Introduction to bioimaging-based spatial multi-omic novel methods

Yan Yan , Liheng Yang , Leyuan Meng , Haochen Su , Cheng Zhou , Le Yu , Zhengtu Li , Xu Zhang , Huihua Cai , Juntao Gao

Quant. Biol. ›› 2023, Vol. 11 ›› Issue (3) : 231 -245.

PDF (4653KB)
Quant. Biol. ›› 2023, Vol. 11 ›› Issue (3) : 231 -245. DOI: 10.15302/J-QB-023-0332
REVIEW
REVIEW

Introduction to bioimaging-based spatial multi-omic novel methods

Author information +
History +
PDF (4653KB)

Abstract

Background: Spatial multi-omics are demonstrated to be a powerful method to assist researchers on genetic studies. In this review, bioimaging-based spatial multi-omics techniques such as seqFISH+, merFISH, integrated DNA seqFISH+, DNA merFISH, and MINA are introduced along with each technique’s probe design, development, and imaging processes.

Results: seqFISH employed 4–5 fluorophores to barcode and conducted multiple rounds of hybridization, in order that mRNA can be identified through color-coding. seqFISH+ added 60 pseudo-color and distributed them equally into three channels to enhance imaging power, in order that i.e., 24,000 genes can be imaged in total. merFISH utilized 4 out 16 Hamming distance to innovatively provide a robust error-detecting method. MINA, a methodology combining merFISH (multiplexed error-robust fluorescence in situ hybridization) and chromosomal tracing, enabled multiplexed genomic architecture imaged in mammalian single cells. Optical reconstruction of chromatin architecture (ORCA) a method that could conduct DNA path tracing in nanoscale manner with kilobase resolution, an FISH variation that improved genetic resolution, enable high-precision fiducial registration and sequential imaging, and utilized Oligopaint probe to hybridize the short genomic region ranging from 2 to 10 kilobase. ORCA then prescribes these short section primary probes with individual barcodes to attach fluorophore and to be imaged.

Conclusion: This review concentrated on providing a comprehensive overview for these spatial-multi-omics techniques with the intention on helping researchers on selecting appropriate technique for their research.

Graphical abstract

Keywords

FISH / multiplex FISH / super-resolution imaging / gene regulation

Cite this article

Download citation ▾
Yan Yan, Liheng Yang, Leyuan Meng, Haochen Su, Cheng Zhou, Le Yu, Zhengtu Li, Xu Zhang, Huihua Cai, Juntao Gao. Introduction to bioimaging-based spatial multi-omic novel methods. Quant. Biol., 2023, 11(3): 231-245 DOI:10.15302/J-QB-023-0332

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andersson,R., Gebhard,C., Miguel-Escalada,I., Hoof,I., Bornholdt,J., Boyd,M., Chen,Y., Zhao,X., Schmidl,C., Suzuki,T. . (2014). An atlas of active enhancers across human cell types and tissues. Nature, 507: 455–461

[2]

BintuB.,Mateo L. J.,SuJ.Sinnott-ArmstrongN. A.,ParkerM.,KinrotS., YamayaK.,Boettiger A. N.. (2018) Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science. 362, eaau1783

[3]

Shah,S., Lubeck,E., Zhou,W. (2016). In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron, 92: 342–357

[4]

Wang,X., Allen,W. E., Wright,M. A., Sylwestrak,E. L., Samusik,N., Vesuna,S., Evans,K., Liu,C., Ramakrishnan,C., Liu,J. . (2018). Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science, 361: eaat5691

[5]

Guan,M., Wang,M., Zhanghao,K., Zhang,X., Li,M., Liu,W., Niu,J., Yang,X., Chen,L., Jing,Z. . (2022). Polarization modulation with optical lock-in detection reveals universal fluorescence anisotropy of subcellular structures in live cells. Light Sci. Appl., 11: 4

[6]

Chen,L., Wang,M., Zhang,X., Zhang,M., Hu,Y., Shi,Z., Xi,P. (2019). Group-sparsity-based super-resolution dipole orientation mapping. IEEE Trans. Med. Imaging, 38: 2687–2694

[7]

Yang,X., Zhanghao,K., Wang,H., Liu,Y., Wang,F., Zhang,X., Shi,K., Gao,J., Jin,D. (2016). Versatile application of fluorescent quantum dot labels in super-resolution fluorescence microscopy. ACS Photonics, 3: 1611–1618

[8]

Zhanghao,K., Chen,L., Yang,X. Wang,M. Jing,Z. Han,H. Zhang,M. Q., Jin,D., Gao,J. (2016). Super-resolution dipole orientation mapping via polarization demodulation. Light Sci. Appl., 5: e16166

[9]

