From qualitative to quantitative: the state of the art and challenges for plant synthetic biology
Chenfei Tian, Jianhua Li, Yong Wang
From qualitative to quantitative: the state of the art and challenges for plant synthetic biology
Backgrounds: As an increasing number of synthetic switches and circuits have been created for plant systems and of synthetic products produced in plant chassis, plant synthetic biology is taking a strong foothold in agriculture and medicine. The ever-exploding data has also promoted the expansion of toolkits in this field. Genetic parts libraries and quantitative characterization approaches have been developed. However, plant synthetic biology is still in its infancy. The considerations for selecting biological parts to design and construct genetic circuits with predictable functions remain desired.
Results: In this article, we review the current biotechnological progresses in field of plant synthetic biology. Assembly standardization and quantitative approaches of genetic parts and genetic circuits are discussed. We also highlight the main challenges in the iterative cycles of design-build-test-learn for introducing novel traits into plants.
Conclusion: Plant synthetic biology promises to provide important solutions to many issues in agricultural production, human health care, and environmental sustainability. However, tremendous challenges exist in this field. For example, the quantitative characterization of genetic parts is limited; the orthogonality and the transfer functions of circuits are unpredictable; and also, the mathematical modeling-assisted circuits design still needs to improve predictability and reliability. These challenges are expected to be resolved in the near future as interests in this field are intensifying.
The flourishing plant science promotes the exploding number of data and the expansion of toolkits. Plant synthetic biology is still in its early stages and requires more quantitative and predictable study. Despite the challenges, some pioneering examples have been successfully demonstrated in model plants.
plant synthetic biology / quantitative characterization / genetic parts / genetic circuits
[1] |
Endy, D. (2005). Foundations for engineering biology. Nature, 438: 449–453
CrossRef
Google scholar
|
[2] |
Zhang, L., Chang, S. (2011). Synthetic biology: from the first synthetic cell to see its current situation and future development. Chin. Sci. Bull., 56: 229–237
CrossRef
Google scholar
|
[3] |
Fausther-Bovendo, H. (2021). Plant-made vaccines and therapeutics. Science, 373: 740–741
CrossRef
Google scholar
|
[4] |
Zhu, X., Liu, X., Liu, T., Wang, Y., Ahmed, N., Li, Z. (2021). Synthetic biology of plant natural products: from pathway elucidation to engineered biosynthesis in plant cells. Plant Commun., 2: 100229
CrossRef
Google scholar
|
[5] |
Jiao, Y., Han, Y., Yang, Q., Huang, Y., An, J., Yang, Y. (2021). Commercialization development trend of genetically modified maize and the enlightenment. Shengwu Jishu Tongbao (in Chinese), 37: 164–176
|
[6] |
Imamura, T., Isozumi, N., Higashimura, Y., Ohki, S. (2021). Production of ORF8 protein from SARS-CoV-2 using an inducible virus-mediated expression system in suspension-cultured tobacco BY-2 cells. Plant Cell Rep., 40: 433–436
CrossRef
Google scholar
|
[7] |
Diego-Martin, B., lez, B., Vazquez-Vilar, M., Selma, S., ndez, R., Gianoglio, S., ndez-Del-Carmen, A. (2020). Pilot production of SARS-CoV-2 related proteins in plants: a proof of concept for rapid repurposing of indoor farms into biomanufacturing facilities. Front. Plant Sci., 11: 612781
CrossRef
Google scholar
|
[8] |
Breitel, D., Brett, P., Alseekh, S., Fernie, A. R., Butelli, E. (2021). Metabolic engineering of tomato fruit enriched in L-DOPA. Metab. Eng., 65: 185–196
CrossRef
Google scholar
|
[9] |
Molina-Hidalgo, F. J., Vazquez-Vilar, M., Andrea, L., Demurtas, O. C., Fraser, P., Giuliano, G., Bock, R., ez, D. (2021). Engineering metabolism in nicotiana species: a promising future. Trends Biotechnol., 39: 901–913
CrossRef
Google scholar
|
[10] |
Akama, K., Kanetou, J., Shimosaki, S., Kawakami, K., Tsuchikura, S. (2009). Seed-specific expression of truncated OsGAD2 produces GABA-enriched rice grains that influence a decrease in blood pressure in spontaneously hypertensive rats. Transgenic Res., 18: 865–876
CrossRef
Google scholar
|
[11] |
Zhu, Q., Wang, B., Tan, J., Liu, T., Li, L. Liu, Y. (2019). Plant synthetic metabolic engineering for enhancing crop nutritional quality. Plant Commun., 1: 100017
CrossRef
Google scholar
|
[12] |
ller, K., Siegel, D., Rodriguez Jahnke, F., Gerrer, K., Wend, S., Decker, E. L., Reski, R., Weber, W. Zurbriggen, M. (2014). A red light-controlled synthetic gene expression switch for plant systems. Mol. Biosyst., 10: 1679–1688
CrossRef
Google scholar
|
[13] |
Chatelle, C., Ochoa-Fernandez, R., Engesser, R., Schneider, N., Beyer, H. M., Jones, A. R., Timmer, J., Zurbriggen, M. D. (2018). A green-light-responsive system for the control of transgene expression in mammalian and plant cells. ACS Synth. Biol., 7: 1349–1358
CrossRef
Google scholar
|
[14] |
Khakhar, A., Leydon, A. R., Lemmex, A. C., Klavins, E. Nemhauser, J. (2018). Synthetic hormone-responsive transcription factors can monitor and re-program plant development. eLife, 7: e34702
CrossRef
Google scholar
|
[15] |
Gomide, M. S., Sales, T. T., Barros, L. R. C., Limia, C. G., de Oliveira, M. A., Florentino, L. H., Barros, L. M. G., Robledo, M. L., Almeida, M. S. M.
