Introduction to bioimaging-based spatial multi-omic novel methods
Yan Yan, Liheng Yang, Leyuan Meng, Haochen Su, Cheng Zhou, Le Yu, Zhengtu Li, Xu Zhang, Huihua Cai, Juntao Gao
Introduction to bioimaging-based spatial multi-omic novel methods
Background: Spatial multi-omics are demonstrated to be a powerful method to assist researchers on genetic studies. In this review, bioimaging-based spatial multi-omics techniques such as seqFISH+, merFISH, integrated DNA seqFISH+, DNA merFISH, and MINA are introduced along with each technique’s probe design, development, and imaging processes.
Results: seqFISH employed 4–5 fluorophores to barcode and conducted multiple rounds of hybridization, in order that mRNA can be identified through color-coding. seqFISH+ added 60 pseudo-color and distributed them equally into three channels to enhance imaging power, in order that i.e., 24,000 genes can be imaged in total. merFISH utilized 4 out 16 Hamming distance to innovatively provide a robust error-detecting method. MINA, a methodology combining merFISH (multiplexed error-robust fluorescence in situ hybridization) and chromosomal tracing, enabled multiplexed genomic architecture imaged in mammalian single cells. Optical reconstruction of chromatin architecture (ORCA) a method that could conduct DNA path tracing in nanoscale manner with kilobase resolution, an FISH variation that improved genetic resolution, enable high-precision fiducial registration and sequential imaging, and utilized Oligopaint probe to hybridize the short genomic region ranging from 2 to 10 kilobase. ORCA then prescribes these short section primary probes with individual barcodes to attach fluorophore and to be imaged.
Conclusion: This review concentrated on providing a comprehensive overview for these spatial-multi-omics techniques with the intention on helping researchers on selecting appropriate technique for their research.
In this review, we introduced five different multiplex FISH methods used for image-based spatial multi-omics: seqFISH+, merFISH, DNA seqFISH+, DNA merFISH, and MINA. We provided a systematic collective perspective to review these FISH methods that could significantly benefit researchers on conducting their studies in the field. Our study provided an informative survey on these multiplex FISH methods. Therefore, this review would provide better understanding for researchers in the community to help them select the proper method, in order to understand the molecular mechanism in life sciences.
FISH / multiplex FISH / super-resolution imaging / gene regulation
[1] |
Andersson,R., Gebhard,C., Miguel-Escalada,I., Hoof,I., Bornholdt,J., Boyd,M., Chen,Y., Zhao,X., Schmidl,C., Suzuki,T.
CrossRef
Google scholar
|
[2] |
BintuB.,Mateo L. J.,SuJ.Sinnott-ArmstrongN. A.,ParkerM.,KinrotS., YamayaK.,Boettiger A. N.. (2018) Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science. 362, eaau1783
|
[3] |
Shah,S., Lubeck,E., Zhou,W. (2016). In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron, 92: 342–357
CrossRef
Google scholar
|
[4] |
Wang,X., Allen,W. E., Wright,M. A., Sylwestrak,E. L., Samusik,N., Vesuna,S., Evans,K., Liu,C., Ramakrishnan,C., Liu,J.
CrossRef
Google scholar
|
[5] |
Guan,M., Wang,M., Zhanghao,K., Zhang,X., Li,M., Liu,W., Niu,J., Yang,X., Chen,L., Jing,Z.
CrossRef
Google scholar
|
[6] |
Chen,L., Wang,M., Zhang,X., Zhang,M., Hu,Y., Shi,Z., Xi,P. (2019). Group-sparsity-based super-resolution dipole orientation mapping. IEEE Trans. Med. Imaging, 38: 2687–2694
CrossRef
Google scholar
|
[7] |
Yang,X., Zhanghao,K., Wang,H., Liu,Y., Wang,F., Zhang,X., Shi,K., Gao,J., Jin,D. (2016). Versatile application of fluorescent quantum dot labels in super-resolution fluorescence microscopy. ACS Photonics, 3: 1611–1618
CrossRef
Google scholar
|
[8] |
Zhanghao,K., Chen,L., Yang,X. Wang,M. Jing,Z. Han,H. Zhang,M. Q., Jin,D., Gao,J. (2016). Super-resolution dipole orientation mapping via polarization demodulation. Light Sci. Appl., 5: e16166
CrossRef
Google scholar
|
[9] |
Kishi,J. Y., Lapan,S. W., Beliveau,B. J., West,E. R., Zhu,A., Sasaki,H. M., Saka,S. K., Wang,Y., Cepko,C. L. (2019). SABER amplifies FISH: enhanced multiplexed imaging of RNA and DNA in cells and tissues. Nat. Methods, 16: 533–544
CrossRef
Google scholar
|
[10] |
Mota,A., Berezicki,S., Wernersson,E., Harbers,L., Li-Wang,X., Gradin,K., Peuckert,C., Crosetto,N. (2022). FRET-FISH probes chromatin compaction at individual genomic loci in single cells. Nat. Commun., 13: 6680
CrossRef
Google scholar
|
[11] |
Lyu,X. Deng,Y., Huang,X. Li,Z. Fang,G. Yang,D., Wang,F. Kang,W., Shen,E. Song,C. (2022). CRISPR FISHer enables high-sensitivity imaging of nonrepetitive DNA in living cells through phase separation-mediated signal amplification. Cell Res., 32: 969–981
CrossRef
Google scholar
|
[12] |
Banet,G., Bibi,O., Matouk,I., Ayesh,S., Laster,M., Kimber,K. M., Tykocinski,M., de Groot,N., Hochberg,A. (2000). Characterization of human and mouse H19 regulatory sequences. Mol. Biol. Rep., 27: 157–165
CrossRef
Google scholar
|
[13] |
Catena,R., Tiveron,C., Ronchi,A., Porta,S., Ferri,A., Tatangelo,L., Cavallaro,M., Favaro,R., Ottolenghi,S., Reinbold,R.
