleic Acids Res., 45, e4
CrossRef Pubmed Google scholar
[111]
Djekidel, M. N., Liang, Z., Wang, Q., Hu, Z., Li, G., Chen, Y. and Zhang, M. Q. (2015) 3CPET: finding co-factor complexes from ChIA-PET data using a hierarchical Dirichlet process. Genome Biol., 16, 288
CrossRef Pubmed Google scholar
[112]
Djekidel, M. N., Chen, Y. and Zhang, M. Q. (2018) FIND: difFerential chromatin INteractions Detection using a spatial Poisson process. Genome Res., 28, 412–422
CrossRef Pubmed Google scholar
[113]
Chen, F., Li, G., Zhang, M. Q. and Chen, Y. (2018) HiCDB: a sensitive and robust method for detecting contact domain boundaries. Nucleic Acids Res., 46, 11239–11250
CrossRef Pubmed Google scholar
[114]
He, C., Wang, X., and Zhang, M. Q. (2014) Nucleosome eviction and multiple co-factor binding predict estrogen receoptor alpha associated long-range interactions. Nucleic Acids Res., 42, 6935–6944
[115]
Heidari, N., Phanstiel, D. H., He, C., Grubert, F., Jahanbani, F., Kasowski, M., Zhang, M. Q. and Snyder, M.P. (2014) Genome-wide map of regulatory interactions in the human genome. Genome Res., 24, 1905–1917
[116]
Chen, Y., Wang, Y., Xuan, Z., Chen, M. and Zhang, M. Q. (2016) De novo deciphering three-dimensional chromatin interaction and topological domains by wavelet transformation of epigenetic profiles. Nucleic Acids Res., 44, e106
CrossRef Pubmed Google scholar
[117]
Ramanand, S. G., Chen, Y., Yuan, J., Daescu,K., Lambros, M. B., Houlahan, K. E., Carreira, S., Yuan, W., Baek, G., Sharp, A., (2020) The landscape of RNA polymerase II-associated chromatin interactions in prostate cancer. J Clin Invest, 130, 3987–4005
Pubmed
[118]
Liu, X., Zhang, Y., Chen, Y., Li, M., Shao, Z., Zhang, M.Q. and Xu, J. (2018) CAPTURE: In situ analysis of chromatin composition of endogenous genomic loci by biotinylated dCas9. Curr. Protoc. Mol. Biol. 123, e64
[119]
Liu, X., Chen, Y., Zhang, Y., Liu,Y., Liu, N., Botten, G. A., Cao, H., Orkin, S. H., Zhang, M. Q. and Xu, J. (2020) Multiplexed capture of spatial configuration and temporal dynamics of locus-specific 3D chromatin by biotinylated dCas9. Genome Biol., 21, 59
CrossRef Pubmed Google scholar
[120]
Liang, Z., Li, G., Wang, Z., Djekidel,M. N., Li, Y., Qian, M. P.Zhang, M.Q. and Chen, Y. (2017) BL-Hi-C: efficient and sensitive approach for structural and regulatory chromatin interactions. Nat. Commun., 8, 1622
[121]
Xiao, R., Chen, J. Y., Liang, Z., Luo, D., Chen, G., Lu, Z. J., Chen, Y., Zhou, B., Li,H., Du, X., (2019) Pervasive chromatin-RNA binding protein interactions enable RNA-based regulation of transcription. Cell, 178, 107–121.e18
CrossRef Pubmed Google scholar
[122]
Chen, F. X., Xie, P., Collings, C. K., Cao, K., Aoi, Y., Marshall, S. A., Rendleman, E. J., Ugarenko,M., Ozark, P. A., Zhang, A., (2017) PAF1 regulation of promoter-proximal pause release via enhancer activation. Science, 357, 1294–1298
CrossRef Pubmed Google scholar
[123]
Kim, Y. J., Xie, P., Cao, L., Zhang, M.Q., and Kim, T.H. (2018) Global transcriptional activity dynamics reveal functional enhancer RNAs. Genome Res., 28, 1799–1811
[124]
Ni, Y., Cao, B., Ma, T., Niu,G., Huo, Y., Huang, J., Chen, D., Liu, Y., Yu,B., Zhang, M. Q., (2017) Super-resolution imaging of a 2.5 kb non-repetitive DNA in situ in the nuclear genome using molecular beacon probes. eLife, 6, e21660
CrossRef Pubmed Google scholar
[125]
Zhanghao, K., Chen, L., Yang, X., Wang, M., Jing, Z., Han, H., Zhang, M. Q., Jin, D., Gao, J. and Xi, P. (2016) Super-resolution dipole orientation mapping via polarization demodulation. Light Sci. Appl., 5, e16166
[126]
Shi, M., Gao, J. and Zhang, M. Q. (2017) Web3DMol: interactive protein structure visualization based on WebGL. Nucleic Acids Res., 45, W523–W527
CrossRef Pubmed Google scholar
[127]
Niu, J., Zhang, X., Li, G., Yan, P. X., Yan, Q., Dai, Q. H., Jin, D. Y., Shen, X. H., Wang, J. G., Zhang, M. Q., (2020) Novel cytogenetic method to image chromatin interactions with sub-kilobase resolution: Tn5-FISH. J. Genet. Genomics, 47, 123
CrossRef Pubmed Google scholar
[128]
Li, X., Chen, W., Chen, Y., Zhang, X., Gu, J. and Zhang, M. Q. (2017) Network embedding-based representation learning for single cell RNA-seq data. Nucleic Acids Res., 45, e166
CrossRef Pubmed Google scholar
[129]
Liu, Z., Lou, H., Xie, K., Wang, H., Chen, N., Aparicio, O. M., Zhang, M. Q., Jiang, R. and Chen, T. (2017) Reconstructing cell cycle pseudo time-series via single-cell transcriptome data. Nat. Commun., 8, 22
CrossRef Pubmed Google scholar
[130]
Xie, P., Gao, M., Wang, C., Zhang, J., Noel, P., Yang, C., Von Hoff, D., Han, H., Zhang, M. Q. and Lin, W. (2019) SuperCT: a supervised-learning framework for enhanced characterization of single-cell transcriptomic profiles. Nucleic Acids Res., 47, e48
CrossRef Pubmed Google scholar
[131]
Xiong, L., Xu, K., Tian, K., Shao,Y., Tang, L., Gao, G., Zhang, M., Jiang, T. and Zhang, Q. C. (2019) SCALE method for single-cell ATAC-seq analysis via latent feature extraction. Nat. Commun., 10, 4576
CrossRef Pubmed Google scholar
[132]
MacArthor, B. (2021) Truth and beauty in physics and biology. Nat. Phys., 17, 149–151
CrossRef Google scholar
[133]
Jiang, R., Zhang , X., and Zhang, M. Q., (2013) Basics of Bioinformatics: Lecture Notes of Graduate Summer School on Bioinformatics of China. Springer

ACKNOWLEDGEMENT

MQZ is supported by the Cecil H. and Ida Green Distinguished Chair in Systems Biology Science.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(620 KB)

Accesses

Citations

Detail

Sections
Recommended

/