Building digital life systems for future biology and medicine
Xuegong Zhang, Lei Wei, Rui Jiang, Xiaowo Wang, Jin Gu, Zhen Xie, Hairong Lv
Building digital life systems for future biology and medicine
The rapid development of biological technology (BT) and information technology (IT) especially of genomics and artificial intelligence (AI) is bringing great potential for revolutionizing future medicine. We propose the concept and framework of Digital Life Systems or dLife as a new paradigm to unleash this potential. It includes the multi-scale and multi-granule measure and representation of life in the digital space, the mathematical and/or computational modeling of the biology behind physiological and pathological processes, and ultimately cyber twins of healthy or diseased human body in the virtual space that can be used to simulate complex biological processes and deduce effects of medical treatments. We advocate that dLife is the route toward future AI precision medicine and should be the new paradigm for future biological and medical research.
digital life systems / digital twin / aritificial intelligence / precision medicine
[1] |
Loukas, M., Hanna, M., Alsaiegh, N., Shoja, M. M. Tubbs, R. (2011). Clinical anatomy as practiced by ancient Egyptians. Clin. Anat., 24: 409–415
CrossRef
Google scholar
|
[2] |
Ford, B. (1982). Bacteria and cells of human origin on van Leeuwenhoek’s sections of 1674. Trans. Am. Microsc. Soc., 101: 1–9
CrossRef
Google scholar
|
[3] |
Kligfield, P. (2016). The Bicentennial of the Stethoscope: 1816 to 2016. Am. J. Cardiol., 118: 1601–1602
CrossRef
Google scholar
|
[4] |
Mould, R. (1995). The early history of X-ray diagnosis with emphasis on the contributions of physics 1895–1915. Phys. Med. Biol., 40: 1741–1787
CrossRef
Google scholar
|
[5] |
Fye, W. (1994). A history of the origin, evolution, and impact of electrocardiography. Am. J. Cardiol., 73: 937–949
CrossRef
Google scholar
|
[6] |
Stone, J. L. Hughes, J. (2013). Early history of electroencephalography and establishment of the American Clinical Neurophysiology Society. J. Clin. Neurophysiol., 30: 28–44
CrossRef
Google scholar
|
[7] |
Edler, I. Hertz, C. (2004). The use of ultrasonic reflectoscope for the continuous recording of the movements of heart walls. Clin. Physiol. Funct. Imaging, 24: 118–136
CrossRef
Google scholar
|
[8] |
Beckmann, E. (2006). CT scanning the early days. Br. J. Radiol., 79: 5–8
CrossRef
Google scholar
|
[9] |
Ai, T., Morelli, J. N., Hu, X., Hao, D., Goerner, F. L., Ager, B. Runge, V. (2012). A historical overview of magnetic resonance imaging, focusing on technological innovations. Invest. Radiol., 47: 725–741
CrossRef
Google scholar
|
[10] |
Riley, J. (2005). Estimates of regional and global life expectancy, 1800–2001. Popul. Dev. Rev., 31: 537–543
CrossRef
Google scholar
|
[11] |
Ellis, T. H. N., Hofer, J. M. I., Timmerman-Vaughan, G. M., Coyne, C. J. Hellens, R. (2011). Mendel, 150 years on. Trends Plant Sci., 16: 590–596
CrossRef
Google scholar
|
[12] |
Dahm, R. Discovering, D. N. (2008). Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Hum. Genet., 122: 565–581
CrossRef
Google scholar
|
[13] |
Thess, A., Hoerr, I., Panah, B. Y., Jung, G. (2021). Historic nucleic acids isolated by Friedrich Miescher contain RNA besides DNA. Biol. Chem., 402: 1179–1185
CrossRef
Google scholar
|
[14] |
Hartley, H. (1951). Origin of the word “protein”. Nature, 168: 244
CrossRef
Google scholar
|
[15] |
Watson, J. D. Crick, F. H. (1953). Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature, 171: 737–738
CrossRef
Google scholar
|
[16] |
Wu, R. (1970). Nucleotide sequence analysis of DNA. I. Partial sequence of the cohesive ends of bacteriophage lambda and 186 DNA. J. Mol. Biol., 51: 501–521
CrossRef
Google scholar
|
[17] |
Collins, F. S., Morgan, M. (2003). The Human Genome Project: lessons from large-scale biology. Science, 300: 286–290
CrossRef
Google scholar
|
[18] |
RegevA.,TeichmannS. A.,LanderE. S.,AmitI.,BenoistC.,BirneyE.,BodenmillerB.,CampbellP.,CarninciP.,ClatworthyM.,, (2017) The Human Cell Atlas. eLife, 6, e27041
|
[19] |
HuBMAPConsortium. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature, 574,187–192
|
[20] |
Chen, S., Luo, Y., Gao, H., Li, F., Chen, Y., Li, J., You, R., Hao, M., Bian, H., Xi, X.