CrossRef
Google scholar
|
[16] |
-Orts, J. M., Quijano-Rubio, A., Vazquez-Vilar, M., o-Bonillo, J., Moles-Casas, V., Selma, S., Gianoglio, S., Granell, A. (2020). A memory switch for plant synthetic biology based on the phage ϕC31 integration system. Nucleic Acids Res., 48: 3379–3394
CrossRef
Google scholar
|
[17] |
Lloyd, J. P. B., Ly, F., Gong, P., Pflueger, J., Swain, T., Pflueger, C., Fourie, E., Khan, M. A., Kidd, B. N. (2022). Synthetic memory circuits for stable cell reprogramming in plants. Nat. Biotechnol., 40: 1862–1872
CrossRef
Google scholar
|
[18] |
Brophy, J. A. N., Magallon, K. J., Duan, L., Zhong, V., Ramachandran, P., Kniazev, K. Dinneny, J. (2022). Synthetic genetic circuits as a means of reprogramming plant roots. Science, 377: 747–751
CrossRef
Google scholar
|
[19] |
Liu, J., Li, C. Q., Dong, Y., Yang, X. Wang, Y. (2018). Dosage imbalance of B- and C-class genes causes petaloid-stamen relating to F1 hybrid variation. BMC Plant Biol., 18: 341
CrossRef
Google scholar
|
[20] |
Dickinson, A. J., Zhang, J., Luciano, M., Wachsman, G., Sandoval, E., Schnermann, M., Dinneny, J. R. Benfey, P. (2021). A plant lipocalin promotes retinal-mediated oscillatory lateral root initiation. Science, 373: 1532–1536
CrossRef
Google scholar
|
[21] |
He, S., Yang, L., Ye, S., Lin, Y., Li, X., Wang, Y., Chen, G., Liu, G., Zhao, M., Zhao, X.
CrossRef
Google scholar
|
[22] |
Dreos, R., Ambrosini, G., Groux, R., rier, R. (2017). The eukaryotic promoter database in its 30th year: focus on non-vertebrate organisms. Nucleic Acids Res., 45: D51–D55
CrossRef
Google scholar
|
[23] |
Grau, J. Franco-Zorrilla, J. (2022). TDTHub, a web server tool for the analysis of transcription factor binding sites in plants. Plant J., 111: 1203–1215
CrossRef
Google scholar
|
[24] |
Kusunoki, K. Yamamoto, Y. (2017). Plant promoter database (PPDB). Methods Mol. Biol., 1533: 299–314
CrossRef
Google scholar
|
[25] |
Lescot, M., hais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res., 30: 325–327
CrossRef
Google scholar
|
[26] |
Kolar, K., Knobloch, C., Stork, H., (2018). OptoBase: a web platform for molecular optogenetics. ACS Synth. Biol., 7: 1825–1828
CrossRef
Google scholar
|
[27] |
Matys, V., Kel-Margoulis, O. V., Fricke, E., Liebich, I., Land, S., Barre-Dirrie, A., Reuter, I., Chekmenev, D., Krull, M., Hornischer, K.
CrossRef
Google scholar
|
[28] |
Moisseyev, G., Park, K., Cui, A., Freitas, D., Rajagopal, D., Konda, A. R., Martin-Olenski, M., Mcham, M., Liu, K., Du, Q.
CrossRef
Google scholar
|
[29] |
de Medeiros Oliveira, M., Bonadio, I., Lie de Melo, A., Mendes Souza, G. Durham, A. (2021). TSSFinder-fast and accurate ab initio prediction of the core promoter in eukaryotic genomes. Brief. Bioinform., 22: bbab198
CrossRef
Google scholar
|
[30] |
Shahmuradov, I. A., Gammerman, A. J., Hancock, J. M., Bramley, P. M. Solovyev, V. (2003). PlantProm: a database of plant promoter sequences. Nucleic Acids Res., 31: 114–117
CrossRef
Google scholar
|
[31] |
Solovyev, V. V., Shahmuradov, I. A. Salamov, A. (2010). Identification of promoter regions and regulatory sites. Methods Mol. Biol., 674: 57–83
CrossRef
Google scholar
|
[32] |
Shahmuradov, I. A. Solovyev, V. (2015). Nsite, NsiteH and NsiteM computer tools for studying transcription regulatory elements. Bioinformatics, 31: 3544–3545
CrossRef
Google scholar
|
[33] |
Yilmaz, A., Mejia-Guerra, M. K., Kurz, K., Liang, X., Welch, L. (2011). AGRIS: the Arabidopsis gene regulatory information server, an update. Nucleic Acids Res., 39: D1118–D1122
CrossRef
Google scholar
|
[34] |
Hehl, R., Norval, L., Romanov, A. (2016). Boosting AthaMap database content with data from protein binding microarrays. Plant Cell Physiol., 57: e4
CrossRef
Google scholar
|
[35] |
Shahmuradov, I. A., Solovyev, V. V. Gammerman, A. (2005). Plant promoter prediction with confidence estimation. Nucleic Acids Res., 33: 1069–1076
CrossRef
Google scholar
|
[36] |
Shahmuradov, I. A., Umarov, R. K. Solovyev, V. (2017). TSSPlant: a new tool for prediction of plant Pol II promoters. Nucleic Acids Res., 45: gkw1353
CrossRef
Google scholar
|
[37] |
Cai, Y. M., Kallam, K., Tidd, H., Gendarini, G., Salzman, A. Patron, N. (2020). Rational design of minimal synthetic promoters for plants. Nucleic Acids Res., 48: 11845–11856
CrossRef
Google scholar
|
[38] |
Duvick, J., Fu, A., Muppirala, U., Sabharwal, M., Wilkerson, M. D., Lawrence, C. J., Lushbough, C. (2008). PlantGDB: a resource for comparative plant genomics. Nucleic Acids Res., 36: D959–D965
CrossRef
Google scholar
|
[39] |
Liu, Y., Wang, Z., Wu, X., Zhu, J., Luo, H., Tian, D., Li, C., Luo, J., Zhao, W., Hao, H.
