Computational methods for identifying enhancer-promoter interactions

Haiyan Gong, Zhengyuan Chen, Yuxin Tang, Minghong Li, Sichen Zhang, Xiaotong Zhang, Yang Chen

PDF(4491 KB)
PDF(4491 KB)
Quant. Biol. ›› 2023, Vol. 11 ›› Issue (2) : 122-142. DOI: 10.15302/J-QB-022-0322
REVIEW
REVIEW

Computational methods for identifying enhancer-promoter interactions

Author information +
History +

Abstract

Background: As parts of the cis-regulatory mechanism of the human genome, interactions between distal enhancers and proximal promoters play a crucial role. Enhancers, promoters, and enhancer-promoter interactions (EPIs) can be detected using many sequencing technologies and computation models. However, a systematic review that summarizes these EPI identification methods and that can help researchers apply and optimize them is still needed.

Results: In this review, we first emphasize the role of EPIs in regulating gene expression and describe a generic framework for predicting enhancer-promoter interaction. Next, we review prediction methods for enhancers, promoters, loops, and enhancer-promoter interactions using different data features that have emerged since 2010, and we summarize the websites available for obtaining enhancers, promoters, and enhancer-promoter interaction datasets. Finally, we review the application of the methods for identifying EPIs in diseases such as cancer.

Conclusions: The advance of computer technology has allowed traditional machine learning, and deep learning methods to be used to predict enhancer, promoter, and EPIs from genetic, genomic, and epigenomic features. In the past decade, models based on deep learning, especially transfer learning, have been proposed for directly predicting enhancer-promoter interactions from DNA sequences, and these models can reduce the parameter training time required of bioinformatics researchers. We believe this review can provide detailed research frameworks for researchers who are beginning to study enhancers, promoters, and their interactions.

Author summary

In this review article, we discuss prediction methods for enhancers, promoters, and enhancer-promoter interactions that may help researchers choose methods for identifying cis-regulatory elements.

Graphical abstract

Keywords

enhancer / promoter / enhancer-promoter interaction / machine learning / deep learning

Cite this article

Download citation ▾
Haiyan Gong, Zhengyuan Chen, Yuxin Tang, Minghong Li, Sichen Zhang, Xiaotong Zhang, Yang Chen. Computational methods for identifying enhancer-promoter interactions. Quant. Biol., 2023, 11(2): 122‒142 https://doi.org/10.15302/J-QB-022-0322