Kishi,J. Y., Lapan,S. W., Beliveau,B. J., West,E. R., Zhu,A., Sasaki,H. M., Saka,S. K., Wang,Y., Cepko,C. L. (2019). SABER amplifies FISH: enhanced multiplexed imaging of RNA and DNA in cells and tissues. Nat. Methods, 16: 533–544

[10]

Mota,A., Berezicki,S., Wernersson,E., Harbers,L., Li-Wang,X., Gradin,K., Peuckert,C., Crosetto,N. (2022). FRET-FISH probes chromatin compaction at individual genomic loci in single cells. Nat. Commun., 13: 6680

[11]

Lyu,X. Deng,Y., Huang,X. Li,Z. Fang,G. Yang,D., Wang,F. Kang,W., Shen,E. Song,C. (2022). CRISPR FISHer enables high-sensitivity imaging of nonrepetitive DNA in living cells through phase separation-mediated signal amplification. Cell Res., 32: 969–981

[12]

Banet,G., Bibi,O., Matouk,I., Ayesh,S., Laster,M., Kimber,K. M., Tykocinski,M., de Groot,N., Hochberg,A. (2000). Characterization of human and mouse H19 regulatory sequences. Mol. Biol. Rep., 27: 157–165

[13]

Catena,R., Tiveron,C., Ronchi,A., Porta,S., Ferri,A., Tatangelo,L., Cavallaro,M., Favaro,R., Ottolenghi,S., Reinbold,R. . (2004). Conserved POU binding DNA sites in the Sox2 upstream enhancer regulate gene expression in embryonic and neural stem cells. J. Biol. Chem., 279: 41846–41857

[14]

Krebsbach,P. H., Nakata,K., Bernier,S. M., Hatano,O., Miyashita,T., Rhodes,C. S. (1996). Identification of a minimum enhancer sequence for the type II collagen gene reveals several core sequence motifs in common with the link protein gene. J. Biol. Chem., 271: 4298–4303

[15]

Chi,X., Chatterjee,P. K., Wilson,W. Zhang,S. Demayo,F. J. Schwartz,R. (2005). Complex cardiac Nkx2-5 gene expression activated by noggin-sensitive enhancers followed by chamber-specific modules. Proc. Natl. Acad. Sci. USA, 102: 13490–13495

[16]

Danielian,P. S., Echelard,Y., Vassileva,G. McMahon,A. (1997). A 5.5-kb enhancer is both necessary and sufficient for regulation of Wnt-1 transcription in vivo. Dev. Biol., 192: 300–309

[17]

StrachanT.Read A.. (2011). Human Molecular Genetics. New York: Garland Science/Taylor & Francis Group

[18]

Lubeck,E., Coskun,A. F., Zhiyentayev,T., Ahmad,M. (2014). Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods, 11: 360–361

[19]

Eng,C. L., Lawson,M., Zhu,Q., Dries,R., Koulena,N., Takei,Y., Yun,J., Cronin,C., Karp,C., Yuan,G. . (2019). Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature, 568: 235–239

[20]

ChenK. H.,Boettiger A. N.,MoffittJ. R.,WangS.. (2015) RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science, 348, aaa6090d

[21]

Moffitt,J. R., Hao,J., Bambah-Mukku,D., Lu,T., Dulac,C. (2016). High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. Proc. Natl. Acad. Sci. USA., 113: 14456–14461

[22]

Liu,M., Yang,B., Hu,M., Radda,J. S. D., Chen,Y., Jin,S., Cheng,Y. (2021). Chromatin tracing and multiplexed imaging of nucleome architectures (MINA) and RNAs in single mammalian cells and tissue. Nat. Protoc., 16: 2667–2697

[23]

Niu,J., Zhang,X., Li,G., Yan,P., Yan,Q., Dai,Q., Jin,D., Shen,X., Wang,J., Zhang,M. Q. . (2020). A novel cytogenetic method to image chromatin interactions at subkilobase resolution: Tn5 transposase-based fluorescence in situ hybridization. J. Genet. Genomics, 47: 727–735

[24]

Jia,B. B., Jussila,A., Kern,C., Zhu,Q. (2023). A spatial genome aligner for resolving chromatin architectures from multiplexed DNA fish. Nat. Biotechnol., 41: 1004–1017

[25]

Liu,M., Lu,Y., Yang,B., Chen,Y., Radda,J. S. D., Hu,M., Katz,S. G. (2020). Multiplexed imaging of nucleome architectures in single cells of mammalian tissue. Nat. Commun., 11: 2907

[26]

Takei,Y., Yun,J., Zheng,S., Ollikainen,N., Pierson,N., White,J., Shah,S., Thomassie,J., Suo,S., Eng,C. L. . (2021). Integrated spatial genomics reveals global architecture of single nuclei. Nature, 590: 344–350