CrossRef
Google scholar
|
[40] |
Chen, F., Dong, W., Zhang, J., Guo, X., Chen, J., Wang, Z., Lin, Z., Tang, H. (2018). The sequenced angiosperm genomes and genome databases. Front. Plant Sci., 9: 418
CrossRef
Google scholar
|
[41] |
Yang, Y., Lee, J. H., Poindexter, M. R., Shao, Y., Liu, W., Lenaghan, S. C., Ahkami, A. H., Blumwald, E. Stewart, C. N. (2021). Rational design and testing of abiotic stress-inducible synthetic promoters from poplar cis-regulatory elements. Plant Biotechnol. J., 19: 1354–1369
CrossRef
Google scholar
|
[42] |
Pedro, D. L. F., Amorim, T. S., Varani, A., Guyot, R., Domingues, D. S. Paschoal, A. (2021). An atlas of plant transposable elements. F1000 Res., 10: 1194
CrossRef
Google scholar
|
[43] |
Clarke, L. J. Kitney, R. (2016). Synthetic biology in the UK—An outline of plans and progress. Synth. Syst. Biotechnol., 1: 243–257
CrossRef
Google scholar
|
[44] |
Chung, S. M., Frankman, E. L. (2005). A versatile vector system for multiple gene expression in plants. Trends Plant Sci., 10: 357–361
CrossRef
Google scholar
|
[45] |
Nakagawa, T., Kurose, T., Hino, T., Tanaka, K., Kawamukai, M., Niwa, Y., Toyooka, K., Matsuoka, K., Jinbo, T. (2007). Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J. Biosci. Bioeng., 104: 34–41
CrossRef
Google scholar
|
[46] |
Smolke, C. (2009). Building outside of the box: iGEM and the BioBricks foundation. Nat. Biotechnol., 27: 1099–1102
CrossRef
Google scholar
|
[47] |
KnightT.. (2003) Idempotent Vector Design for Standard Assembly of Biobricks. Cambridge: Mit Artificial Intelligence Laboratory; Mit Synthetic Biology Working Group
|
[48] |
Smedley, M. A. Harwood, W. (2015). Gateway®-compatible plant transformation vectors. Methods Mol. Biol., 1223: 3–16
CrossRef
Google scholar
|
[49] |
Karimi, M., Depicker, A. (2007). Recombinational cloning with plant gateway vectors. Plant Physiol., 145: 1144–1154
CrossRef
Google scholar
|
[50] |
Karimi, M., Bleys, A., Vanderhaeghen, R. (2007). Building blocks for plant gene assembly. Plant Physiol., 145: 1183–1191
CrossRef
Google scholar
|
[51] |
s-Bueno, M. D. M., Morao, A. K., Cayrel, A., Platre, M. P., Barberon, M., Caillieux, E., Colot, V., Jaillais, Y., Roudier, F. (2016). A versatile Multisite Gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis. Plant J., 85: 320–333
CrossRef
Google scholar
|
[52] |
Engler, C., Kandzia, R. (2008). A one pot, one step, precision cloning method with high throughput capability. PLoS One, 3: e3647
CrossRef
Google scholar
|
[53] |
Patron, N. J., Orzaez, D., Marillonnet, S., Warzecha, H., Matthewman, C., Youles, M., Raitskin, O., Leveau, A., Rogers, C.