References

[1]
Bondarenko,V. A., Liu,Y. V., Jiang,Y. I. Studitsky,V. (2003). Communication over a large distance: enhancers and insulators. Biochem. Cell Biol., 81: 241–251
CrossRef Google scholar
[2]
Plank,J. L. (2014). Enhancer function: mechanistic and genome-wide insights come together. Mol. Cell, 55: 5–14
CrossRef Google scholar
[3]
Haberle,V. (2016). Promoter architectures and developmental gene regulation. Semin. Cell Dev. Biol., 57: 11–23
CrossRef Google scholar
[4]
Harismendy,O., Notani,D., Song,X., Rahim,N. G., Tanasa,B., Heintzman,N., Ren,B., Fu,X. D., Topol,E. J., Rosenfeld,M. G. . (2011). 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Nature, 470: 264–268
CrossRef Google scholar
[5]
Luo,X., Liu,Y., Dang,D., Hu,T., Hou,Y., Meng,X., Zhang,F., Li,T., Wang,C., Li,M. . (2021). 3D Genome of macaque fetal brain reveals evolutionary innovations during primate corticogenesis. Cell, 184: 723–740.e21
CrossRef Google scholar
[6]
Schmitt,A. D., Hu,M., Jung,I., Xu,Z., Qiu,Y., Tan,C. L., Li,Y., Lin,S., Lin,Y., Barr,C. L. . (2016). A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep., 17: 2042–2059
CrossRef Google scholar
[7]
Policarpi,C., Crepaldi,L., Brookes,E., Nitarska,J., French,S. M., Coatti,A. (2017). Enhancer sines link pol III to pol II transcription in neurons. Cell Rep., 21: 2879–2894
CrossRef Google scholar
[8]
Mumbach,M. R., Satpathy,A. T., Boyle,E. A., Dai,C., Gowen,B. G., Cho,S. W., Nguyen,M. L., Rubin,A. J., Granja,J. M., Kazane,K. R. . (2017). Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nat. Genet., 49: 1602–1612
CrossRef Google scholar
[9]
May,D., Blow,M. J., Kaplan,T., McCulley,D. J., Jensen,B. C., Akiyama,J. A., Holt,A., Plajzer-Frick,I., Shoukry,M., Wright,C. . (2011). Large-scale discovery of enhancers from human heart tissue. Nat. Genet., 44: 89–93
CrossRef Google scholar
[10]
Davison,L. J., Wallace,C., Cooper,J. D., Cope,N. F., Wilson,N. K., Smyth,D. J., Howson,J. M., Saleh,N., Al-Jeffery,A., Angus,K. L. . (2012). Long-range DNA looping and gene expression analyses identify DEXI as an autoimmune disease candidate gene. Hum. Mol. Genet., 21: 322–333
CrossRef Google scholar
[11]
Smemo,S., Tena,J. J., Kim,K. Gamazon,E. R., Sakabe,N. J., Aneas,I., Credidio,F. L., Sobreira,D. R., Wasserman,N. F. . (2014). Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature, 507: 371–375
CrossRef Google scholar
[12]
Schmidl,C., Rendeiro,A. F., Sheffield,N. C. (2015). ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors. Nat. Methods, 12: 963–965
CrossRef Google scholar
[13]
Carey,M. F., Peterson,C. L. Smale,S. (2009). Chromatin immunoprecipitation (ChIP). Cold Spring Harb. Protoc., 2009: pdb.prot5279
[14]
Skene,P. J. (2017). An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife, 6: e21856
CrossRef Google scholar
[15]
Belton,J. M., McCord,R. P., Gibcus,J. H., Naumova,N., Zhan,Y. (2012). Hi-C: a comprehensive technique to capture the conformation of genomes. Methods, 58: 268–276
CrossRef Google scholar
[16]
Liang,Z., Li,G., Wang,Z., Djekidel,M. N., Li,Y., Qian,M. Zhang,M. Q. (2017). BL-Hi-C is an efficient and sensitive approach for capturing structural and regulatory chromatin interactions. Nat. Commun., 8: 1622
CrossRef Google scholar
[17]
Schoenfelder,S., Javierre,B. M., Furlan-Magaril,M., Wingett,S. W. (2018). Promoter capture Hi-C: high-resolution, genome-wide profiling of promoter interactions. J. Vis. Exp., (136): e57320
[18]
Li,G., Ruan,X., Auerbach,R. K., Sandhu,K. S., Zheng,M., Wang,P., Poh,H. M., Goh,Y., Lim,J., Zhang,J. . (2012). Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell, 148: 84–98
CrossRef Google scholar
[19]
Mumbach,M. R., Rubin,A. J., Flynn,R. A., Dai,C., Khavari,P. A., Greenleaf,W. J. Chang,H. (2016). HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods, 13: 919–922
CrossRef Google scholar
[20]
Khan,Z. U., Pi,D. C., Yao,S. L., Nawaz,A., Ali,F. (2021). Pienpred: a bi-layered discriminative model for enhancers and their subtypes via novel cascade multi-level subset feature selection algorithm. Front. Comput. Sci., 15: 1–11
CrossRef Google scholar
[21]
Visel,A., Rubin,E. M. Pennacchio,L. (2009). Genomic views of distant-acting enhancers. Nature, 461: 199–205
CrossRef Google scholar
[22]
Levine,M. (2010). Transcriptional enhancers in animal development and evolution. Curr. Biol., 20: R754–R763
CrossRef Google scholar
[23]
Bulger,M. (2011). Functional and mechanistic diversity of distal transcription enhancers. Cell, 144: 327–339
CrossRef Google scholar
[24]
Kim,T. K. (2015). Architectural and functional commonalities between enhancers and promoters. Cell, 162: 948–959
CrossRef Google scholar
[25]
Ong,C. T. Corces,V. (2011). Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet., 12: 283–293
CrossRef Google scholar
[26]
Calo,E. (2013). Modification of enhancer chromatin: what, how, and why? Mol. Cell, 49: 825–837
CrossRef Google scholar
[27]
Yao,L., Berman,B. P. Farnham,P. (2015). Demystifying the secret mission of enhancers: linking distal regulatory elements to target genes. Crit. Rev. Biochem. Mol. Biol., 50: 550–573
CrossRef Google scholar
[28]
Kleftogiannis,D., Kalnis,P. Bajic,V. (2016). Progress and challenges in bioinformatics approaches for enhancer identification. Brief. Bioinform., 17: 967–979
CrossRef Google scholar
[29]
Lim,L. W. K., Chung,H. H., Chong,Y. L. Lee,N. (2018). A survey of recently emerged genome-wide computational enhancer predictor tools. Comput. Biol. Chem., 74: 132–141
CrossRef Google scholar
[30]
Kaur,A., Chauhan,A. P. S., Aggarwal,A. K. (2019). Machine learning based comparative analysis of methods for enhancer prediction in genomic data. In: 2019 2nd International Conference on Intelligent Communication and Computational Techniques (ICCT), 142–145