CrossRef
Google scholar
|
[14] |
Krebsbach,P. H., Nakata,K., Bernier,S. M., Hatano,O., Miyashita,T., Rhodes,C. S. (1996). Identification of a minimum enhancer sequence for the type II collagen gene reveals several core sequence motifs in common with the link protein gene. J. Biol. Chem., 271: 4298–4303
CrossRef
Google scholar
|
[15] |
Chi,X., Chatterjee,P. K., Wilson,W. Zhang,S. Demayo,F. J. Schwartz,R. (2005). Complex cardiac Nkx2-5 gene expression activated by noggin-sensitive enhancers followed by chamber-specific modules. Proc. Natl. Acad. Sci. USA, 102: 13490–13495
CrossRef
Google scholar
|
[16] |
Danielian,P. S., Echelard,Y., Vassileva,G. McMahon,A. (1997). A 5.5-kb enhancer is both necessary and sufficient for regulation of Wnt-1 transcription in vivo. Dev. Biol., 192: 300–309
CrossRef
Google scholar
|
[17] |
StrachanT.Read A.. (2011). Human Molecular Genetics. New York: Garland Science/Taylor & Francis Group
|
[18] |
Lubeck,E., Coskun,A. F., Zhiyentayev,T., Ahmad,M. (2014). Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods, 11: 360–361
CrossRef
Google scholar
|
[19] |
Eng,C. L., Lawson,M., Zhu,Q., Dries,R., Koulena,N., Takei,Y., Yun,J., Cronin,C., Karp,C., Yuan,G.
CrossRef
Google scholar
|
[20] |
ChenK. H.,Boettiger A. N.,MoffittJ. R.,WangS.. (2015) RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science, 348, aaa6090d
|
[21] |
Moffitt,J. R., Hao,J., Bambah-Mukku,D., Lu,T., Dulac,C. (2016). High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. Proc. Natl. Acad. Sci. USA., 113: 14456–14461
CrossRef
Google scholar
|
[22] |
Liu,M., Yang,B., Hu,M., Radda,J. S. D., Chen,Y., Jin,S., Cheng,Y. (2021). Chromatin tracing and multiplexed imaging of nucleome architectures (MINA) and RNAs in single mammalian cells and tissue. Nat. Protoc., 16: 2667–2697
CrossRef
Google scholar
|
[23] |
Niu,J., Zhang,X., Li,G., Yan,P., Yan,Q., Dai,Q., Jin,D., Shen,X., Wang,J., Zhang,M. Q.
CrossRef
Google scholar
|
[24] |
Jia,B. B., Jussila,A., Kern,C., Zhu,Q. (2023). A spatial genome aligner for resolving chromatin architectures from multiplexed DNA fish. Nat. Biotechnol., 41: 1004–1017
CrossRef
Google scholar
|
[25] |
Liu,M., Lu,Y., Yang,B., Chen,Y., Radda,J. S. D., Hu,M., Katz,S. G. (2020). Multiplexed imaging of nucleome architectures in single cells of mammalian tissue. Nat. Commun., 11: 2907
CrossRef
Google scholar
|
[26] |
Takei,Y., Yun,J., Zheng,S., Ollikainen,N., Pierson,N., White,J., Shah,S., Thomassie,J., Suo,S., Eng,C. L.
CrossRef
Google scholar
|
[27] |
Ni,Y., Cao,B., Ma,T., Niu,G., Huo,Y., Huang,J., Chen,D., Liu,Y., Yu,B., Zhang,M. Q.