CrossRef
Google scholar
|
[54] |
Engler, C., Youles, M., Gruetzner, R., Ehnert, T. M., Werner, S., Jones, J. D., Patron, N. J. (2014). A golden gate modular cloning toolbox for plants. ACS Synth. Biol., 3: 839–843
CrossRef
Google scholar
|
[55] |
Sarrion-PerdigonesA.,FalconiE.ZandalinasS.rezP.,ndez-del-CarmenA.,GranellA.. (2011) GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One. 6, e21622
|
[56] |
Sarrion-Perdigones, A., Vazquez-Vilar, M., Castelijns, B., Forment, J., Ziarsolo, P., Blanca, J., Granell, A. (2013). GoldenBraid 2. 0: a comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol., 162: 1618–1631
CrossRef
Google scholar
|
[57] |
Vazquez-Vilar, M., Quijano-Rubio, A., Fernandez-Del-Carmen, A., Sarrion-Perdigones, A., Ochoa-Fernandez, R., Ziarsolo, P., Blanca, J., Granell, A. (2017). GB3.0: a platform for plant bio-design that connects functional DNA elements with associated biological data. Nucleic Acids Res., 45: 2196–2209
CrossRef
Google scholar
|
[58] |
Vazquez-VilarM.,Garcia-CarpinteroV.,SelmaS.,. M., Sanchez-Vicente, J., Salazar-Sarasua, B., Ressa, A., de Paola, C., Ajenjo, M., Quintela, J. C., et al. (2021) The GB4.0 platform, an All-In-One tool for CRISPR/Cas-based multiplex genome engineering in plants. Front. Plant Sci., 12, 689937
|
[59] |
Vazquez-Vilar, M., Juarez, P., -Orts, J. M. (2022). Design of multiplexing CRISPR/Cas9 constructs for plant genome engineering using the GoldenBraid DNA assembly standard. Methods Mol. Biol., 2379: 27–44
CrossRef
Google scholar
|
[60] |
lez, B., Vazquez-Vilar, M., nchez-Vicente, J. (2022). Optimization of vectors and targeting strategies including GoldenBraid and genome editing tools: GoldenBraid assembly of multiplex CRISPR/Cas12a guide RNAs for gene editing in Nicotiana benthamiana. Methods Mol. Biol., 2480: 193–214
CrossRef
Google scholar
|
[61] |
Vemanna, R. S., Chandrashekar, B. K., Hanumantha Rao, H. M., Sathyanarayanagupta, S. K., Sarangi, K. S., Nataraja, K. N. (2013). A modified MultiSite gateway cloning strategy for consolidation of genes in plants. Mol. Biotechnol., 53: 129–138
CrossRef
Google scholar
|
[62] |
Shih, P. M., Vuu, K., Mansoori, N., Ayad, L., Louie, K. B., Bowen, B. P., Northen, T. R. (2016). A robust gene-stacking method utilizing yeast assembly for plant synthetic biology. Nat. Commun., 7: 13215
CrossRef
Google scholar
|
[63] |
Zhu, Q., Zeng, D., Yu, S., Cui, C., Li, J., Li, H., Chen, J., Zhang, R., Zhao, X., Chen, L.
CrossRef
Google scholar
|
[64] |
Zhu, Q., Yu, S., Zeng, D., Liu, H., Wang, H., Yang, Z., Xie, X., Shen, R., Tan, J., Li, H.
CrossRef
Google scholar
|
[65] |
Lin, L., Liu, Y. G., Xu, X. (2003). Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system. Proc. Natl. Acad. Sci. USA, 100: 5962–5967
CrossRef
Google scholar
|
[66] |
Zhao, Y., Han, J., Tan, J., Yang, Y., Li, S., Gou, Y., Luo, Y., Li, T., Xiao, W., Xue, Y.
CrossRef
Google scholar
|
[67] |
Altpeter, F., Springer, N. M., Bartley, L. E., Blechl, A. E., Brutnell, T. P., Citovsky, V., Conrad, L. J., Gelvin, S. B., Jackson, D. P., Kausch, A. P.
CrossRef
Google scholar
|
[68] |
Schaumberg, K. A., Antunes, M. S., Kassaw, T. K., Xu, W., Zalewski, C. S., Medford, J. I. (2016). Quantitative characterization of genetic parts and circuits for plant synthetic biology. Nat. Methods, 13: 94–100
CrossRef
Google scholar
|
[69] |
Matsuo, N., Minami, M., Maeda, T. (2001). Dual luciferase assay for monitoring transient gene expression in higher plants. Plant Biotechnol. (Tsukuba), 18: 71–75
CrossRef
Google scholar
|
[70] |
Jores, T., Tonnies, J., Dorrity, M. W., Cuperus, J. T., Fields, S. (2020). Identification of plant enhancers and their constituent elements by STARR-seq in tobacco leaves. Plant Cell, 32: 2120–2131
CrossRef
Google scholar
|
[71] |
Kim, Y. S., Johnson, G. D., Seo, J., Barrera, A., Cowart, T. N., Majoros, W. H., Ochoa, A., Allen, A. S. Reddy, T. (2021). Correcting signal biases and detecting regulatory elements in STARR-seq data. Genome Res., 31: 877–889
CrossRef
Google scholar
|
[72] |
Jores, T., Tonnies, J., Wrightsman, T., Buckler, E. S., Cuperus, J. T., Fields, S. (2021). Synthetic promoter designs enabled by a comprehensive analysis of plant core promoters. Nat. Plants, 7: 842–855
CrossRef
Google scholar
|
[73] |