[31]
Kyrchanova,O. (2021). Mechanisms of enhancer-promoter interactions in higher eukaryotes. Int. J. Mol. Sci., 22: 671
CrossRef Google scholar
[32]
Mora,A., Sandve,G. K., Gabrielsen,O. S. (2016). In the loop: promoter-enhancer interactions and bioinformatics. Brief. Bioinform., 17: 980–995
[33]
Vanhaeren,T., Divina,F., a-Torres,M., mez-Vela,F., Vanhoof,W. (2020). A comparative study of supervised machine learning algorithms for the prediction of long-range chromatin interactions. Genes (Basel), 11: 985
CrossRef Google scholar
[34]
Tao,H., Li,H., Xu,K., Hong,H., Jiang,S., Du,G., Wang,J., Sun,Y., Huang,X., Ding,Y. . (2021). Computational methods for the prediction of chromatin interaction and organization using sequence and epigenomic profiles. Brief. Bioinform., 22: bbaa405
CrossRef Google scholar
[35]
Xu,H., Zhang,S., Yi,X., Plewczynski,D. Li,M. (2020). Exploring 3D chromatin contacts in gene regulation: the evolution of approaches for the identification of functional enhancer-promoter interaction. Comput. Struct. Biotechnol. J., 18: 558–570
CrossRef Google scholar
[36]
He,C., Li,G., Nadhir,D. M., Chen,Y., Wang,X. Zhang,M. (2016). Advances in computational CHiA-PET data analysis. Quant. Biol., 4: 217–225
CrossRef Google scholar
[37]
Min,X., Lu,F. (2021). Sequence-based deep learning frameworks on enhancer-promoter interactions prediction. Curr. Pharm. Des., 27: 1847–1855
CrossRef Google scholar
[38]
Schoenfelder,S. (2019). Long-range enhancer-promoter contacts in gene expression control. Nat. Rev. Genet., 20: 437–455
CrossRef Google scholar
[39]
Kulaeva,O. I., Nizovtseva,E. V., Polikanov,Y. S., Ulianov,S. V. Studitsky,V. (2012). Distant activation of transcription: mechanisms of enhancer action. Mol. Cell. Biol., 32: 4892–4897
CrossRef Google scholar
[40]
Williams,A., Spilianakis,C. G. Flavell,R. (2010). Interchromosomal association and gene regulation in trans. Trends Genet., 26: 188–197
CrossRef Google scholar
[41]
Maass,P. G., Barutcu,A. R. Rinn,J. (2019). Interchromosomal interactions: a genomic love story of kissing chromosomes. J. Cell Biol., 218: 27–38
CrossRef Google scholar
[42]
He,B., Chen,C., Teng,L. (2014). Global view of enhancer-promoter interactome in human cells. Proc. Natl. Acad. Sci. USA, 111: E2191–E2199
CrossRef Google scholar
[43]
Patel,B., Kang,Y., Cui,K., Litt,M., Riberio,M. S., Deng,C., Salz,T., Casada,S., Fu,X., Qiu,Y. . (2014). Aberrant TAL1 activation is mediated by an interchromosomal interaction in human T-cell acute lymphoblastic leukemia. Leukemia, 28: 349–361
CrossRef Google scholar
[44]
Lee,D., Karchin,R. Beer,M. (2011). Discriminative prediction of mammalian enhancers from DNA sequence. Genome Res., 21: 2167–2180
CrossRef Google scholar
[45]
Taher,L., Narlikar,L. (2012). Clare: cracking the language of regulatory elements. Bioinformatics, 28: 581–583
CrossRef Google scholar
[46]
ndez,M. (2012). Genome-wide enhancer prediction from epigenetic signatures using genetic algorithm-optimized support vector machines. Nucleic Acids Res., 40: e77–e77
CrossRef Google scholar
[47]
Rajagopal,N., Xie,W., Li,Y., Wagner,U., Wang,W., Stamatoyannopoulos,J., Ernst,J., Kellis,M. (2013). RFECS: a random-forest based algorithm for enhancer identification from chromatin state. PLOS Comput. Biol., 9: e1002968
CrossRef Google scholar
[48]
Ghandi,M., Lee,D., Mohammad-Noori,M. Beer,M. (2014). Enhanced regulatory sequence prediction using gapped k-mer features. PLOS Comput. Biol., 10: e1003711
CrossRef Google scholar
[49]
Erwin,G. D., Oksenberg,N., Truty,R. M., Kostka,D., Murphy,K. K., Ahituv,N., Pollard,K. S. Capra,J. (2014). Integrating diverse datasets improves developmental enhancer prediction. PLOS Comput. Biol., 10: e1003677
CrossRef Google scholar
[50]
Lu,Y., Qu,W., Shan,G. (2015). Delta: a distal enhancer locating tool based on AdaBoost algorithm and shape features of chromatin modifications. PLoS One, 10: e0130622
CrossRef Google scholar
[51]
Kleftogiannis,D., Kalnis,P. Bajic,V. (2015). DEEP: a general computational framework for predicting enhancers. Nucleic Acids Res., 43: e6
CrossRef Google scholar
[52]
Liu,B. (2016). Ienhancer-psedeknc: identification of enhancers and their subgroups based on pseudo degenerate kmer nucleotide composition. Neurocomputing, 217: 46–52
CrossRef Google scholar
[53]
Liu,B., Fang,L., Long,R., Lan,X. Chou,K. (2016). iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics, 32: 362–369
CrossRef Google scholar
[54]
Jia,C. (2016). EnhancerPred: a predictor for discovering enhancers based on the combination and selection of multiple features. Sci. Rep., 6: 38741
CrossRef Google scholar
[55]
Xu,J., Hu,H. (2016). Lmethyr-svm: predict human enhancers using low methylated regions based on weighted support vector machines. PLoS One, 11: e0163491
CrossRef Google scholar
[56]
Colbran,L. L., Chen,L. Capra,J. (2017). Short DNA sequence patterns accurately identify broadly active human enhancers. BMC Genomics, 18: 536
CrossRef Google scholar
[57]
He,W. (2017). EnhancerPred2.0: predicting enhancers and their strength based on position-specific trinucleotide propensity and electron-ion interaction potential feature selection. Mol. Biosyst., 13: 767–774
CrossRef Google scholar
[58]
He,Y., Gorkin,D. U., Dickel,D. E., Nery,J. R., Castanon,R. G., Lee,A. Y., Shen,Y., Visel,A., Pennacchio,L. A., Ren,B. . (2017). Improved regulatory element prediction based on tissue-specific local epigenomic signatures. Proc. Natl. Acad. Sci. USA, 114: E1633–E1640
CrossRef Google scholar
[59]
Liu,B., Li,K., Huang,D. S. Chou,K. (2018). iEnhancer-EL: identifying enhancers and their strength with ensemble learning approach. Bioinformatics, 34: 3835–3842
