Introduction to bioimaging-based spatial multi-omic novel methods

Yan Yan, Liheng Yang, Leyuan Meng, Haochen Su, Cheng Zhou, Le Yu, Zhengtu Li, Xu Zhang, Huihua Cai, Juntao Gao

PDF(4653 KB)
PDF(4653 KB)
Quant. Biol. ›› 2023, Vol. 11 ›› Issue (3) : 231-245. DOI: 10.15302/J-QB-023-0332
REVIEW
REVIEW

Introduction to bioimaging-based spatial multi-omic novel methods

Author information +
History +

Abstract

Background: Spatial multi-omics are demonstrated to be a powerful method to assist researchers on genetic studies. In this review, bioimaging-based spatial multi-omics techniques such as seqFISH+, merFISH, integrated DNA seqFISH+, DNA merFISH, and MINA are introduced along with each technique’s probe design, development, and imaging processes.

Results: seqFISH employed 4–5 fluorophores to barcode and conducted multiple rounds of hybridization, in order that mRNA can be identified through color-coding. seqFISH+ added 60 pseudo-color and distributed them equally into three channels to enhance imaging power, in order that i.e., 24,000 genes can be imaged in total. merFISH utilized 4 out 16 Hamming distance to innovatively provide a robust error-detecting method. MINA, a methodology combining merFISH (multiplexed error-robust fluorescence in situ hybridization) and chromosomal tracing, enabled multiplexed genomic architecture imaged in mammalian single cells. Optical reconstruction of chromatin architecture (ORCA) a method that could conduct DNA path tracing in nanoscale manner with kilobase resolution, an FISH variation that improved genetic resolution, enable high-precision fiducial registration and sequential imaging, and utilized Oligopaint probe to hybridize the short genomic region ranging from 2 to 10 kilobase. ORCA then prescribes these short section primary probes with individual barcodes to attach fluorophore and to be imaged.

Conclusion: This review concentrated on providing a comprehensive overview for these spatial-multi-omics techniques with the intention on helping researchers on selecting appropriate technique for their research.

Author summary

In this review, we introduced five different multiplex FISH methods used for image-based spatial multi-omics: seqFISH+, merFISH, DNA seqFISH+, DNA merFISH, and MINA. We provided a systematic collective perspective to review these FISH methods that could significantly benefit researchers on conducting their studies in the field. Our study provided an informative survey on these multiplex FISH methods. Therefore, this review would provide better understanding for researchers in the community to help them select the proper method, in order to understand the molecular mechanism in life sciences.

Graphical abstract

Keywords

FISH / multiplex FISH / super-resolution imaging / gene regulation

Cite this article

Download citation ▾
Yan Yan, Liheng Yang, Leyuan Meng, Haochen Su, Cheng Zhou, Le Yu, Zhengtu Li, Xu Zhang, Huihua Cai, Juntao Gao. Introduction to bioimaging-based spatial multi-omic novel methods. Quant. Biol., 2023, 11(3): 231‒245 https://doi.org/10.15302/J-QB-023-0332