[27]

Ni,Y., Cao,B., Ma,T., Niu,G., Huo,Y., Huang,J., Chen,D., Liu,Y., Yu,B., Zhang,M. Q. . (2017). Super-resolution imaging of a 2.5 kb non-repetitive DNA in situ in the nuclear genome using molecular beacon probes. eLife, 6: e21660

[28]

Xie,S. Q., Lavitas,L. (2010). Cryofish: fluorescence in situ hybridization on ultrathin cryosections. Methods Mol. Biol., 659: 219–230

[29]

BienkoM.,Crosetto N.,TeytelmanL.,KlemmS.,Itzkovitz S.. (2013) A versatile genome-scale PCR-based pipeline for high-definition DNA FISH. Nat. Methods. 10, 122–124

[30]

Beliveau,B. J., Joyce,E. F., Apostolopoulos,N., Yilmaz,F., Fonseka,C. Y., McCole,R. B., Chang,Y., Li,J. B., Senaratne,T. N., Williams,B. R. . (2012). Versatile design and synthesis platform for visualizing genomes with oligopaint FISH probes. Proc. Natl. Acad. Sci. USA, 109: 21301–21306

[31]

Beliveau,B. J., Boettiger,A. N., Jungmann,R., McCole,R. B., Joyce,E. F., Kim-Kiselak,C., Bantignies,F., Fonseka,C. Y., Erceg,J. . (2015). Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using oligopaint FISH probes. Nat. Commun., 6: 7147

[32]

Deng,W., Shi,X., Tjian,R., Lionnet,T. Singer,R. (2015). CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc. Natl. Acad. Sci. USA, 112: 11870–11875

[33]

Wang,H., Nakamura,M., Abbott,T. R., Zhao,D., Luo,K., Yu,C., Nguyen,C. M., Lo,A., Daley,T. P., La Russa,M. . (2019). CRISPR-mediated live imaging of genome editing and transcription. Science, 365: 1301–1305

[34]

Mateo,L. J., Murphy,S. E., Hafner,A., Cinquini,I. S., Walker,C. A. Boettiger,A. (2019). Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature, 568: 49–54

[35]

Dandachi,N., Dietze,O. (2002). Chromogenic in situ hybridization: a novel approach to a practical and sensitive method for the detection of HER2 oncogene in archival human breast carcinoma. Lab. Invest., 82: 1007–1014

[36]

Cuadrado,A., Golczyk,H. (2009). A novel, simple and rapid nondenaturing FISH (ND-FISH) technique for the detection of plant telomeres. Potential used and possible target structures detected. Chromosome Res., 17: 755–762

[37]

Sekar,R., Pernthaler,A., Pernthaler,J., Warnecke,F., Posch,T. (2003). An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl. Environ. Microbiol., 69: 2928–2935

[38]

van Krieken,J. (2009). New developments in the pathology of malignant lymphoma: a review of the literature published from August to November 2009. J. Hematop., 2: 245–251

[39]

BayaniJ.Squire J.. (2004) Fluorescence in situ hybridization (FISH). Curr. Protoc. Cell Biol., 23, 22.24. 21–22.24. 52

[40]

Kallioniemi,A., Kallioniemi,O. Sudar,D., Rutovitz,D., Gray,J. W., Waldman,F. (1992). Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science, 258: 818–821

[41]

Jackson,S. A., Wang,M. L., Goodman,H. M. (1998). Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome, 41: 566–572

[42]

Rufer,N., Dragowska,W., Thornbury,G., Roosnek,E. Lansdorp,P. (1998). Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat. Biotechnol., 16: 743–747

[43]

Chen,C., Hong,Y. Ontiveros,S. D., Egholm,M. Strauss,W. (1999). Single base discrimination of CENP-B repeats on mouse and human chromosomes with PNA-FISH. Mamm. Genome, 10: 13–18

[44]

Koch,J. E., lvraa,S., Petersen,K. B., Gregersen,N. (1989). Oligonucleotide-priming methods for the chromosome-specific labelling of alpha satellite DNA in situ. Chromosoma, 98: 259–265

[45]

Schwarzacher,T., Leitch,A., Bennett,M. D. (1989). In situ localization of parental genomes in a wide hybrid. Ann. Bot. (Lond.), 64: 315–324

[46]

Yamamoto,M. (1989). Application of fluorescence in situ hybridization to molecular cytogenetics of wheat. Wheat Inf. Serv., 69: 30–32

[47]

Pardue,M. L. Gall,J. (1969). Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc. Natl. Acad. Sci. USA, 64: 600–604

[48]

John,H. A., Birnstiel,M. L. Jones,K. (1969). RNA-DNA hybrids at the cytological level. Nature, 223: 582–587