CrossRef
Google scholar
|
[28] |
Xie,S. Q., Lavitas,L. (2010). Cryofish: fluorescence in situ hybridization on ultrathin cryosections. Methods Mol. Biol., 659: 219–230
CrossRef
Google scholar
|
[29] |
BienkoM.,Crosetto N.,TeytelmanL.,KlemmS.,Itzkovitz S.. (2013) A versatile genome-scale PCR-based pipeline for high-definition DNA FISH. Nat. Methods. 10, 122–124
|
[30] |
Beliveau,B. J., Joyce,E. F., Apostolopoulos,N., Yilmaz,F., Fonseka,C. Y., McCole,R. B., Chang,Y., Li,J. B., Senaratne,T. N., Williams,B. R.
CrossRef
Google scholar
|
[31] |
Beliveau,B. J., Boettiger,A. N., Jungmann,R., McCole,R. B., Joyce,E. F., Kim-Kiselak,C., Bantignies,F., Fonseka,C. Y., Erceg,J.
CrossRef
Google scholar
|
[32] |
Deng,W., Shi,X., Tjian,R., Lionnet,T. Singer,R. (2015). CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc. Natl. Acad. Sci. USA, 112: 11870–11875
CrossRef
Google scholar
|
[33] |
Wang,H., Nakamura,M., Abbott,T. R., Zhao,D., Luo,K., Yu,C., Nguyen,C. M., Lo,A., Daley,T. P., La Russa,M.
CrossRef
Google scholar
|
[34] |
Mateo,L. J., Murphy,S. E., Hafner,A., Cinquini,I. S., Walker,C. A. Boettiger,A. (2019). Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature, 568: 49–54
CrossRef
Google scholar
|
[35] |
Dandachi,N., Dietze,O. (2002). Chromogenic in situ hybridization: a novel approach to a practical and sensitive method for the detection of HER2 oncogene in archival human breast carcinoma. Lab. Invest., 82: 1007–1014
CrossRef
Google scholar
|
[36] |
Cuadrado,A., Golczyk,H. (2009). A novel, simple and rapid nondenaturing FISH (ND-FISH) technique for the detection of plant telomeres. Potential used and possible target structures detected. Chromosome Res., 17: 755–762
CrossRef
Google scholar
|
[37] |
Sekar,R., Pernthaler,A., Pernthaler,J., Warnecke,F., Posch,T. (2003). An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl. Environ. Microbiol., 69: 2928–2935
CrossRef
Google scholar
|
[38] |
van Krieken,J. (2009). New developments in the pathology of malignant lymphoma: a review of the literature published from August to November 2009. J. Hematop., 2: 245–251
CrossRef
Google scholar
|
[39] |
BayaniJ.Squire J.. (2004) Fluorescence in situ hybridization (FISH). Curr. Protoc. Cell Biol., 23, 22.24. 21–22.24. 52
|
[40] |
Kallioniemi,A., Kallioniemi,O. Sudar,D., Rutovitz,D., Gray,J. W., Waldman,F. (1992). Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science, 258: 818–821
CrossRef
Google scholar
|
[41] |
Jackson,S. A., Wang,M. L., Goodman,H. M. (1998). Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome, 41: 566–572
CrossRef
Google scholar
|
[42] |
Rufer,N., Dragowska,W., Thornbury,G., Roosnek,E. Lansdorp,P. (1998). Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat. Biotechnol., 16: 743–747
CrossRef
Google scholar
|
[43] |
Chen,C., Hong,Y. Ontiveros,S. D., Egholm,M. Strauss,W. (1999). Single base discrimination of CENP-B repeats on mouse and human chromosomes with PNA-FISH. Mamm. Genome, 10: 13–18
CrossRef
Google scholar
|
[44] |
Koch,J. E., lvraa,S., Petersen,K. B., Gregersen,N. (1989). Oligonucleotide-priming methods for the chromosome-specific labelling of alpha satellite DNA in situ. Chromosoma, 98: 259–265
CrossRef
Google scholar
|
[45] |
Schwarzacher,T., Leitch,A., Bennett,M. D. (1989). In situ localization of parental genomes in a wide hybrid. Ann. Bot. (Lond.), 64: 315–324
CrossRef
Google scholar
|
[46] |
Yamamoto,M. (1989). Application of fluorescence in situ hybridization to molecular cytogenetics of wheat. Wheat Inf. Serv., 69: 30–32
|
[47] |
Pardue,M. L. Gall,J. (1969). Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc. Natl. Acad. Sci. USA, 64: 600–604
CrossRef
Google scholar
|
[48] |
John,H. A., Birnstiel,M. L. Jones,K. (1969). RNA-DNA hybrids at the cytological level. Nature, 223: 582–587
CrossRef
Google scholar
|
[49] |
Femino,A. M., Fay,F. S., Fogarty,K. Singer,R. (1998). Visualization of single RNA transcripts in situ. Science, 280: 585–590
CrossRef
Google scholar
|
[50] |
Raj,A., van den Bogaard,P., Rifkin,S. A., van Oudenaarden,A. (2008). Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods, 5: 877–879
CrossRef
Google scholar
|
[51] |
Lubeck,E. (2012). Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat. Methods, 9: 743–748
CrossRef
Google scholar
|
[52] |
MoffittJ. R.. (2016) Rna imaging with multiplexed error-robust fluorescence in situ hybridization (merFISH). Methods Enzymol., 1–49
|
[53] |
Lieberman-Aiden,E., van Berkum,N. L., Williams,L., Imakaev,M., Ragoczy,T., Telling,A., Amit,I., Lajoie,B. R., Sabo,P. J., Dorschner,M. O.