References

[1]
Andersson,R., Gebhard,C., Miguel-Escalada,I., Hoof,I., Bornholdt,J., Boyd,M., Chen,Y., Zhao,X., Schmidl,C., Suzuki,T. . (2014). An atlas of active enhancers across human cell types and tissues. Nature, 507: 455–461
CrossRef Google scholar
[2]
BintuB.,Mateo L. J.,SuJ.Sinnott-ArmstrongN. A.,ParkerM.,KinrotS., YamayaK.,Boettiger A. N.. (2018) Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science. 362, eaau1783
[3]
Shah,S., Lubeck,E., Zhou,W. (2016). In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron, 92: 342–357
CrossRef Google scholar
[4]
Wang,X., Allen,W. E., Wright,M. A., Sylwestrak,E. L., Samusik,N., Vesuna,S., Evans,K., Liu,C., Ramakrishnan,C., Liu,J. . (2018). Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science, 361: eaat5691
CrossRef Google scholar
[5]
Guan,M., Wang,M., Zhanghao,K., Zhang,X., Li,M., Liu,W., Niu,J., Yang,X., Chen,L., Jing,Z. . (2022). Polarization modulation with optical lock-in detection reveals universal fluorescence anisotropy of subcellular structures in live cells. Light Sci. Appl., 11: 4
CrossRef Google scholar
[6]
Chen,L., Wang,M., Zhang,X., Zhang,M., Hu,Y., Shi,Z., Xi,P. (2019). Group-sparsity-based super-resolution dipole orientation mapping. IEEE Trans. Med. Imaging, 38: 2687–2694
CrossRef Google scholar
[7]
Yang,X., Zhanghao,K., Wang,H., Liu,Y., Wang,F., Zhang,X., Shi,K., Gao,J., Jin,D. (2016). Versatile application of fluorescent quantum dot labels in super-resolution fluorescence microscopy. ACS Photonics, 3: 1611–1618
CrossRef Google scholar
[8]
Zhanghao,K., Chen,L., Yang,X. Wang,M. Jing,Z. Han,H. Zhang,M. Q., Jin,D., Gao,J. (2016). Super-resolution dipole orientation mapping via polarization demodulation. Light Sci. Appl., 5: e16166
CrossRef Google scholar
[9]
Kishi,J. Y., Lapan,S. W., Beliveau,B. J., West,E. R., Zhu,A., Sasaki,H. M., Saka,S. K., Wang,Y., Cepko,C. L. (2019). SABER amplifies FISH: enhanced multiplexed imaging of RNA and DNA in cells and tissues. Nat. Methods, 16: 533–544
CrossRef Google scholar
[10]
Mota,A., Berezicki,S., Wernersson,E., Harbers,L., Li-Wang,X., Gradin,K., Peuckert,C., Crosetto,N. (2022). FRET-FISH probes chromatin compaction at individual genomic loci in single cells. Nat. Commun., 13: 6680
CrossRef Google scholar
[11]
Lyu,X. Deng,Y., Huang,X. Li,Z. Fang,G. Yang,D., Wang,F. Kang,W., Shen,E. Song,C. (2022). CRISPR FISHer enables high-sensitivity imaging of nonrepetitive DNA in living cells through phase separation-mediated signal amplification. Cell Res., 32: 969–981
CrossRef Google scholar
[12]
Banet,G., Bibi,O., Matouk,I., Ayesh,S., Laster,M., Kimber,K. M., Tykocinski,M., de Groot,N., Hochberg,A. (2000). Characterization of human and mouse H19 regulatory sequences. Mol. Biol. Rep., 27: 157–165
CrossRef Google scholar
[13]
Catena,R., Tiveron,C., Ronchi,A., Porta,S., Ferri,A., Tatangelo,L., Cavallaro,M., Favaro,R., Ottolenghi,S., Reinbold,R. . (2004). Conserved POU binding DNA sites in the Sox2 upstream enhancer regulate gene expression in embryonic and neural stem cells. J. Biol. Chem., 279: 41846–41857
CrossRef Google scholar
[14]
Krebsbach,P. H., Nakata,K., Bernier,S. M., Hatano,O., Miyashita,T., Rhodes,C. S. (1996). Identification of a minimum enhancer sequence for the type II collagen gene reveals several core sequence motifs in common with the link protein gene. J. Biol. Chem., 271: 4298–4303
CrossRef Google scholar
[15]
Chi,X., Chatterjee,P. K., Wilson,W. Zhang,S. Demayo,F. J. Schwartz,R. (2005). Complex cardiac Nkx2-5 gene expression activated by noggin-sensitive enhancers followed by chamber-specific modules. Proc. Natl. Acad. Sci. USA, 102: 13490–13495
CrossRef Google scholar
[16]