[49]

Femino,A. M., Fay,F. S., Fogarty,K. Singer,R. (1998). Visualization of single RNA transcripts in situ. Science, 280: 585–590

[50]

Raj,A., van den Bogaard,P., Rifkin,S. A., van Oudenaarden,A. (2008). Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods, 5: 877–879

[51]

Lubeck,E. (2012). Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat. Methods, 9: 743–748

[52]

MoffittJ. R.. (2016) Rna imaging with multiplexed error-robust fluorescence in situ hybridization (merFISH). Methods Enzymol., 1–49

[53]

Lieberman-Aiden,E., van Berkum,N. L., Williams,L., Imakaev,M., Ragoczy,T., Telling,A., Amit,I., Lajoie,B. R., Sabo,P. J., Dorschner,M. O. . (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326: 289–293

[54]

Quinodoz,S. A., Ollikainen,N., Tabak,B., Palla,A., Schmidt,J. M., Detmar,E., Lai,M. M., Shishkin,A. A., Bhat,P., Takei,Y. . (2018). Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell, 174: 744–757.e24

[55]

SuJ.ZhengP., KinrotS. S.,BintuB.. (2020) Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell. 182, 1641–1659.e1626

[56]

Takei,Y., Shah,S., Harvey,S., Qi,L. S. (2017). Multiplexed dynamic imaging of genomic loci by combined CRISPR imaging and DNA sequential FISH. Biophys. J., 112: 1773–1776

[57]

van Steensel,B. Belmont,A. (2017). Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell, 169: 780–791

[58]

Lamond,A. I. Spector,D. (2003). Nuclear speckles: a model for nuclear organelles. Nat. Rev. Mol. Cell Biol., 4: 605–612

[59]

Pederson,T. (2011). The nucleus introduced. Cold Spring Harb. Perspect. Biol., 3: a000521

[60]

Ludwig,C. H. (2019). Mapping chromatin modifications at the single cell level. Development, 146: dev170217

[61]

Shah,S., Takei,Y., Zhou,W., Lubeck,E., Yun,J., Eng,C. L., Koulena,N., Cronin,C., Karp,C., Liaw,E. J. . (2018). Dynamics and spatial genomics of the nascent transcriptome by intron seqfish. Cell, 174: 363–376.e16

[62]

Singer,Z. S., Yong,J., Tischler,J., Hackett,J. A., Altinok,A., Surani,M. A., Cai,L. Elowitz,M. (2014). Dynamic heterogeneity and DNA methylation in embryonic stem cells. Mol. Cell, 55: 319–331

[63]

Kolodziejczyk,A. A., Kim,J. K., Tsang,J. C., Ilicic,T., Henriksson,J., Natarajan,K. N., Tuck,A. C., Gao,X., hler,M., Liu,P. . (2015). Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell, 17: 471–485

[64]

Hormoz,S., Singer,Z. S., Linton,J. M., Antebi,Y. E., Shraiman,B. I. Elowitz,M. (2016). Inferring cell-state transition dynamics from lineage trees and endpoint single-cell measurements. Cell Syst., 3: 419–433.e8

[65]

Bonev,B., Mendelson Cohen,N., Szabo,Q., Fritsch,L., Papadopoulos,G. L., Lubling,Y., Xu,X., Lv,X., Hugnot,J. Tanay,A. . (2017). Multiscale 3D genome rewiring during mouse neural development. Cell, 171: 557–572.e24

[66]

Wang,S., Su,J. Beliveau,B. J., Bintu,B., Moffitt,J. R., Wu,C. T. (2016). Spatial organization of chromatin domains and compartments in single chromosomes. Science, 353: 598–602

[67]

Nguyen,H. Q., Chattoraj,S., Castillo,D., Nguyen,S. C., Nir,G., Lioutas,A., Hershberg,E. A., Martins,N. M. C., Reginato,P. L., Hannan,M. . (2020). 3D mapping and accelerated super-resolution imaging of the human genome using in situ sequencing. Nat. Methods, 17: 822–832

[68]

Schmidt,R., Weihs,T., Wurm,C. A., Jansen,I., Rehman,J., Sahl,S. J. Hell,S. (2021). MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat. Commun., 12: 1478

[69]

Wolf,D. E., Samarasekera,C. Swedlow,J. (2007). Quantitative analysis of digital microscope images. Methods Cell Biol., 81: 365–396

[70]

Joglekar,A. P., Salmon,E. D. Bloom,K. (2008). Counting kinetochore protein numbers in budding yeast using genetically encoded fluorescent proteins. Methods Cell Biol., 85: 127–151

RIGHTS & PERMISSIONS

The Author(s). Published by Higher Education Press.

AI Summary AI Mindmap
PDF (4653KB)

1941

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/