CrossRef Google scholar
[60]
Kleftogiannis,D., Ashoor,H. Bajic,V. (2018). Tels: a novel computational framework for identifying motif signatures of transcribed enhancers. Genom. Proteom. Bioinf., 16: 332–341
CrossRef Google scholar
[61]
Singh,A. P., Mishra,S. (2018). Sequence based prediction of enhancer regions from DNA random walk. Sci. Rep., 8: 15912
CrossRef Google scholar
[62]
Sethi,A., Gu,M., Gumusgoz,E., Chan,L., Yan,K. K., Rozowsky,J., Barozzi,I., Afzal,V., Akiyama,J. A., Plajzer-Frick,I. . (2020). Supervised enhancer prediction with epigenetic pattern recognition and targeted validation. Nat. Methods, 17: 807–814
CrossRef Google scholar
[63]
Lim,D. Y., Khanal,J., Tayara,H. Chong,K. (2021). Ienhancer-rf: identifying enhancers and their strength by enhanced feature representation using random forest. Chemom. Intell. Lab. Syst., 212: 104284
CrossRef Google scholar
[64]
Lyu,Y., Zhang,Z., Li,J., He,W., Ding,Y. (2021). Ienhancer-kl: a novel two-layer predictor for identifying enhancers by position specific of nucleotide composition. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 18: 2809–2815
CrossRef Google scholar
[65]
Niu,X., Deng,K., Liu,L., Yang,K. (2021). A statistical framework for predicting critical regions of p53-dependent enhancers. Brief. Bioinform., 22: bbaa053
CrossRef Google scholar
[66]
Basith,S., Hasan,M. M., Lee,G., Wei,L. (2021). Integrative machine learning framework for the identification of cell-specific enhancers from the human genome. Brief. Bioinform., 22: bbab252
CrossRef Google scholar
[67]
Firpi,H. A., Ucar,D. (2010). Discover regulatory DNA elements using chromatin signatures and artificial neural network. Bioinformatics, 26: 1579–1586
CrossRef Google scholar
[68]
Liu,F., Li,H., Ren,C., Bo,X. (2016). PEDLA: predicting enhancers with a deep learning-based algorithmic framework. Sci. Rep., 6: 28517
CrossRef Google scholar
[69]
Min,X., Zeng,W., Chen,S., Chen,N., Chen,T. (2017). Predicting enhancers with deep convolutional neural networks. BMC Bioinformatics, 18: 478
CrossRef Google scholar
[70]
Yang,B., Liu,F., Ren,C., Ouyang,Z., Xie,Z., Bo,X. (2017). BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone. Bioinformatics, 33: 1930–1936
CrossRef Google scholar
[71]
Thibodeau,A., Uyar,A., Khetan,S., Stitzel,M. L. (2018). A neural network based model effectively predicts enhancers from clinical ATAC-seq samples. Sci. Rep., 8: 16048
CrossRef Google scholar
[72]
Le,N. Q. K., Yapp,E. K. Y., Ho,Q. T., Nagasundaram,N., Ou,Y. Y. Yeh,H. (2019). iEnhancer-5Step: identifying enhancers using hidden information of DNA sequences via Chou’s 5-step rule and word embedding. Anal. Biochem., 571: 53–61
CrossRef Google scholar
[73]
Khanal,J., Tayara,H. Chong,K. (2020). Identifying enhancers and their strength by the integration of word embedding and convolution neural network. IEEE Access, 8: 58369–58376
CrossRef Google scholar
[74]
Chen,S., Gan,M., Lv,H. (2021). Deepcape: a deep convolutional neural network for the accurate prediction of enhancers. Genom. Proteom. Bioinf., 19: 565–577
CrossRef Google scholar
[75]
Chen,Z., Zhang,J., Liu,J., Dai,Y., Lee,D., Min,M. R., Xu,M. (2021). DECODE: a Deep-learning framework for condensing enhancers and refining boundaries with large-scale functional assays. Bioinformatics, 37: i280–i288
CrossRef Google scholar
[76]
Zhang,T. H., Flores,M. (2021). ES-ARCNN: predicting enhancer strength by using data augmentation and residual convolutional neural network. Anal. Biochem., 618: 114120
CrossRef Google scholar
[77]
Inayat,N., Khan,M., Iqbal,N., Khan,S., Raza,M., Khan,D. M., Khan,A. Wei,D. (2021). Ienhancer-dhf: identification of enhancers and their strengths using optimize deep neural network with multiple features extraction methods. IEEE Access, 9: 40783–40796
CrossRef Google scholar
[78]
Yang,R., Wu,F., Zhang,C. (2021). Ienhancer-gan: a deep learning framework in combination with word embedding and sequence generative adversarial net to identify enhancers and their strength. Int. J. Mol. Sci., 22: 3589
CrossRef Google scholar
[79]
Gao,Y., Chen,Y., Feng,H., Zhang,Y. (2022). Ricenn: prediction of rice enhancers with neural network based on DNA sequences. Interdiscip. Sci., 14: 555–565
CrossRef Google scholar
[80]
Amilpur,S. (2022). A sequence-based two-layer predictor for identifying enhancers and their strength through enhanced feature extraction. J. Bioinform. Comput. Biol., 20: 2250005
CrossRef Google scholar
[81]
Kamran,H., Tahir,M., Tayara,H. Chong,K. (2022). Ienhancer-deep: a computational predictor for enhancer sites and their strength using deep learning. Appl. Sci. (Basel), 12: 2120
CrossRef Google scholar
[82]
Zhao,S., Pan,Q., Zou,Q., Ju,Y., Shi,L. (2022). Identifying and classifying enhancers by dinucleotide-based auto-cross covariance and attention-based Bi-LSTM. Comput. Math. Methods Med., 2022: 7518779
CrossRef Google scholar
[83]
Song,K. (2012). Recognition of prokaryotic promoters based on a novel variable-window Z-curve method. Nucleic Acids Res., 40: 963–971
CrossRef Google scholar
[84]
Li,Y., Chen,C. Y. Wasserman,W. (2016). Deep feature selection: theory and application to identify enhancers and promoters. J. Comput. Biol., 23: 322–336
CrossRef Google scholar
[85]
Umarov,R. K. Solovyev,V. (2017). Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks. PLoS One, 12: e0171410
CrossRef Google scholar
[86]
Coelho,R. V., de Avila E Silva,S., Echeverrigaray,S., Delamare,A. P. L. Delamare,A. P. (2018). Bacillus subtilis promoter sequences data set for promoter prediction in Gram-positive bacteria. Data Brief, 19: 264–270
CrossRef Google scholar
[87]
Liu,B., Yang,F., Huang,D. S. Chou,K. (2018). iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC. Bioinformatics, 34: 33–40