Danielian,P. S., Echelard,Y., Vassileva,G. McMahon,A. (1997). A 5.5-kb enhancer is both necessary and sufficient for regulation of Wnt-1 transcription in vivo. Dev. Biol., 192: 300–309
CrossRef Google scholar
[17]
StrachanT.Read A.. (2011). Human Molecular Genetics. New York: Garland Science/Taylor & Francis Group
[18]
Lubeck,E., Coskun,A. F., Zhiyentayev,T., Ahmad,M. (2014). Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods, 11: 360–361
CrossRef Google scholar
[19]
Eng,C. L., Lawson,M., Zhu,Q., Dries,R., Koulena,N., Takei,Y., Yun,J., Cronin,C., Karp,C., Yuan,G. . (2019). Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature, 568: 235–239
CrossRef Google scholar
[20]
ChenK. H.,Boettiger A. N.,MoffittJ. R.,WangS.. (2015) RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science, 348, aaa6090d
[21]
Moffitt,J. R., Hao,J., Bambah-Mukku,D., Lu,T., Dulac,C. (2016). High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. Proc. Natl. Acad. Sci. USA., 113: 14456–14461
CrossRef Google scholar
[22]
Liu,M., Yang,B., Hu,M., Radda,J. S. D., Chen,Y., Jin,S., Cheng,Y. (2021). Chromatin tracing and multiplexed imaging of nucleome architectures (MINA) and RNAs in single mammalian cells and tissue. Nat. Protoc., 16: 2667–2697
CrossRef Google scholar
[23]
Niu,J., Zhang,X., Li,G., Yan,P., Yan,Q., Dai,Q., Jin,D., Shen,X., Wang,J., Zhang,M. Q. . (2020). A novel cytogenetic method to image chromatin interactions at subkilobase resolution: Tn5 transposase-based fluorescence in situ hybridization. J. Genet. Genomics, 47: 727–735
CrossRef Google scholar
[24]
Jia,B. B., Jussila,A., Kern,C., Zhu,Q. (2023). A spatial genome aligner for resolving chromatin architectures from multiplexed DNA fish. Nat. Biotechnol., 41: 1004–1017
CrossRef Google scholar
[25]
Liu,M., Lu,Y., Yang,B., Chen,Y., Radda,J. S. D., Hu,M., Katz,S. G. (2020). Multiplexed imaging of nucleome architectures in single cells of mammalian tissue. Nat. Commun., 11: 2907
CrossRef Google scholar
[26]
Takei,Y., Yun,J., Zheng,S., Ollikainen,N., Pierson,N., White,J., Shah,S., Thomassie,J., Suo,S., Eng,C. L. . (2021). Integrated spatial genomics reveals global architecture of single nuclei. Nature, 590: 344–350
CrossRef Google scholar
[27]
Ni,Y., Cao,B., Ma,T., Niu,G., Huo,Y., Huang,J., Chen,D., Liu,Y., Yu,B., Zhang,M. Q. . (2017). Super-resolution imaging of a 2.5 kb non-repetitive DNA in situ in the nuclear genome using molecular beacon probes. eLife, 6: e21660
CrossRef Google scholar
[28]
Xie,S. Q., Lavitas,L. (2010). Cryofish: fluorescence in situ hybridization on ultrathin cryosections. Methods Mol. Biol., 659: 219–230
CrossRef Google scholar
[29]
BienkoM.,Crosetto N.,TeytelmanL.,KlemmS.,Itzkovitz S.. (2013) A versatile genome-scale PCR-based pipeline for high-definition DNA FISH. Nat. Methods. 10, 122–124
[30]
Beliveau,B. J., Joyce,E. F., Apostolopoulos,N., Yilmaz,F., Fonseka,C. Y., McCole,R. B., Chang,Y., Li,J. B., Senaratne,T. N., Williams,B. R. . (2012). Versatile design and synthesis platform for visualizing genomes with oligopaint FISH probes. Proc. Natl. Acad. Sci. USA, 109: 21301–21306
CrossRef Google scholar
[31]
Beliveau,B. J., Boettiger,A. N., Jungmann,R., McCole,R. B., Joyce,E. F., Kim-Kiselak,C., Bantignies,F., Fonseka,C. Y., Erceg,J. . (2015). Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using oligopaint FISH probes. Nat. Commun., 6: 7147
CrossRef Google scholar
[32]
Deng,W., Shi,X., Tjian,R., Lionnet,T. Singer,R. (2015). CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc. Natl. Acad. Sci. USA, 112: 11870–11875
CrossRef Google scholar
[33]
Wang,H., Nakamura,M., Abbott,T. R., Zhao,D., Luo,K., Yu,C., Nguyen,C. M., Lo,A., Daley,T. P., La Russa,M. . (2019). CRISPR-mediated live imaging of genome editing and transcription. Science, 365: 1301–1305
CrossRef Google scholar
