High-throughput metabarcoding of SAR11 assemblages from the southwest Atlantic shelf and arid Patagonia: richness and associated rank abundance distributions
Leandro R. Jones, Julieta M. Manrique
High-throughput metabarcoding of SAR11 assemblages from the southwest Atlantic shelf and arid Patagonia: richness and associated rank abundance distributions
Background: Massively parallel sequencing of environmental DNA allows microbiological studies to be performed in greater detail than was possible with first-generation sequencing. For example, it facilitates the use of approaches hitherto largely applied to flora and fauna, such as rank abundance distribution (RAD) analyses.
Methods: Here, we set out to advance the knowledge on Ca. Pelagibacterales (SAR11) communities from southern South America using environmental sequences from the open ocean in the Argentine sea, the uncharted Engaño Bay, as well as a river and an oligohaline shallow lake from the Patagonian Steppe ecoregion. The structures of the SAR11 assemblages present in these ecosystems were dissected by direct and rarefaction-based estimates of species richness, and evaluations of the corresponding abundance distributions (ADs), which was addressed by RAD analyses.
Results: Microbial community composition analyses revealed that the studied SAR11 assemblages coexist with 27 bacterial phyla. SAR11 richness was in general very high, but ADs turned out to be highly uneven. The results were compatible with prior knowledge, and similar to that derived from point estimates of diversity. However, our comprehensive dissection allowed for more detailed quantitative comparisons to be made between the environments surveyed, and revealed differences regarding both richness and the underlying ADs.
Conclusions: Despite SAR11 assemblages being extremely rich, their ADs are very uneven. Richness and ADs can vary, not only between fresh and salt water, but also between oceanic and coastal marine environments. The obtained results provide insights on general topics such as adaptation and the contrast between marine and freshwater radiations.
The SAR11 clade is likely the most abundant microbial lineage on earth. Here, we provide detailed analyses of the group’s richness and AD in poorly studied Southern microbiomes. This requires whole community composition analyses to be performed, which are also provided in conjunction with the SAR11-specific studies. In this way, the work describes unknown aspects of the diversity of an outstanding bacterial lineage and novel data on remote and relatively little-studied microbial communities.
SAR11 / richness / species abundance distribution / rank abundance distribution / Patagonia / Argentina
[1] |
Falkowski,P. G., Fenchel,T. Delong,E. (2008). The microbial engines that drive earth’s biogeochemical cycles. Science, 320: 1034–1039
CrossRef
Google scholar
|
[2] |
Falkowski,P., Scholes,R. J., Boyle,E., Canadell,J., Canfield,D., Elser,J., Gruber,N., Hibbard,K., gberg,P., Linder,S.
CrossRef
Google scholar
|
[3] |
Pomeroy,L. Williams,P. Azam,F. (2007). The Microbial Loop. Oceanography (Wash. D.C.), 20: 28–33
CrossRef
Google scholar
|
[4] |
Jiao,N., Herndl,G. J., Hansell,D. A., Benner,R., Kattner,G., Wilhelm,S. W., Kirchman,D. L., Weinbauer,M. G., Luo,T., Chen,F.
CrossRef
Google scholar
|
[5] |
Giovannoni,S. J., Britschgi,T. B., Moyer,C. L. Field,K. (1990). Genetic diversity in Sargasso Sea bacterioplankton. Nature, 345: 60–63
CrossRef
Google scholar
|
[6] |
Amann,R. I., Ludwig,W. Schleifer,K. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev., 59: 143–169
CrossRef
Google scholar
|
[7] |
Cui,H., Li,Y. (2016). An overview of major metagenomic studies on human microbiomes in health and disease. Quant. Biol., 4: 192–206
CrossRef
Google scholar
|
[8] |
