Building digital life systems for future biology and medicine

Xuegong Zhang, Lei Wei, Rui Jiang, Xiaowo Wang, Jin Gu, Zhen Xie, Hairong Lv

PDF(2269 KB)
PDF(2269 KB)
Quant. Biol. ›› 2023, Vol. 11 ›› Issue (3) : 207-213. DOI: 10.15302/J-QB-023-0331
PERSPECTIVE
PERSPECTIVE

Building digital life systems for future biology and medicine

Author information +
History +

Abstract

The rapid development of biological technology (BT) and information technology (IT) especially of genomics and artificial intelligence (AI) is bringing great potential for revolutionizing future medicine. We propose the concept and framework of Digital Life Systems or dLife as a new paradigm to unleash this potential. It includes the multi-scale and multi-granule measure and representation of life in the digital space, the mathematical and/or computational modeling of the biology behind physiological and pathological processes, and ultimately cyber twins of healthy or diseased human body in the virtual space that can be used to simulate complex biological processes and deduce effects of medical treatments. We advocate that dLife is the route toward future AI precision medicine and should be the new paradigm for future biological and medical research.

Graphical abstract

Keywords

digital life systems / digital twin / aritificial intelligence / precision medicine

Cite this article

Download citation ▾
Xuegong Zhang, Lei Wei, Rui Jiang, Xiaowo Wang, Jin Gu, Zhen Xie, Hairong Lv. Building digital life systems for future biology and medicine. Quant. Biol., 2023, 11(3): 207‒213 https://doi.org/10.15302/J-QB-023-0331