Sun, J., He, N., Niu, L., Huang, Y., Shen, W., Zhang, Y., Li, L. (2019). Global quantitative mapping of enhancers in rice by STARR-seq. Genom. Proteom. Bioinf., 17: 140–153
CrossRef
Google scholar
|
[74] |
TianC.,ZhangY.,LiJ.. (2022) Benchmarking intrinsic promoters and terminators for plant synthetic biology research. BioDesign Research., 2022
|
[75] |
AndreouA. I.,NirkkoJ.,Ochoa-VillarrealM.. (2021) Mobius assembly for plant systems highlights promoter-terminator interaction in gene regulation. bioRxiv doi: 10.1101/2021.03.31.437819
|
[76] |
Gunadi, A., Rushton, P. J., Mchale, L. K., Gutek, A. H. Finer, J. (2016). Characterization of 40 soybean (Glycine max) promoters, isolated from across 5 thematic gene groups. Plant Cell Tissue Organ Cult., 127: 1–16
CrossRef
Google scholar
|
[77] |
Kakei, Y., Masuda, H., Nishizawa, N. K., Hattori, H. Aung, M. (2021). Elucidation of novel cis-regulatory elements and promoter structures involved in iron excess response mechanisms in rice using a bioinformatics approach. Front. Plant Sci., 12: 660303
CrossRef
Google scholar
|
[78] |
Kaur, A., Pati, P. K., Pati, A. M. Nagpal, A. (2017). In-silico analysis of cis-acting regulatory elements of pathogenesis-related proteins of Arabidopsis thaliana and Oryza sativa. PLoS One, 12: e0184523
CrossRef
Google scholar
|
[79] |
Schmitz, R. J., Grotewold, E. (2022). Cis-regulatory sequences in plants: their importance, discovery, and future challenges. Plant Cell, 34: 718–741
CrossRef
Google scholar
|
[80] |
Basu, D. South, P. (2022). Design and analysis of native photorespiration gene motifs of promoter untranslated region combinations under short term abiotic stress conditions. Front. Plant Sci., 13: 828729
CrossRef
Google scholar
|
[81] |
To, J. P. C., Davis, I. W., Marengo, M. S., Shariff, A., Baublite, C., Decker, K., Gao, Z., Haragutchi, O., Jung, J. W.
CrossRef
Google scholar
|
[82] |
Davis, I. W., Benninger, C., Benfey, P. N. (2012). POWRS: position-sensitive motif discovery. PLoS One, 7: e40373
CrossRef
Google scholar
|
[83] |
McCarthy, D. M. Medford, J. (2020). Quantitative and predictive genetic parts for plant synthetic biology. Front. Plant Sci., 11: 512526
CrossRef
Google scholar
|
[84] |
Han, L., Silvestre, S., Sayanova, O., Haslam, R. P. Napier, J. (2022). Using field evaluation and systematic iteration to rationalise the accumulation of omega-3 long-chain polyunsaturated fatty acids in transgenic Camelina sativa. Plant Biotechnol. J., 20: 1833–1852
CrossRef
Google scholar
|
[85] |
Petrie, J. R., Zhou, X. R., Leonforte, A., McAllister, J., Shrestha, P., Kennedy, Y., Belide, S., Buzza, G., Gororo, N., Gao, W.
CrossRef
Google scholar
|
[86] |
Belide, S., Shrestha, P., Kennedy, Y., Leonforte, A., Devine, M. D., Petrie, J. R., Singh, S. P. Zhou, X. (2022). Engineering docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) in Brassica juncea. Plant Biotechnol. J., 20: 19–21
CrossRef
Google scholar
|
[87] |
Yan-yan, L., Li-na, G., Cheng-zhen, L. Zhi-gang, M. Li, Y., Guo, L., Liang, C., Meng, Z., Tahira, S., Guo, S. (2022). Overexpression of Brassica napus cytosolic fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase genes significantly enhanced tobacco growth and biomass. J. Integr. Agric., 21: 49–59
|
[88] |
Fan, H., Liu, Y., Li, C. Y., Jiang, Y., Song, J. J., Yang, L., Zhao, Q., Hu, Y. H., Chen, X. Y. Xu, J. (2021). Engineering high coenzyme Q10 tomato. Metab. Eng., 68: 86–93
CrossRef
Google scholar
|
[89] |
Forestier, E. C. F., Czechowski, T., Cording, A. C., Gilday, A. D., King, A. J., Brown, G. D. Graham, I. (2021). Developing a Nicotiana benthamiana transgenic platform for high-value diterpene production and candidate gene evaluation. Plant Biotechnol. J., 19: 1614–1623
CrossRef
Google scholar
|
[90] |
Davis, K., Gkotsi, D. S., Smith, D. R. M., Goss, R. J. M., Caputi, L. Connor, S. (2020). Nicotiana benthamiana as a transient expression host to produce auxin analogs. Front. Plant Sci., 11: 581675
CrossRef
Google scholar
|
[91] |
Allen, Q. M., Febres, V. J., Rathinasabapathi, B. Chaparro, J. (2022). Engineering a plant-derived astaxanthin synthetic pathway into Nicotiana benthamiana. Front. Plant Sci., 12: 831785
CrossRef
Google scholar
|
[92] |
Narayanan, N., Beyene, G., Chauhan, R. D., Gehan, J., Butts, P., Siritunga, D., Okwuonu, I., Woll, A., nez-Aguilar, D. M.