CrossRef Google scholar
[88]
Oubounyt,M., Louadi,Z., Tayara,H. Chong,K. (2019). Deepromoter: robust promoter predictor using deep learning. Front. Genet., 10: 286
CrossRef Google scholar
[89]
Le,N. Q. K., Yapp,E. K. Y., Nagasundaram,N. Yeh,H. (2019). Classifying promoters by interpreting the hidden information of DNA sequences via deep learning and combination of continuous fasttext N-grams. Front. Bioeng. Biotechnol., 7: 305
CrossRef Google scholar
[90]
Umarov,R., Kuwahara,H., Li,Y., Gao,X. (2019). Promoter analysis and prediction in the human genome using sequence-based deep learning models. Bioinformatics, 35: 2730–2737
CrossRef Google scholar
[91]
Lai,H. Y., Zhang,Z. Y., Su,Z. D., Su,W., Ding,H., Chen,W. (2019). Iproep: a computational predictor for predicting promoter. Mol. Ther. Nucleic Acids, 17: 337–346
CrossRef Google scholar
[92]
Liu,B. (2019). Ipromoter-2l2. 0: identifying promoters and their types by combining smoothing cutting window algorithm and sequence-based features. Mol. Ther. Nucleic Acids, 18: 80–87
CrossRef Google scholar
[93]
Rahman,M. S., Aktar,U., Jani,M. R. (2019). iPromoter-FSEn: identification of bacterial σ70 promoter sequences using feature subspace based ensemble classifier. Genomics, 111: 1160–1166
CrossRef Google scholar
[94]
Rahman,M. S., Aktar,U., Jani,M. R. (2019). iPro70-FMWin: identifying Sigma70 promoters using multiple windowing and minimal features. Mol. Genet. Genomics, 294: 69–84
CrossRef Google scholar
[95]
Xiao,X., Xu,Z. C., Qiu,W. R., Wang,P., Ge,H. T. Chou,K. (2019). iPSW(2L)-PseKNC: a two-layer predictor for identifying promoters and their strength by hybrid features via pseudo k-tuple nucleotide composition. Genomics, 111: 1785–1793
CrossRef Google scholar
[96]
Zhang,M., Li,F., Marquez-Lago,T. T., Leier,A., Fan,C., Kwoh,C. K., Chou,K. C., Song,J. (2019). MULTiPly: a novel multi-layer predictor for discovering general and specific types of promoters. Bioinformatics, 35: 2957–2965
CrossRef Google scholar
[97]
Chen,Y. L., Guo,D. H. Li,Q. (2020). An energy model for recognizing the prokaryotic promoters based on molecular structure. Genomics, 112: 2072–2079
CrossRef Google scholar
[98]
Amin,R., Rahman,C. R., Ahmed,S., Sifat,M. H. R., Liton,M. N. K., Rahman,M. M., Khan,M. Z. H. (2020). iPromoter-BnCNN: a novel branched CNN-based predictor for identifying and classifying sigma promoters. Bioinformatics, 36: 4869–4875
CrossRef Google scholar
[99]
Tayara,H., Tahir,M. Chong,K. (2020). Identification of prokaryotic promoters and their strength by integrating heterogeneous features. Genomics, 112: 1396–1403
CrossRef Google scholar
[100]
Shujaat,M., Wahab,A., Tayara,H. Chong,K. (2020). Pcpromoter-CNN: a CNN-based prediction and classification of promoters. Genes (Basel), 11: 1529
CrossRef Google scholar
[101]
Liang,Y., Zhang,S., Qiao,H. (2021). iPromoter-ET: identifying promoters and their strength by extremely randomized trees-based feature selection. Anal. Biochem., 630: 114335
CrossRef Google scholar
[102]
Shujaat,M., Lee,S. B., Tayara,H. Chong,K. (2021). Cr-prom: a convolutional neural network-based model for the prediction of rice promoters. IEEE Access, 9: 81485–81491
CrossRef Google scholar
[103]
Lyu,Y., He,W., Li,S., Zou,Q. (2021). Ipro2l-pstknc: a two-layer predictor for discovering various types of promoters by position specific of nucleotide composition. IEEE J. Biomed. Health Inform., 25: 2329–2337
CrossRef Google scholar
[104]
Sun,A., Xiao,X. (2021). Iptt(2 L)-CNN: a two-layer predictor for identifying promoters and their types in plant genomes by convolutional neural network. Comput. Math. Methods Med., 2021: 6636350
CrossRef Google scholar
[105]
Zhu,Y., Li,F., Xiang,D., Akutsu,T., Song,J. (2021). Computational identification of eukaryotic promoters based on cascaded deep capsule neural networks. Brief. Bioinform., 22: bbaa299
CrossRef Google scholar
[106]
Bhukya,R., Kumari,A., Amilpur,S. Dasari,C. (2022). PPred-PCKSM: a multi-layer predictor for identifying promoter and its variants using position based features. Comput. Biol. Chem., 97: 107623
CrossRef Google scholar
[107]
Li,H., Shi,L., Gao,W., Zhang,Z., Zhang,L., Zhao,Y. (2022). dPromoter-XGBoost: detecting promoters and strength by combining multiple descriptors and feature selection using XGBoost. Methods, 204: 215–222
CrossRef Google scholar
[108]
Li,Q. W., Zhang,L. C., Xu,L., Zou,Q., Wu,J. Li,Q. (2022). Identification and classification of promoters using the attention mechanism based on long short-term memory. Front. Comput. Sci., 16: 164348
CrossRef Google scholar
[109]
Qiao,H., Zhang,S., Xue,T., Wang,J. (2022). iPro-GAN: a novel model based on generative adversarial learning for identifying promoters and their strength. Comput. Methods Programs Biomed., 215: 106625
CrossRef Google scholar
[110]
Wang,Y., Peng,Q., Mou,X., Wang,X., Li,H., Han,T., Sun,Z. (2022). A successful hybrid deep learning model aiming at promoter identification. BMC Bioinformatics, 23: 206
CrossRef Google scholar
[111]
Wei,P. J., Pang,Z. Z., Jiang,L. J., Tan,D. Y., Su,Y. S. Zheng,C. (2022). Promoter prediction in nannochloropsis based on densely connected convolutional neural networks. Methods, 204: 38–46
CrossRef Google scholar
[112]
Mifsud,B., Tavares-Cadete,F., Young,A. N., Sugar,R., Schoenfelder,S., Ferreira,L., Wingett,S. W., Andrews,S., Grey,W., Ewels,P. A. . (2015). Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet., 47: 598–606
CrossRef Google scholar
[113]
Javierre,B. M., Burren,O. S., Wilder,S. P., Kreuzhuber,R., Hill,S. M., Sewitz,S., Cairns,J., Wingett,S. W., rnai,C., Thiecke,M. J. . (2016). Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell, 167: 1369–1384.e19