Lloyd,K. G., Steen,A. D., Ladau,J., Yin,J. (2018). Phylogenetically novel uncultured microbial cells dominate earth microbiomes. mSystems, 3: e00055–e18
CrossRef
Google scholar
|
[9] |
LegendreP.. and Legendre, L. (1998) Numerical Ecology. Amsterdam: Elsevier
|
[10] |
Giovannoni,S. (2017). SAR11 bacteria: the most abundant plankton in the oceans. Annu. Rev. Mar. Sci., 9: 231–255
CrossRef
Google scholar
|
[11] |
Haro-Moreno,J. M., Rodriguez-Valera,F., Rosselli,R., Martinez-Hernandez,F., Roda-Garcia,J. J., Gomez,M. L., Fornas,O., Martinez-Garcia,M. (2019). Ecogenomics of the SAR11 clade. Environ. Microbiol., 22: 1748–1763
CrossRef
Google scholar
|
[12] |
Wilhelm,L. J., Tripp,H. J., Givan,S. A., Smith,D. P. Giovannoni,S. (2007). Natural variation in SAR11 marine bacterioplankton genomes inferred from metagenomic data. Biol. Direct, 2: 27
CrossRef
Google scholar
|
[13] |
Delmont,T. O., Kiefl,E., Kilinc,O., Esen,O. C., Uysal,I., Giovannoni,S. Eren,A. (2019). Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. eLife, 8: e46497
CrossRef
Google scholar
|
[14] |
rez,M., Haro-Moreno,J. M., Coutinho,F. H., Martinez-Garcia,M. (2020). The evolutionary success of the marine bacterium SAR11 analyzed through a metagenomic perspective. mSystems, 5: e00605–e00620
CrossRef
Google scholar
|
[15] |
Kraemer,S., Ramachandran,A., Colatriano,D., Lovejoy,C. Walsh,D. (2020). Diversity and biogeography of SAR11 bacteria from the Arctic Ocean. ISME J., 14: 79–90
CrossRef
Google scholar
|
[16] |
Ngugi,D. K. (2012). Combined analyses of the ITS loci and the corresponding 16S rRNA genes reveal high micro- and macrodiversity of SAR11 populations in the Red Sea. PLoS One, 7: e50274
CrossRef
Google scholar
|
[17] |
Grote,J., Thrash,J. C., Huggett,M. J., Landry,Z. C., Carini,P., Giovannoni,S. J. (2012). Streamlining and core genome conservation among highly divergent members of the SAR11 clade. MBio, 3: e00252–e12
CrossRef
Google scholar
|
[18] |
Henson,M. W., Lanclos,V. C., Faircloth,B. C. Thrash,J. (2018). Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME J., 12: 1846–1860
CrossRef
Google scholar
|
[19] |
Cameron Thrash,J. C., Temperton,B., Swan,B. K., Landry,Z. C., Woyke,T., DeLong,E. F., Stepanauskas,R. Giovannoni,S. (2014). Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype. ISME J., 8: 1440–1451
CrossRef
Google scholar
|
[20] |
Carini,P., Van Mooy,B. A. S. V., Thrash,J. C., White,A., Zhao,Y., Campbell,E. O., Fredricks,H. F. Giovannoni,S. (2015). SAR11 lipid renovation in response to phosphate starvation. Proc. Natl. Acad. Sci. USA, 112: 7767–7772
CrossRef
Google scholar
|
[21] |
Paver,S. F., Muratore,D., Newton,R. J. Coleman,M. (2018). Reevaluating the salty divide: phylogenetic specificity of transitions between marine and freshwater systems. mSystems, 3: e00232–e18
CrossRef
Google scholar
|
[22] |
Herlemann,D. P., Woelk,J., Labrenz,M. (2014). Diversity and abundance of “Pelagibacterales” (SAR11) in the Baltic Sea salinity gradient. Syst. Appl. Microbiol., 37: 601–604
CrossRef
Google scholar
|
[23] |
Oh,S., Zhang,R., Wu,Q. L. Liu,W. (2014). Draft genome sequence of a novel SAR11 clade species abundant in a Tibetan Lake. Genome Announc., 2: e01137–e14
CrossRef
Google scholar
|
[24] |
Oh,S., Zhang,R., Wu,Q. L. Liu,W. (2016). Evolution and adaptation of SAR11 and Cyanobium in a saline Tibetan lake. Environ. Microbiol. Rep., 8: 595–604
CrossRef
Google scholar
|
[25] |
Logares,R., Brate,J., Heinrich,F., Shalchian-Tabrizi,K. (2009). Infrequent transitions between saline and fresh waters in one of the most abundant microbial lineages (SAR11). Mol. Biol. Evol., 27: 347–357
CrossRef
Google scholar
|
[26] |
Eiler,A., Mondav,R., Sinclair,L., Fernandez-Vidal,L., Scofield,D. G., Schwientek,P., Martinez-Garcia,M., Torrents,D., McMahon,K. D., Andersson,S. G.