CrossRef
Google scholar
|
[54] |
Quinodoz,S. A., Ollikainen,N., Tabak,B., Palla,A., Schmidt,J. M., Detmar,E., Lai,M. M., Shishkin,A. A., Bhat,P., Takei,Y.
CrossRef
Google scholar
|
[55] |
SuJ.ZhengP., KinrotS. S.,BintuB.. (2020) Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell. 182, 1641–1659.e1626
|
[56] |
Takei,Y., Shah,S., Harvey,S., Qi,L. S. (2017). Multiplexed dynamic imaging of genomic loci by combined CRISPR imaging and DNA sequential FISH. Biophys. J., 112: 1773–1776
CrossRef
Google scholar
|
[57] |
van Steensel,B. Belmont,A. (2017). Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell, 169: 780–791
CrossRef
Google scholar
|
[58] |
Lamond,A. I. Spector,D. (2003). Nuclear speckles: a model for nuclear organelles. Nat. Rev. Mol. Cell Biol., 4: 605–612
CrossRef
Google scholar
|
[59] |
Pederson,T. (2011). The nucleus introduced. Cold Spring Harb. Perspect. Biol., 3: a000521
CrossRef
Google scholar
|
[60] |
Ludwig,C. H. (2019). Mapping chromatin modifications at the single cell level. Development, 146: dev170217
CrossRef
Google scholar
|
[61] |
Shah,S., Takei,Y., Zhou,W., Lubeck,E., Yun,J., Eng,C. L., Koulena,N., Cronin,C., Karp,C., Liaw,E. J.
CrossRef
Google scholar
|
[62] |
Singer,Z. S., Yong,J., Tischler,J., Hackett,J. A., Altinok,A., Surani,M. A., Cai,L. Elowitz,M. (2014). Dynamic heterogeneity and DNA methylation in embryonic stem cells. Mol. Cell, 55: 319–331
CrossRef
Google scholar
|
[63] |
Kolodziejczyk,A. A., Kim,J. K., Tsang,J. C., Ilicic,T., Henriksson,J., Natarajan,K. N., Tuck,A. C., Gao,X., hler,M., Liu,P.
CrossRef
Google scholar
|
[64] |
Hormoz,S., Singer,Z. S., Linton,J. M., Antebi,Y. E., Shraiman,B. I. Elowitz,M. (2016). Inferring cell-state transition dynamics from lineage trees and endpoint single-cell measurements. Cell Syst., 3: 419–433.e8
CrossRef
Google scholar
|
[65] |
Bonev,B., Mendelson Cohen,N., Szabo,Q., Fritsch,L., Papadopoulos,G. L., Lubling,Y., Xu,X., Lv,X., Hugnot,J. Tanay,A.
CrossRef
Google scholar
|
[66] |
Wang,S., Su,J. Beliveau,B. J., Bintu,B., Moffitt,J. R., Wu,C. T. (2016). Spatial organization of chromatin domains and compartments in single chromosomes. Science, 353: 598–602
CrossRef
Google scholar
|
[67] |
Nguyen,H. Q., Chattoraj,S., Castillo,D., Nguyen,S. C., Nir,G., Lioutas,A., Hershberg,E. A., Martins,N. M. C., Reginato,P. L., Hannan,M.
CrossRef
Google scholar
|
[68] |
Schmidt,R., Weihs,T., Wurm,C. A., Jansen,I., Rehman,J., Sahl,S. J. Hell,S. (2021). MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat. Commun., 12: 1478
CrossRef
Google scholar
|
[69] |
Wolf,D. E., Samarasekera,C. Swedlow,J. (2007). Quantitative analysis of digital microscope images. Methods Cell Biol., 81: 365–396
CrossRef
Google scholar
|
[70] |
Joglekar,A. P., Salmon,E. D. Bloom,K. (2008). Counting kinetochore protein numbers in budding yeast using genetically encoded fluorescent proteins. Methods Cell Biol., 85: 127–151
CrossRef
Google scholar
|
/
〈 | 〉 |