CrossRef Google scholar
[114]
Mikolov,T., Yih,W. (2013). Linguistic regularities in continuous space word representations. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human language technologies, 746–751
[115]
Pennington,J., Socher,R. Manning,C. (2014). Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543
[116]
Ng,P. (2017). Dna2vec: consistent vector representations of variable-length k-mers. arXiv, 1701.06279
[117]
Jiang,Y., Qian,F., Bai,X., Liu,Y., Wang,Q., Ai,B., Han,X., Shi,S., Zhang,J., Li,X. . (2019). SEdb: a comprehensive human super-enhancer database. Nucleic Acids Res., 47: D235–D243
CrossRef Google scholar
[118]
rier,R. C., Praz,V., Junier,T., Bonnard,C. (2000). The eukaryotic promoter database (EPD). Nucleic Acids Res., 28: 302–303
CrossRef Google scholar
[119]
Ferretti,V., Poitras,C., Bergeron,D., Coulombe,B., Robert,F. (2007). PReMod: a database of genome-wide mammalian cis-regulatory module predictions. Nucleic Acids Res., 35: D122–D126
CrossRef Google scholar
[120]
Andersson,R., Gebhard,C., Miguel-Escalada,I., Hoof,I., Bornholdt,J., Boyd,M., Chen,Y., Zhao,X., Schmidl,C., Suzuki,T. . (2014). An atlas of active enhancers across human cell types and tissues. Nature, 507: 455–461
CrossRef Google scholar
[121]
Visel,A., Minovitsky,S., Dubchak,I. Pennacchio,L. (2007). VISTA Enhancer Browser—a database of tissue-specific human enhancers. Nucleic Acids Res., 35: D88–D92
CrossRef Google scholar
[122]
Hoke,H. A., Lin,C. Y., Lau,A., Orlando,D. A., Vakoc,C. R., Bradner,J. E., Lee,T. I. Young,R. (2013). Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell, 153: 320–334
CrossRef Google scholar
[123]
Bai,X., Shi,S., Ai,B., Jiang,Y., Liu,Y., Han,X., Xu,M., Pan,Q., Wang,F., Wang,Q. . (2020). ENdb: a manually curated database of experimentally supported enhancers for human and mouse. Nucleic Acids Res., 48: D51–D57
[124]
Wei,Y., Zhang,S., Shang,S., Zhang,B., Li,S., Wang,X., Wang,F., Su,J., Wu,Q., Liu,H. . (2016). SEA: a super-enhancer archive. Nucleic Acids Res., 44: D172–D179
CrossRef Google scholar
[125]
Cai,Z. N., Cui,Y., Tan,Z. Y., Zhang,G. H., Tan,Z. Y., Zhang,X. L. Peng,Y. (2019). RAEdb: A database of enhancers identified by high-throughput reporter assays. Database (Oxford), bay140
[126]
Guo,Z. W., Xie,C., Li,K., Zhai,X. M., Cai,G. X., Yang,X. X. Wu,Y. (2019). Seler: a database of super-enhancer-associated lncRNA-directed transcriptional regulation in human cancers. Database (Oxford), baz027
[127]
Zeng,W. W., Min,X. (2019). Endisease: a manually curated database for enhancer-disease associations. Database (Oxford), baz020
[128]
Huang,M., Wang,Y., Yang,M., Yan,J., Yang,H., Zhuang,W., Xu,Y., Koeffler,H. P., Lin,D. C. (2020). dbInDel: a database of enhancer-associated insertion and deletion variants by analysis of H3K27ac ChIP-Seq. Bioinformatics, 36: 1649–1651
[129]
Kumar,R., Lathwal,A., Kumar,V., Patiyal,S., Raghav,P. K. Raghava,G. P. (2020). CancerEnD: a database of cancer associated enhancers. Genomics, 112: 3696–3702
CrossRef Google scholar
[130]
Vasyuchenko,E. P., Orekhov,P. S., Armeev,G. A. Bozdaganyan,M. (2021). Cpe-db: an open database of chemical penetration enhancers. Pharmaceutics, 13: 66
CrossRef Google scholar
[131]
Jin,W., Jiang,G., Yang,Y., Yang,J., Yang,W., Wang,D., Niu,X., Zhong,R., Zhang,Z. (2022). Animal-eRNAdb: a comprehensive animal enhancer RNA database. Nucleic Acids Res., 50: D46–D53
CrossRef Google scholar
[132]
Shahmuradov,I. A., Gammerman,A. J., Hancock,J. M., Bramley,P. M. Solovyev,V. (2003). PlantProm: a database of plant promoter sequences. Nucleic Acids Res., 31: 114–117
CrossRef Google scholar
[133]
Smirnova,O. G., Ibragimova,S. S. Kochetov,A. (2012). Simple database to select promoters for plant transgenesis. Transgenic Res., 21: 429–437
CrossRef Google scholar
[134]
Grienberg,I. (2005). Osteo-Promoter Database (OPD)—promoter analysis in skeletal cells. BMC Genomics, 6: 46
CrossRef Google scholar
[135]
Morris,R. T., Connor,T. R. Wyrick,J. (2008). Osiris: an integrated promoter database for Oryza sativa L. Bioinformatics, 24: 2915–2917
CrossRef Google scholar
[136]
Chen,X., Wu,J. M., Hornischer,K., Kel,A. (2006). Tiprod: the tissue-specific promoter database. Nucleic Acids Res., 34: D104–D107
CrossRef Google scholar
[137]
Nishikata,K., Cox,R. S. Shimoyama,S., Yoshida,Y., Matsui,M., Makita,Y. (2014). Database construction for PromoterCAD: synthetic promoter design for mammals and plants. ACS Synth. Biol., 3: 192–196
CrossRef Google scholar
[138]
Dreos,R., Ambrosini,G., rier,R. C. (2015). The Eukaryotic Promoter Database: expansion of EPDnew and new promoter analysis tools. Nucleic Acids Res., 43: D92–D96
CrossRef Google scholar
[139]
Su,W., Liu,M. L., Yang,Y. H., Wang,J. S., Li,S. H., Lv,H., Dao,F. Y., Yang,H. (2021). Ppd: a manually curated database for experimentally verified prokaryotic promoters. J. Mol. Biol., 433: 166860
CrossRef Google scholar
[140]
Gordon,L., Chervonenkis,A. Y., Gammerman,A. J., Shahmuradov,I. A. Solovyev,V. (2003). Sequence alignment kernel for recognition of promoter regions. Bioinformatics, 19: 1964–1971
CrossRef Google scholar
[141]
Towsey,M., Timms,P., Hogan,J. Mathews,S. (2008). The cross-species prediction of bacterial promoters using a support vector machine. Comput. Biol. Chem., 32: 359–366
CrossRef Google scholar
[142]
Knudsen,S. (1999). Promoter2.0: for the recognition of PolII promoter sequences. Bioinformatics, 15: 356–361
CrossRef Google scholar
[143]
Whalen,S., Truty,R. M. Pollard,K. (2016). Enhancer-promoter interactions are encoded by complex genomic signatures on looping chromatin. Nat. Genet., 48: 488–496
CrossRef Google scholar
[144]