CrossRef
Google scholar
|
[93] |
Liang, Q., Wang, K., Liu, X., Riaz, B., Jiang, L., Wan, X., Ye, X. (2019). Improved folate accumulation in genetically modified maize and wheat. J. Exp. Bot., 70: 1539–1551
CrossRef
Google scholar
|
[94] |
Liu, X., Ma, X., Wang, H., Li, S., Yang, W., Nugroho, R. D., Luo, L., Zhou, X., Tang, C., Fan, Y.
CrossRef
Google scholar
|
[95] |
Nett, R. S., Lau, W. Sattely, E. (2020). Discovery and engineering of colchicine alkaloid biosynthesis. Nature, 584: 148–153
CrossRef
Google scholar
|
[96] |
Li, J., Mutanda, I., Wang, K., Yang, L., Wang, J. (2019). Chloroplastic metabolic engineering coupled with isoprenoid pool enhancement for committed taxanes biosynthesis in Nicotiana benthamiana. Nat. Commun., 10: 4850
CrossRef
Google scholar
|
[97] |
ndez, R., nez, E., Gianoglio, S., Quijano-Rubio, A., Rubert, A., Rambla, J. L., Vazquez-Vilar, M., Huet, E.
CrossRef
Google scholar
|
[98] |
Iacopino, S., Jurinovich, S., Cupellini, L., Piccinini, L., Cardarelli, F., Perata, P., Mennucci, B., Giuntoli, B. (2019). A synthetic oxygen sensor for plants based on animal hypoxia signaling. Plant Physiol., 179: 986–1000
CrossRef
Google scholar
|
[99] |
Nemhauser, J. L. Torii, K. (2016). Plant synthetic biology for molecular engineering of signalling and development. Nat. Plants, 2: 16010
CrossRef
Google scholar
|
[100] |
Swinnen, G., Goossens, A. (2016). Lessons from domestication: targeting cis-regulatory elements for crop improvement. Trends Plant Sci., 21: 506–515
CrossRef
Google scholar
|
[101] |
Andres, J., Blomeier, T. Zurbriggen, M. (2019). Synthetic switches and regulatory circuits in plants. Plant Physiol., 179: 862–884
CrossRef
Google scholar
|
[102] |
Zhou, Y., Ding, M., Gao, S., Yu-Strzelczyk, J., Krischke, M., Duan, X., Leide, J., Riederer, M., Mueller, M. J., Hedrich, R.
CrossRef
Google scholar
|
[103] |
Liu, L., Gallagher, J., Arevalo, E. D., Chen, R., Skopelitis, T., Wu, Q., Bartlett, M. (2021). Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. Nat. Plants, 7: 287–294
CrossRef
Google scholar
|
[104] |
guez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E. Lippman, Z. (2017). Engineering quantitative trait variation for crop improvement by genome editing. Cell, 171: 470–480.e8
CrossRef
Google scholar
|
[105] |
Song, X., Meng, X., Guo, H., Cheng, Q., Jing, Y., Chen, M., Liu, G., Wang, B., Wang, Y., Li, J.
CrossRef
Google scholar
|
[106] |
Lowder, L. G., Zhou, J., Zhang, Y., Malzahn, A., Zhong, Z., Hsieh, T. F., Voytas, D. F., Zhang, Y. (2018). Robust transcriptional activation in plants using multiplexed CRISPR-Act2. 0 and mTALE-Act systems. Mol. Plant, 11: 245–256
CrossRef
Google scholar
|
[107] |
Lowder, L. G., Paul, J. W. (2017). Multiplexed transcriptional activation or repression in plants using CRISPR-dCas9-based systems. Methods Mol. Biol., 1629: 167–184
CrossRef
Google scholar
|
[108] |
Lowder, L. G., Zhang, D., Baltes, N. J., Paul, J. W. Tang, X., Zheng, X., Voytas, D. F., Hsieh, T. F., Zhang, Y. (2015). A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol., 169: 971–985
CrossRef
Google scholar
|
[109] |
Chavez, A., Scheiman, J., Vora, S., Pruitt, B. W., Tuttle, M., P R Iyer, E., Lin, S., Kiani, S., Guzman, C. D., Wiegand, D. J.
CrossRef
Google scholar
|
[110] |
Sajwan, S. (2019). Gene activation by dCas9-CBP and the SAM system differ in target preference. Sci. Rep., 9: 18104
CrossRef
Google scholar
|
[111] |
Zalatan, J. G., Lee, M. E., Almeida, R., Gilbert, L. A., Whitehead, E. H., La Russa, M., Tsai, J. C., Weissman, J. S., Dueber, J. E., Qi, L. S.
CrossRef
Google scholar
|
[112] |
Zhou, H., Liu, J., Zhou, C., Gao, N., Rao, Z., Li, H., Hu, X., Li, C., Yao, X., Shen, X.