CrossRef
Google scholar
|
[27] |
Latimer,A. M., Silander,J. A. Cowling,R. (2005). Neutral ecological theory reveals isolation and rapid speciation in a biodiversity hot spot. Science, 309: 1722–1725
CrossRef
Google scholar
|
[28] |
West,N. J., re,C., Manes,C. Catala,P., Scanlan,D. J. (2016). Distinct spatial patterns of SAR11, SAR86, and actinobacteria diversity along a transect in the ultra-oligotrophic South Pacific Ocean. Front. Microbiol., 7: 234
CrossRef
Google scholar
|
[29] |
Hellweger,F. L., van Sebille,E. Fredrick,N. (2014). Biogeographic patterns in ocean microbes emerge in a neutral agent-based model. Science, 345: 1346–1349
CrossRef
Google scholar
|
[30] |
ManriqueJ. M.JonesL.. (2017) Are ocean currents too slow to counteract SAR11 evolution? A next-generation sequencing, phylogeographic analysis. Mol. Phylogenet. Evol., 107, 324–337
|
[31] |
Vergin,K., Jhirad,N., Dodge,J., Carlson,C. (2017). Marine bacterioplankton consortia follow deterministic, non-neutral community assembly rules. Aquat. Microb. Ecol., 79: 165–175
CrossRef
Google scholar
|
[32] |
Dogliotti,A., Lutz,V. (2014). Estimation of primary production in the southern Argentine continental shelf and shelf-break regions using field and remote sensing data. Remote Sens. Environ., 140: 497–508
CrossRef
Google scholar
|
[33] |
PiccoloM. C.PerilloG. M.. (1999) The Argentina Estuaries: A Review. In: Estuaries of South America, Piccolo, M. C. & Perillo, G.M.E. (Ed.), Heidelberg: Springer
|
[34] |
Carbonell-Silletta,L., Cavallaro,A., Pereyra,D. A., Askenazi,J. O., Goldstein,G., Scholz,F. G. Bucci,S. (2022). Soil respiration and N-mineralization processes in the Patagonian steppe are more responsive to fertilization than to experimental precipitation increase. Plant Soil, 479: 405–422
CrossRef
Google scholar
|
[35] |
Derguy,M. R., Martinuzzi,S. (2022). Bioclimatic changes in ecoregions of southern South America: trends and projections based on Holdridge life zones. Austral Ecol., 47: 580–589
CrossRef
Google scholar
|
[36] |
MataloniG.Quintana R. D.,. (2022) Freshwaters and Wetlands of Patagonia. Springer International Publishing
|
[37] |
Matano,R. P., Palma,E. D. Piola,A. (2010). The influence of the Brazil and Malvinas Currents on the Southwestern Atlantic Shelf circulation. Ocean Sci., 6: 983–995
CrossRef
Google scholar
|
[38] |
Torres Alberto,M. L., Bodnariuk,N., Ivanovic,M., Saraceno,M. Acha,E. (2020). Dynamics of the confluence of Malvinas and Brazil currents, and a southern Patagonian spawning ground, explain recruitment fluctuations of the main stock of Illex argentinus. Fish. Oceanogr., 30: 127–141
CrossRef
Google scholar
|
[39] |
Giaccardi,L. I., Badenas,M. A., Jones,L. R. Manrique,J. (2022). Abundant microbes of surface sea waters of the uncharted Engaño Bay at the Atlantic Patagonian Coast: relevance of bacteria-sized photosynthetic eukaryotes. Aquat. Ecol., 56: 1217–1230
CrossRef
Google scholar
|
[40] |
Schloss,P. D., Westcott,S. L., Ryabin,T., Hall,J. R., Hartmann,M., Hollister,E. B., Lesniewski,R. A., Oakley,B. B., Parks,D. H., Robinson,C. J.
CrossRef
Google scholar
|
[41] |
Foster,Z. S. L., Sharpton,T. J. nwald,N. (2017). Metacoder: an R package for visualization and manipulation of community taxonomic diversity data. PLOS Comput. Biol., 13: e1005404
CrossRef
Google scholar
|
[42] |
OksanenJ.,Blanchet F. G.,FriendlyM.,KindtR.,LegendreP., McGlinnD.,Minchin P. R.,HaraR. B.,SimpsonG. L.,SolymosP.,. (2020) vegan: community ecology package, available on the website of cran.r-project
|
[43] |
R Core Team. (2022) R: a language and environment for statistical computing, R foundation for statistical computing, Vienna, Austria, available on the website of R-project
|
[44] |
QuensenJ.. (2019) QsRutils: R functions useful for community ecology, available on the website of GitHub
|
[45] |
Hurlbert,S. (1971). The nonconcept of species diversity: a critique and alternative parameters. Ecology, 52: 577–586
CrossRef
Google scholar
|
[46] |
KindtR.. (2005) Tree Diversity Analysis: A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies. Nairobi: World Agroforestry Centre (ICRAF)
|
[47] |
Saeedghalati,M., Farahpour,F., Budeus,B., Lange,A., Westendorf,A. M., Seifert,M., ppers,R. (2017). Quantitative comparison of abundance structures of generalized communities: from B-cell receptor repertoires to microbiomes. PLOS Comput. Biol., 13: e1005362
CrossRef
Google scholar
|
[48] |
SaeedghalatiM.,FarahpourF.. (2016) RADanalysis: normalization and study of rank abundance distributions. Available on the website of cran.R-project
|
/
〈 | 〉 |