[34]
Mateo,L. J., Murphy,S. E., Hafner,A., Cinquini,I. S., Walker,C. A. Boettiger,A. (2019). Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature, 568: 49–54
CrossRef Google scholar
[35]
Dandachi,N., Dietze,O. (2002). Chromogenic in situ hybridization: a novel approach to a practical and sensitive method for the detection of HER2 oncogene in archival human breast carcinoma. Lab. Invest., 82: 1007–1014
CrossRef Google scholar
[36]
Cuadrado,A., Golczyk,H. (2009). A novel, simple and rapid nondenaturing FISH (ND-FISH) technique for the detection of plant telomeres. Potential used and possible target structures detected. Chromosome Res., 17: 755–762
CrossRef Google scholar
[37]
Sekar,R., Pernthaler,A., Pernthaler,J., Warnecke,F., Posch,T. (2003). An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl. Environ. Microbiol., 69: 2928–2935
CrossRef Google scholar
[38]
van Krieken,J. (2009). New developments in the pathology of malignant lymphoma: a review of the literature published from August to November 2009. J. Hematop., 2: 245–251
CrossRef Google scholar
[39]
BayaniJ.Squire J.. (2004) Fluorescence in situ hybridization (FISH). Curr. Protoc. Cell Biol., 23, 22.24. 21–22.24. 52
[40]
Kallioniemi,A., Kallioniemi,O. Sudar,D., Rutovitz,D., Gray,J. W., Waldman,F. (1992). Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science, 258: 818–821
CrossRef Google scholar
[41]
Jackson,S. A., Wang,M. L., Goodman,H. M. (1998). Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome, 41: 566–572
CrossRef Google scholar
[42]
Rufer,N., Dragowska,W., Thornbury,G., Roosnek,E. Lansdorp,P. (1998). Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat. Biotechnol., 16: 743–747
CrossRef Google scholar
[43]
Chen,C., Hong,Y. Ontiveros,S. D., Egholm,M. Strauss,W. (1999). Single base discrimination of CENP-B repeats on mouse and human chromosomes with PNA-FISH. Mamm. Genome, 10: 13–18
CrossRef Google scholar
[44]
Koch,J. E., lvraa,S., Petersen,K. B., Gregersen,N. (1989). Oligonucleotide-priming methods for the chromosome-specific labelling of alpha satellite DNA in situ. Chromosoma, 98: 259–265
CrossRef Google scholar
[45]
Schwarzacher,T., Leitch,A., Bennett,M. D. (1989). In situ localization of parental genomes in a wide hybrid. Ann. Bot. (Lond.), 64: 315–324
CrossRef Google scholar
[46]
Yamamoto,M. (1989). Application of fluorescence in situ hybridization to molecular cytogenetics of wheat. Wheat Inf. Serv., 69: 30–32
[47]
Pardue,M. L. Gall,J. (1969). Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc. Natl. Acad. Sci. USA, 64: 600–604
CrossRef Google scholar
[48]
John,H. A., Birnstiel,M. L. Jones,K. (1969). RNA-DNA hybrids at the cytological level. Nature, 223: 582–587
CrossRef Google scholar
[49]
Femino,A. M., Fay,F. S., Fogarty,K. Singer,R. (1998). Visualization of single RNA transcripts in situ. Science, 280: 585–590
CrossRef Google scholar
[50]
Raj,A., van den Bogaard,P., Rifkin,S. A., van Oudenaarden,A. (2008). Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods, 5: 877–879
CrossRef Google scholar
[51]
Lubeck,E. (2012). Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat. Methods, 9: 743–748
CrossRef Google scholar
[52]
MoffittJ. R.. (2016) Rna imaging with multiplexed error-robust fluorescence in situ hybridization (merFISH). Methods Enzymol., 1–49
[53]
Lieberman-Aiden,E., van Berkum,N. L., Williams,L., Imakaev,M., Ragoczy,T., Telling,A., Amit,I., Lajoie,B. R., Sabo,P. J., Dorschner,M. O. . (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326: 289–293
CrossRef Google scholar
[54]
Quinodoz,S. A., Ollikainen,N., Tabak,B., Palla,A., Schmidt,J. M., Detmar,E., Lai,M. M., Shishkin,A. A., Bhat,P., Takei,Y. . (2018). Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell, 174: 744–757.e24