Yang,Y., Zhang,R., Singh,S. (2017). Exploiting sequence-based features for predicting enhancer-promoter interactions. Bioinformatics, 33: i252–i260
CrossRef Google scholar
[145]
Zeng,W., Wu,M. (2018). Prediction of enhancer-promoter interactions via natural language processing. BMC Genomics, 19: 84
CrossRef Google scholar
[146]
Singh,S., Yang,Y., czos,B. (2019). Predicting enhancer-promoter interaction from genomic sequence with deep neural networks. Quant. Biol., 7: 122–137
CrossRef Google scholar
[147]
Zhang,T. (2019). An approach for recognition of enhancer-promoter associations based on random forest. In: Proceedings of the 2019 4th International Conference on Biomedical Signal and Image Processing (ICBIP 2019), 46–50
[148]
Zhuang,Z., Shen,X. (2019). A simple convolutional neural network for prediction of enhancer-promoter interactions with DNA sequence data. Bioinformatics, 35: 2899–2906
CrossRef Google scholar
[149]
Hong,Z., Zeng,X., Wei,L. (2020). Identifying enhancer-promoter interactions with neural network based on pre-trained DNA vectors and attention mechanism. Bioinformatics, 36: 1037–1043
CrossRef Google scholar
[150]
Singh,A. P., Mishra,S. (2018). Sequence based prediction of enhancer regions from DNA random walk. Sci Rep. 8, 15912
[151]
Min,X., Ye,C., Liu,X. (2021). Predicting enhancer-promoter interactions by deep learning and matching heuristic. Brief. Bioinform., 22: bbaa254
CrossRef Google scholar
[152]
Zhang,M., Hu,Y. (2021). Epishilbert: prediction of enhancer-promoter interactions via hilbert curve encoding and transfer learning. Genes (Basel), 12: 1385
CrossRef Google scholar
[153]
Ni,Y., Fan,L., Wang,M., Zhang,N., Zuo,Y. (2022). Epi-mind: identifying enhancer-promoter interactions based on transformer mechanism. Interdiscip. Sci., 14: 786–794
CrossRef Google scholar
[154]
Talukder,A., Saadat,S., Li,X. (2019). EPIP: a novel approach for condition-specific enhancer-promoter interaction prediction. Bioinformatics, 35: 3877–3883
CrossRef Google scholar
[155]
Jing,F., Zhang,S. W. (2020). Prediction of enhancer-promoter interactions using the cross-cell type information and domain adversarial neural network. BMC Bioinformatics, 21: 507
CrossRef Google scholar
[156]
Chawla,N. V., Bowyer,K. W., Hall,L. O. Kegelmeyer,W. (2002). Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res., 16: 321–357
CrossRef Google scholar
[157]
Rao,S. S. P., Huntley,M. H., Durand,N. C., Stamenova,E. K., Bochkov,I. D., Robinson,J. T., Sanborn,A. L., Machol,I., Omer,A. D., Lander,E. S. . (2014). A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159: 1665–1680
CrossRef Google scholar
[158]
Servant,N., Varoquaux,N., Lajoie,B. R., Viara,E., Chen,C. Vert,J. Heard,E., Dekker,J. (2015). HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol., 16: 259
CrossRef Google scholar
[159]
Kerpedjiev,P., Abdennur,N., Lekschas,F., McCallum,C., Dinkla,K., Strobelt,H., Luber,J. M., Ouellette,S. B., Azhir,A., Kumar,N. . (2018). HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol., 19: 125
CrossRef Google scholar
[160]
Cao,Y., Chen,Z., Chen,X., Ai,D., Chen,G., McDermott,J., Huang,Y., Guo,X. Han,J. (2020). Accurate loop calling for 3D genomic data with cLoops. Bioinformatics, 36: 666–675
CrossRef Google scholar
[161]
Kaul,A., Bhattacharyya,S. (2020). Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2. Nat. Protoc., 15: 991–1012
CrossRef Google scholar
[162]
Roayaei Ardakany,A., Gezer,H. T., Lonardi,S. (2020). Mustache: multi-scale detection of chromatin loops from Hi-C and Micro-C maps using scale-space representation. Genome Biol., 21: 256
CrossRef Google scholar
[163]
Krietenstein,N., Abraham,S., Venev,S. V., Abdennur,N., Gibcus,J., Hsieh,T. S., Parsi,K. M., Yang,L., Maehr,R., Mirny,L. A. . (2020). Ultrastructural details of mammalian chromosome architecture. Mol. Cell, 78: 554–565.e7
CrossRef Google scholar
[164]
Lagler,T. M., Abnousi,A., Hu,M., Yang,Y. (2021). HiC-ACT: improved detection of chromatin interactions from Hi-C data via aggregated Cauchy test. Am. J. Hum. Genet., 108: 257–268
CrossRef Google scholar
[165]
Lee,H. Seo,P. (2021). Hicore: Hi-c analysis for identification of core chromatin looping regions with higher resolution. Mol. Cells, 44: 883–892
CrossRef Google scholar
[166]
Lareau,C. A. Aryee,M. (2018). hichipper: a preprocessing pipeline for calling DNA loops from HiChIP data. Nat. Methods, 15: 155–156
CrossRef Google scholar
[167]
Bhattacharyya,S., Chandra,V., Vijayanand,P. (2019). Identification of significant chromatin contacts from HiChIP data by FitHiChIP. Nat. Commun., 10: 4221
CrossRef Google scholar
[168]
Fang,R., Yu,M., Li,G., Chee,S., Liu,T., Schmitt,A. D. (2016). Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res., 26: 1345–1348
CrossRef Google scholar
[169]
Juric,I., Yu,M., Abnousi,A., Raviram,R., Fang,R., Zhao,Y., Zhang,Y., Qiu,Y., Yang,Y., Li,Y. . (2019). MAPS: model-based analysis of long-range chromatin interactions from PLAC-seq and HiChIP experiments. PLOS Comput. Biol., 15: e1006982
CrossRef Google scholar
[170]
Shi,C., Rattray,M. (2020). HiChIP-Peaks: a HiChIP peak calling algorithm. Bioinformatics, 36: 3625–3631
CrossRef Google scholar
[171]
Li,G., Fullwood,M. J., Xu,H., Mulawadi,F. H., Velkov,S., Vega,V., Ariyaratne,P. N., Mohamed,Y. B., Ooi,H. S., Tennakoon,C. . (2010). ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol., 11: R22
CrossRef Google scholar
[172]
Paulsen,J., dland,E. A., Holden,L., Holden,M. (2014). A statistical model of ChIA-PET data for accurate detection of chromatin 3D interactions. Nucleic Acids Res., 42: e143
CrossRef Google scholar
[173]
He,C., Zhang,M. Q. (2015). MICC: an R package for identifying chromatin interactions from ChIA-PET data. Bioinformatics, 31: 3832–3834
CrossRef Google scholar
[174]