CrossRef
Google scholar
|
[21] |
Vaduganathan, M., Mensah, G. A., Turco, J. V., Fuster, V. Roth, G. (2022). The global burden of cardiovascular diseases and risk: a compass for future health. J. Am. Coll. Cardiol., 80: 2361–2371
CrossRef
Google scholar
|
[22] |
Siegel, R. L., Miller, K. D., Fuchs, H. E. (2022). Cancer statistics, 2022. CA Cancer J. Clin., 72: 7–33
CrossRef
Google scholar
|
[23] |
Moor, M., Banerjee, O., Abad, Z. S. H., Krumholz, H. M., Leskovec, J., Topol, E. J. (2023). Foundation models for generalist medical artificial intelligence. Nature, 616: 259–265
CrossRef
Google scholar
|
[24] |
Committeeon the Learning Health Care System in America & Institute of Medicine. (2013) Best Care at Lower Cost: The Path to Continuously Learning Health Care in America. Washington (DC): National Academies Press
|
[25] |
Li, J., Qiu, Z., Zhang, C., Chen, S., Wang, M., Meng, Q., Lu, H., Wei, L., Lv, H., Zhong, W.
CrossRef
Google scholar
|
[26] |
Yuan, Y., Liu, B., Xie, P., Zhang, M. Q., Li, Y., Xie, Z. (2015). Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit. Proc. Natl. Acad. Sci. USA, 112: 3158–3163
CrossRef
Google scholar
|
[27] |
Wei, L., Yuan, Y., Hu, T., Li, S., Cheng, T., Lei, J., Xie, Z., Zhang, M. Q. (2019). Regulation by competition: a hidden layer of gene regulatory network. Quant. Biol., 7: 110–121
CrossRef
Google scholar
|
[28] |
Huang, H., Liu, Y., Liao, W., Cao, Y., Liu, Q., Guo, Y., Lu, Y. (2019). Oncolytic adenovirus programmed by synthetic gene circuit for cancer immunotherapy. Nat. Commun., 10: 4801
CrossRef
Google scholar
|
[29] |
Wei, L., Li, S., Zhang, P., Hu, T., Zhang, M. Q., Xie, Z. (2021). Characterizing microRNA-mediated modulation of gene expression noise and its effect on synthetic gene circuits. Cell Rep., 36: 109573
CrossRef
Google scholar
|
[30] |
Demirel, H. O., Ahmed, S. Duffy, V. (2022). Digital human modeling: a review and reappraisal of origins, present, and expected future methods for representing humans computationally. Int. J. Hum. Comput. Interact., 38: 897–937
CrossRef
Google scholar
|
[31] |
Campbell, M. (2022). Digital self: the next evolution of the digital human. Computer, 55: 82–86
CrossRef
Google scholar
|
[32] |
Morris, R. W., Bean, C. A., Farber, G. K., Gallahan, D., Jakobsson, E., Liu, Y., Lyster, P. M., Peng, G. C. Y., Roberts, F. S., Twery, M.
CrossRef
Google scholar
|
[33] |
Corral-Acero, J., Margara, F., Marciniak, M., Rodero, C., Loncaric, F., Feng, Y., Gilbert, A., Fernandes, J. F., Bukhari, H. A., Wajdan, A.
CrossRef
Google scholar
|
[34] |
Subramanian, K. (2020). Digital twin for drug discovery and development—the virtual liver. J. Indian Inst. Sci., 100: 653–662
CrossRef
Google scholar
|
[35] |
Masison, J., Beezley, J., Mei, Y., Ribeiro, H., Knapp, A. C., Sordo Vieira, L., Adhikari, B., Scindia, Y., Grauer, M., Helba, B.
CrossRef
Google scholar
|
[36] |
Mussomeli, A., Parrott, A., Umbenhauer, B. (2020). Deloitte. TechTrends, 2020: 70–71
|
/
〈 | 〉 |