CrossRef
Google scholar
|
[113] |
Li, Z., Zhang, D., Xiong, X., Yan, B., Xie, W., Sheen, J. Li, J. (2017). A potent Cas9-derived gene activator for plant and mammalian cells. Nat. Plants, 3: 930–936
CrossRef
Google scholar
|
[114] |
Pan, C., Wu, X., Markel, K., Malzahn, A. A., Kundagrami, N., Sretenovic, S., Zhang, Y., Cheng, Y., Shih, P. M. (2021). CRISPR-Act3. 0 for highly efficient multiplexed gene activation in plants. Nat. Plants, 7: 942–953
CrossRef
Google scholar
|
[115] |
Selma, S., -Orts, J. M., Vazquez-Vilar, M., Diego-Martin, B., Ajenjo, M., Garcia-Carpintero, V., Granell, A. (2019). Strong gene activation in plants with genome-wide specificity using a new orthogonal CRISPR/Cas9-based programmable transcriptional activator. Plant Biotechnol. J., 17: 1703–1705
CrossRef
Google scholar
|
[116] |
Selma, S., Espinosa-Ruiz, A., Gianoglio, S., Lopez-Gresa, M. P., zquez-Vilar, M., Flors, V., Granell, A. (2022). Custom-made design of metabolite composition in N. benthamiana leaves using CRISPR activators. Plant Biotechnol. J., 20: 1578–1590
CrossRef
Google scholar
|
[117] |
Pan, C., Li, G., Malzahn, A. A., Cheng, Y., Leyson, B., Sretenovic, S., Gurel, F., Coleman, G. D. (2022). Boosting plant genome editing with a versatile CRISPR-Combo system. Nat. Plants, 8: 513–525
CrossRef
Google scholar
|
[118] |
Dey, N., Sarkar, S., Acharya, S. Maiti, I. (2015). Synthetic promoters in planta. Planta, 242: 1077–1094
CrossRef
Google scholar
|
[119] |
Aysha, J., Noman, M., Wang, F., Liu, W., Zhou, Y., Li, H. (2018). Synthetic promoters: designing the cis regulatory modules for controlled gene expression. Mol. Biotechnol., 60: 608–620
CrossRef
Google scholar
|
[120] |
PandiarajanR.. (2018) In vivo promoter engineering in plants: are we ready? Plant Sci., 277, 132–138
|
[121] |
Ouma, W. Z., Pogacar, K. (2018). Topological and statistical analyses of gene regulatory networks reveal unifying yet quantitatively different emergent properties. PLOS Comput. Biol., 14: e1006098
CrossRef
Google scholar
|
[122] |
Core, L. J., Martins, A. L., Danko, C. G., Waters, C. T., Siepel, A. Lis, J. (2014). Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. Nat. Genet., 46: 1311–1320
CrossRef
Google scholar
|
[123] |
Ricci, W. A., Lu, Z., Ji, L., Marand, A. P., Ethridge, C. L., Murphy, N. G., Noshay, J. M., Galli, M., a-Guerra, M. K.,
CrossRef
Google scholar
|
[124] |
Fagny, M., Kuijjer, M. L., Stam, M., Joets, J., Turc, O., re, J., Pateyron, S., Venon, A. (2021). Identification of key tissue-specific, biological processes by integrating enhancer information in maize gene regulatory networks. Front. Genet., 11: 606285
CrossRef
Google scholar
|
[125] |
Ding, W., Cheng, J., Guo, D., Mao, L., Li, J., Lu, L., Zhang, Y., Yang, J. (2018). Engineering the 5′UTR-mediated regulation of protein abundance in yeast using nucleotide sequence activity relationships. ACS Synth. Biol., 7: 2709–2714
CrossRef
Google scholar
|
[126] |
Mutalik, V. K., Guimaraes, J. C., Cambray, G., Lam, C., Christoffersen, M. J., Mai, Q. A., Tran, A. B., Paull, M., Keasling, J. D., Arkin, A. P.
CrossRef
Google scholar
|
[127] |
Chen, Y., Zhang, S., Young, E. M., Jones, T. S., Densmore, D. Voigt, C. (2020). Genetic circuit design automation for yeast. Nat. Microbiol., 5: 1349–1360
CrossRef
Google scholar
|
[128] |
Xia, P. F., Ling, H., Foo, J. L. Chang, M. (2019). Synthetic genetic circuits for programmable biological functionalities. Biotechnol. Adv., 37: 107393
CrossRef
Google scholar
|
[129] |
Van Brempt, M., Clauwaert, J., Mey, F., Stock, M., Maertens, J., Waegeman, W. (2020). Predictive design of sigma factor-specific promoters. Nat. Commun., 11: 5822
CrossRef
Google scholar
|
[130] |
Nielsen, A. A., Der, B. S., Shin, J., Vaidyanathan, P., Paralanov, V., Strychalski, E. A., Ross, D., Densmore, D. Voigt, C. (2016). Genetic circuit design automation. Science, 352: aac7341
CrossRef
Google scholar
|
[131] |
Jones, T. S., Oliveira, S. M. D., Myers, C. J., Voigt, C. A. (2022). Genetic circuit design automation with Cello 2. 0. Nat. Protoc., 17: 1097–1113
CrossRef
Google scholar
|
[132] |
Kwok, R. (2010). Five hard truths for synthetic biology. Nature, 463: 288–290
CrossRef
Google scholar
|
[133] |
Shin, J., Zhang, S., Der, B. S., Nielsen, A. A. Voigt, C. (2020). Programming Escherichia coli to function as a digital display. Mol. Syst. Biol., 16: e9401
CrossRef
Google scholar
|
[134] |
Crowther, M., Wipat, A. (2022). A network approach to genetic circuit designs. ACS Synth. Biol., 11: 3058–3066
CrossRef
Google scholar
|
[135] |
lez, A. (2019). Benefits of using genomic insulators flanking transgenes to increase expression and avoid positional effects. Sci. Rep., 9: 8474
CrossRef
Google scholar
|
[136] |
Puchta, H., Jiang, J., Wang, K. (2022). Updates on gene editing and its applications. Plant Physiol., 188: 1725–1730
CrossRef
Google scholar
|
[137] |
Neill, B. M., Mikkelson, K. L., Gutierrez, N. M., Cunningham, J. L., Wolff, K. L., Szyjka, S. J., Yohn, C. B., Redding, K. E. Mendez, M. (2012). An exogenous chloroplast genome for complex sequence manipulation in algae. Nucleic Acids Res., 40: 2782–2792
CrossRef
Google scholar
|
[138] |
Shao, Y., Lu, N., Wu, Z., Cai, C., Wang, S., Zhang, L. L., Zhou, F., Xiao, S., Liu, L., Zeng, X.