References

[1]
Loukas, M., Hanna, M., Alsaiegh, N., Shoja, M. M. Tubbs, R. (2011). Clinical anatomy as practiced by ancient Egyptians. Clin. Anat., 24: 409–415
CrossRef Google scholar
[2]
Ford, B. (1982). Bacteria and cells of human origin on van Leeuwenhoek’s sections of 1674. Trans. Am. Microsc. Soc., 101: 1–9
CrossRef Google scholar
[3]
Kligfield, P. (2016). The Bicentennial of the Stethoscope: 1816 to 2016. Am. J. Cardiol., 118: 1601–1602
CrossRef Google scholar
[4]
Mould, R. (1995). The early history of X-ray diagnosis with emphasis on the contributions of physics 1895–1915. Phys. Med. Biol., 40: 1741–1787
CrossRef Google scholar
[5]
Fye, W. (1994). A history of the origin, evolution, and impact of electrocardiography. Am. J. Cardiol., 73: 937–949
CrossRef Google scholar
[6]
Stone, J. L. Hughes, J. (2013). Early history of electroencephalography and establishment of the American Clinical Neurophysiology Society. J. Clin. Neurophysiol., 30: 28–44
CrossRef Google scholar
[7]
Edler, I. Hertz, C. (2004). The use of ultrasonic reflectoscope for the continuous recording of the movements of heart walls. Clin. Physiol. Funct. Imaging, 24: 118–136
CrossRef Google scholar
[8]
Beckmann, E. (2006). CT scanning the early days. Br. J. Radiol., 79: 5–8
CrossRef Google scholar
[9]
Ai, T., Morelli, J. N., Hu, X., Hao, D., Goerner, F. L., Ager, B. Runge, V. (2012). A historical overview of magnetic resonance imaging, focusing on technological innovations. Invest. Radiol., 47: 725–741
CrossRef Google scholar
[10]
Riley, J. (2005). Estimates of regional and global life expectancy, 1800–2001. Popul. Dev. Rev., 31: 537–543
CrossRef Google scholar
[11]
Ellis, T. H. N., Hofer, J. M. I., Timmerman-Vaughan, G. M., Coyne, C. J. Hellens, R. (2011). Mendel, 150 years on. Trends Plant Sci., 16: 590–596
CrossRef Google scholar
[12]
Dahm, R. Discovering, D. N. (2008). Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Hum. Genet., 122: 565–581
CrossRef Google scholar
[13]
Thess, A., Hoerr, I., Panah, B. Y., Jung, G. (2021). Historic nucleic acids isolated by Friedrich Miescher contain RNA besides DNA. Biol. Chem., 402: 1179–1185
CrossRef Google scholar
[14]
Hartley, H. (1951). Origin of the word “protein”. Nature, 168: 244
CrossRef Google scholar
[15]
Watson, J. D. Crick, F. H. (1953). Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature, 171: 737–738
CrossRef Google scholar
[16]
Wu, R. (1970). Nucleotide sequence analysis of DNA. I. Partial sequence of the cohesive ends of bacteriophage lambda and 186 DNA. J. Mol. Biol., 51: 501–521
CrossRef Google scholar
[17]
Collins, F. S., Morgan, M. (2003). The Human Genome Project: lessons from large-scale biology. Science, 300: 286–290
CrossRef Google scholar
[18]
RegevA.,TeichmannS. A.,LanderE. S.,AmitI.,BenoistC.,BirneyE.,BodenmillerB.,CampbellP.,CarninciP.,ClatworthyM.,, (2017) The Human Cell Atlas. eLife, 6, e27041
[19]
HuBMAPConsortium. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature, 574,187–192
[20]
Chen, S., Luo, Y., Gao, H., Li, F., Chen, Y., Li, J., You, R., Hao, M., Bian, H., Xi, X. . (2022). hECA: the cell-centric assembly of a cell atlas. iScience, 25: 104318
CrossRef Google scholar
[21]
Vaduganathan, M., Mensah, G. A., Turco, J. V., Fuster, V. Roth, G. (2022). The global burden of cardiovascular diseases and risk: a compass for future health. J. Am. Coll. Cardiol., 80: 2361–2371
CrossRef Google scholar
[22]
Siegel, R. L., Miller, K. D., Fuchs, H. E. (2022). Cancer statistics, 2022. CA Cancer J. Clin., 72: 7–33
CrossRef Google scholar
[23]
Moor, M., Banerjee, O., Abad, Z. S. H., Krumholz, H. M., Leskovec, J., Topol, E. J. (2023). Foundation models for generalist medical artificial intelligence. Nature, 616: 259–265
CrossRef Google scholar
[24]
Committeeon the Learning Health Care System in America & Institute of Medicine. (2013) Best Care at Lower Cost: The Path to Continuously Learning Health Care in America. Washington (DC): National Academies Press
[25]
Li, J., Qiu, Z., Zhang, C., Chen, S., Wang, M., Meng, Q., Lu, H., Wei, L., Lv, H., Zhong, W. . (2022). ITHscore: comprehensive quantification of intra-tumor heterogeneity in NSCLC by multi-scale radiomic features. Eur. Radiol., 33: 893–903
CrossRef Google scholar
[26]
Yuan, Y., Liu, B., Xie, P., Zhang, M. Q., Li, Y., Xie, Z. (2015). Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit. Proc. Natl. Acad. Sci. USA, 112: 3158–3163
CrossRef Google scholar
[27]
Wei, L., Yuan, Y., Hu, T., Li, S., Cheng, T., Lei, J., Xie, Z., Zhang, M. Q. (2019). Regulation by competition: a hidden layer of gene regulatory network. Quant. Biol., 7: 110–121
CrossRef Google scholar
[28]
Huang, H., Liu, Y., Liao, W., Cao, Y., Liu, Q., Guo, Y., Lu, Y. (2019). Oncolytic adenovirus programmed by synthetic gene circuit for cancer immunotherapy. Nat. Commun., 10: 4801
CrossRef Google scholar
[29]
Wei, L., Li, S., Zhang, P., Hu, T., Zhang, M. Q., Xie, Z. (2021). Characterizing microRNA-mediated modulation of gene expression noise and its effect on synthetic gene circuits. Cell Rep., 36: 109573
CrossRef Google scholar
[30]
Demirel, H. O., Ahmed, S. Duffy, V. (2022). Digital human modeling: a review and reappraisal of origins, present, and expected future methods for representing humans computationally. Int. J. Hum. Comput. Interact., 38: 897–937
CrossRef Google scholar
[31]
Campbell, M. (2022). Digital self: the next evolution of the digital human. Computer, 55: 82–86
CrossRef Google scholar
[32]
Morris, R. W., Bean, C. A., Farber, G. K., Gallahan, D., Jakobsson, E., Liu, Y., Lyster, P. M., Peng, G. C. Y., Roberts, F. S., Twery, M. . (2005). Digital biology: an emerging and promising discipline. Trends Biotechnol., 23: 113–117
CrossRef Google scholar
[33]
Corral-Acero, J., Margara, F., Marciniak, M., Rodero, C., Loncaric, F., Feng, Y., Gilbert, A., Fernandes, J. F., Bukhari, H. A., Wajdan, A. . (2020). The “digital twin” to enable the vision of precision cardiology. Eur. Heart J., 41: 4556–4564
CrossRef Google scholar
[34]
Subramanian, K. (2020). Digital twin for drug discovery and development—the virtual liver. J. Indian Inst. Sci., 100: 653–662
CrossRef Google scholar
[35]
Masison, J., Beezley, J., Mei, Y., Ribeiro, H., Knapp, A. C., Sordo Vieira, L., Adhikari, B., Scindia, Y., Grauer, M., Helba, B. . (2021). A modular computational framework for medical digital twins. Proc. Natl. Acad. Sci. USA, 118: e2024287118
CrossRef Google scholar
[36]
Mussomeli, A., Parrott, A., Umbenhauer, B. (2020). Deloitte. TechTrends, 2020: 70–71

ACKNOWLEDGEMENTS

This work was partially supported by the National Natural Science Foundation of China (NSFC) (Nos. 61721003 and 62250005), the National Key R&D Program of China (No. 2021YFF1200900), and Tsinghua-Fuzhou Institute for Data Technology (No. TFIDT2021005).

COMPLIANCE WITH ETHICS GUIDELINES

Conflicts of interest The authors Xuegong Zhang, Lei Wei, Rui Jiang, Xiaowo Wang, Jin Gu, Zhen Xie, and Hairong Lv declare that they have no conflict of interest or financial conflicts to disclose.
This article is a perspective article and does not contain any human or animal subjects performed by any of the authors.

OPEN ACCESS

This article is licensed by the CC By under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2023 The Author(s). Published by Higher Education Press.
AI Summary AI Mindmap
PDF(2269 KB)

Accesses

Citations

Detail

Sections
Recommended

/