CrossRef Google scholar
[55]
SuJ.ZhengP., KinrotS. S.,BintuB.. (2020) Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell. 182, 1641–1659.e1626
[56]
Takei,Y., Shah,S., Harvey,S., Qi,L. S. (2017). Multiplexed dynamic imaging of genomic loci by combined CRISPR imaging and DNA sequential FISH. Biophys. J., 112: 1773–1776
CrossRef Google scholar
[57]
van Steensel,B. Belmont,A. (2017). Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell, 169: 780–791
CrossRef Google scholar
[58]
Lamond,A. I. Spector,D. (2003). Nuclear speckles: a model for nuclear organelles. Nat. Rev. Mol. Cell Biol., 4: 605–612
CrossRef Google scholar
[59]
Pederson,T. (2011). The nucleus introduced. Cold Spring Harb. Perspect. Biol., 3: a000521
CrossRef Google scholar
[60]
Ludwig,C. H. (2019). Mapping chromatin modifications at the single cell level. Development, 146: dev170217
CrossRef Google scholar
[61]
Shah,S., Takei,Y., Zhou,W., Lubeck,E., Yun,J., Eng,C. L., Koulena,N., Cronin,C., Karp,C., Liaw,E. J. . (2018). Dynamics and spatial genomics of the nascent transcriptome by intron seqfish. Cell, 174: 363–376.e16
CrossRef Google scholar
[62]
Singer,Z. S., Yong,J., Tischler,J., Hackett,J. A., Altinok,A., Surani,M. A., Cai,L. Elowitz,M. (2014). Dynamic heterogeneity and DNA methylation in embryonic stem cells. Mol. Cell, 55: 319–331
CrossRef Google scholar
[63]
Kolodziejczyk,A. A., Kim,J. K., Tsang,J. C., Ilicic,T., Henriksson,J., Natarajan,K. N., Tuck,A. C., Gao,X., hler,M., Liu,P. . (2015). Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell, 17: 471–485
CrossRef Google scholar
[64]
Hormoz,S., Singer,Z. S., Linton,J. M., Antebi,Y. E., Shraiman,B. I. Elowitz,M. (2016). Inferring cell-state transition dynamics from lineage trees and endpoint single-cell measurements. Cell Syst., 3: 419–433.e8
CrossRef Google scholar
[65]
Bonev,B., Mendelson Cohen,N., Szabo,Q., Fritsch,L., Papadopoulos,G. L., Lubling,Y., Xu,X., Lv,X., Hugnot,J. Tanay,A. . (2017). Multiscale 3D genome rewiring during mouse neural development. Cell, 171: 557–572.e24
CrossRef Google scholar
[66]
Wang,S., Su,J. Beliveau,B. J., Bintu,B., Moffitt,J. R., Wu,C. T. (2016). Spatial organization of chromatin domains and compartments in single chromosomes. Science, 353: 598–602
CrossRef Google scholar
[67]
Nguyen,H. Q., Chattoraj,S., Castillo,D., Nguyen,S. C., Nir,G., Lioutas,A., Hershberg,E. A., Martins,N. M. C., Reginato,P. L., Hannan,M. . (2020). 3D mapping and accelerated super-resolution imaging of the human genome using in situ sequencing. Nat. Methods, 17: 822–832
CrossRef Google scholar
[68]
Schmidt,R., Weihs,T., Wurm,C. A., Jansen,I., Rehman,J., Sahl,S. J. Hell,S. (2021). MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat. Commun., 12: 1478
CrossRef Google scholar
[69]
Wolf,D. E., Samarasekera,C. Swedlow,J. (2007). Quantitative analysis of digital microscope images. Methods Cell Biol., 81: 365–396
CrossRef Google scholar
[70]
Joglekar,A. P., Salmon,E. D. Bloom,K. (2008). Counting kinetochore protein numbers in budding yeast using genetically encoded fluorescent proteins. Methods Cell Biol., 85: 127–151
CrossRef Google scholar

COMPLIANCE WITH ETHICS GUIDELINES

Conflicts of interest The authors Yan Yan, Liheng Yang, Leyuan Meng, Haochen Su, Cheng Zhou, Le Yu, Zhengtu Li, Xu Zhang, Huihua Cai and Juntao Gao declare that they have no competing interests.
The article is a review and does not contain any human or animal subjects performed by any of the authors.

OPEN ACCESS

This article is licensed by the CC By under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2023 The Author(s). Published by Higher Education Press.
AI Summary AI Mindmap
PDF(4653 KB)

Accesses

Citations

Detail

Sections
Recommended

/