CrossRef
Google scholar
|
[139] |
Tomita, M. (2001). Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol., 19: 205–210
CrossRef
Google scholar
|
[140] |
Karr, J. R., Sanghvi, J. C., Macklin, D. N., Gutschow, M. V., Jacobs, J. M., Bolival, B. Assad-Garcia, N., Glass, J. I. Covert, M. (2012). A whole-cell computational model predicts phenotype from genotype. Cell, 150: 389–401
CrossRef
Google scholar
|
[141] |
Macklin, D. N., Ahn-Horst, T. A., Choi, H., Ruggero, N. A., Carrera, J., Mason, J. C., Sun, G., Agmon, E., DeFelice, M. M., Maayan, I.
CrossRef
Google scholar
|
[142] |
Maritan, M., Autin, L., Karr, J., Covert, M. W., Olson, A. J. Goodsell, D. (2022). Building structural models of a whole mycoplasma cell. J. Mol. Biol., 434: 167351
CrossRef
Google scholar
|
[143] |
Lu, H., Kerkhoven, E. J. (2022). Multiscale models quantifying yeast physiology: towards a whole-cell model. Trends Biotechnol., 40: 291–305
CrossRef
Google scholar
|
[144] |
Beard, D. A., Neal, M. L., Tabesh-Saleki, N., Thompson, C. T., Bassingthwaighte, J. B., Shimoyama, M. Carlson, B. (2012). Multiscale modeling and data integration in the virtual physiological rat project. Ann. Biomed. Eng., 40: 2365–2378
CrossRef
Google scholar
|
[145] |
Marshall-Colon, A., Long, S. P., Allen, D. K., Allen, G., Beard, D. A., Benes, B., von Caemmerer, S., Christensen, A. J., Cox, D. J., Hart, J. C.
CrossRef
Google scholar
|
[146] |
Zhu, X. G., Lynch, J. P., LeBauer, D. S., Millar, A. J., Stitt, M. Long, S. (2016). Plants in silico: why, why now and what?—an integrative platform for plant systems biology research. Plant Cell Environ., 39: 1049–1057
CrossRef
Google scholar
|
[147] |
Zheng, H., Ho, P. Y., Jiang, M., Tang, B., Liu, W., Li, D., Yu, X., Kleckner, N. E., Amir, A. (2016). Interrogating the Escherichia coli cell cycle by cell dimension perturbations. Proc. Natl. Acad. Sci. USA, 113: 15000–15005
CrossRef
Google scholar
|
[148] |
Du, P., Zhao, H., Zhang, H., Wang, R., Huang, J., Tian, Y., Luo, X., Luo, X., Wang, M., Xiang, Y.
CrossRef
Google scholar
|
[149] |
Milias-Argeitis, A., Rullan, M., Aoki, S. K., Buchmann, P. (2016). Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth. Nat. Commun., 7: 12546
CrossRef
Google scholar
|
[150] |
Olson, E. J., Hartsough, L. A., Landry, B. P., Shroff, R. Tabor, J. (2014). Characterizing bacterial gene circuit dynamics with optically programmed gene expression signals. Nat. Methods, 11: 449–455
CrossRef
Google scholar
|
[151] |
Carignano, A., Chen, D. H., Mallory, C., Wright, R. C., Seelig, G. (2022). Modular, robust, and extendible multicellular circuit design in yeast. eLife, 11: e74540
CrossRef
Google scholar
|
[152] |
Dorrity, M. W., Alexandre, C. M., Hamm, M. O., Vigil, A. L., Fields, S., Queitsch, C. Cuperus, J. (2021). The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution. Nat. Commun., 12: 3334
CrossRef
Google scholar
|
[153] |
Farmer, A., Thibivilliers, S., Ryu, K. H., Schiefelbein, J. (2021). Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level. Mol. Plant, 14: 372–383
CrossRef
Google scholar
|
[154] |
Okubo-Kurihara, E., Ali, A., Hiramoto, M., Kurihara, Y., Abouleila, Y., Abdelazem, E. M., Kawai, T., Makita, Y., Kawashima, M., Esaki, T.
CrossRef
Google scholar
|
[155] |
Marand, A. P., Chen, Z., Gallavotti, A. Schmitz, R. (2021). A cis-regulatory atlas in maize at single-cell resolution. Cell, 184: 3041–3055.e21
CrossRef
Google scholar
|
/
〈 | 〉 |