Djekidel,M. N., Liang,Z., Wang,Q., Hu,Z., Li,G., Chen,Y. Zhang,M. (2015). 3CPET: finding co-factor complexes from ChIA-PET data using a hierarchical Dirichlet process. Genome Biol., 16: 288
CrossRef Google scholar
[175]
Li,G., Chen,Y., Snyder,M. P. Zhang,M. (2017). ChIA-PET2: a versatile and flexible pipeline for ChIA-PET data analysis. Nucleic Acids Res., 45: e4
CrossRef Google scholar
[176]
Huang,W., Medvedovic,M., Zhang,J. (2019). ChIAPoP: a new tool for ChIA-PET data analysis. Nucleic Acids Res., 47: e37
CrossRef Google scholar
[177]
Lee,B., Wang,J., Cai,L., Kim,M., Namburi,S., Tjong,H., Feng,Y., Wang,P., Tang,Z., Abbas,A. . (2020). ChIA-PIPE: a fully automated pipeline for comprehensive ChIA-PET data analysis and visualization. Sci. Adv., 6: eaay2078
CrossRef Google scholar
[178]
Vardaxis,I., Rye,M. B. Lindqvist,B. (2020). MACPET: model-based analysis for ChIA-PET. Biostatistics, 21: 625–639
CrossRef Google scholar
[179]
Yu,X. J., Zhou,J. G., Zhao,M. M., Yi,C., Duan,Q., Zhou,W. (2020). Exploiting XGboost for predicting enhancer-promoter interactions. Curr. Bioinform., 15: 1036–1045
CrossRef Google scholar
[180]
Bartlett,P. (2006). Adaboost is consistent. Adv. Neural Inf. Process. Syst., 8: 2347–2368
[181]
Zhang,S., Dong,X. (2012). Synonym recognition based on user behaviors in E-commerce. Journal of Chinese Information Processing (in Chinese), 26: 79–85
[182]
Chen,T. (2016). XgBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794
[183]
Feng,Z. X. Li,Q. (2017). Recognition of long-range enhancer-promoter interactions by adding genomic signatures of segmented regulatory regions. Genomics, 109: 341–352
CrossRef Google scholar
[184]
Chen,K., Zhao,H. (2022). Capturing large genomic contexts for accurately predicting enhancer-promoter interactions. Brief. Bioinform., 23: bbab577
CrossRef Google scholar
[185]
Tang,L., Zhong,Z., Lin,Y., Yang,Y., Wang,J., Martin,J. F. (2022). EPIXplorer: a web server for prediction, analysis and visualization of enhancer-promoter interactions. Nucleic Acids Res., 50: W290–W297
CrossRef Google scholar
[186]
Zhu,Y., Chen,Z., Zhang,K., Wang,M., Medovoy,D., Whitaker,J. W., Ding,B., Li,N., Zheng,L. (2016). Constructing 3D interaction maps from 1D epigenomes. Nat. Commun., 7: 10812
CrossRef Google scholar
[187]
Cao,Q., Anyansi,C., Hu,X., Xu,L., Xiong,L., Tang,W., Mok,M. T. S., Cheng,C., Fan,X., Gerstein,M. . (2017). Reconstruction of enhancer-target networks in 935 samples of human primary cells, tissues and cell lines. Nat. Genet., 49: 1428–1436
CrossRef Google scholar
[188]
Belokopytova,P. S., Nuriddinov,M. A., Mozheiko,E. A., Fishman,D. (2020). Quantitative prediction of enhancer-promoter interactions. Genome Res., 30: 72–84
CrossRef Google scholar
[189]
Lareau,C. A. Aryee,M. (2018). diffloop: a computational framework for identifying and analyzing differential DNA loops from sequencing data. Bioinformatics, 34: 672–674
CrossRef Google scholar
[190]
Lun,A. T. Smyth,G. (2015). diffHic: a Bioconductor package to detect differential genomic interactions in Hi-C data. BMC Bioinformatics, 16: 258
CrossRef Google scholar
[191]
Djekidel,M. N., Chen,Y. Zhang,M. (2018). FIND: difFerential chromatin INteractions Detection using a spatial Poisson process. Genome Res., 28: 412–422
CrossRef Google scholar
[192]
Stansfield,J. C., Cresswell,K. G., Vladimirov,V. I. Dozmorov,M. (2018). HiCcompare: an R-package for joint normalization and comparison of Hi-C datasets. BMC Bioinformatics, 19: 279
CrossRef Google scholar
[193]
Stansfield,J. C., Cresswell,K. G. Dozmorov,M. (2019). multiHiCcompare: joint normalization and comparative analysis of complex Hi-C experiments. Bioinformatics, 35: 2916–2923
CrossRef Google scholar
[194]
Baudry,L., Millot,G. A., Thierry,A., Koszul,R. Scolari,V. (2020). Serpentine: a flexible 2D binning method for differential Hi-C analysis. Bioinformatics, 36: 3645–3651
CrossRef Google scholar
[195]
Karczewski,K. J., Dudley,J. T., Kukurba,K. R., Chen,R., Butte,A. J., Montgomery,S. B. (2013). Systematic functional regulatory assessment of disease-associated variants. Proc. Natl. Acad. Sci. USA, 110: 9607–9612
CrossRef Google scholar
[196]
Corradin,O., Saiakhova,A., Akhtar-Zaidi,B., Myeroff,L., Willis,J., Cowper-Sal lari,R., Lupien,M., Markowitz,S. Scacheri,P. (2014). Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits. Genome Res., 24: 1–13
CrossRef Google scholar
[197]
Carullo,N. V. N. Day,J. (2019). Genomic enhancers in brain health and disease. Genes (Basel), 10: 43
CrossRef Google scholar
[198]
Marsman,J. Horsfield,J. (2012). Long distance relationships: enhancer-promoter communication and dynamic gene transcription. Gene Regulatory Mechanisms., 1819: 1217–1227
[199]
Li,Y., He,Y., Liang,Z., Wang,Y., Chen,F., Djekidel,M. N., Li,G., Zhang,X., Xiang,S., Wang,Z. . (2018). Alterations of specific chromatin conformation affect ATRA-induced leukemia cell differentiation. Cell Death Dis., 9: 200
CrossRef Google scholar
[200]
Wang,H., Yang,J., Zhang,Y. (2021). Discover novel disease-associated genes based on regulatory networks of long-range chromatin interactions. Methods, 189: 22–33
CrossRef Google scholar
[201]
Rodin,R. E., Dou,Y., Kwon,M., Sherman,M. A., Gama,A. M., Doan,R. N., Rento,L. M., Girskis,K. M., Bohrson,C. L., Kim,S. N. . (2021). The landscape of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by ultra-deep whole-genome sequencing. Nat. Neurosci., 24: 176–185
CrossRef Google scholar
[202]
Fachal,L., Aschard,H., Beesley,J., Barnes,D. R., Allen,J., Kar,S., Pooley,K. A., Dennis,J., Michailidou,K., Turman,C. . (2020). Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nat. Genet., 52: 56–73
CrossRef Google scholar
[203]
Dzida,T., Iqbal,M., Charapitsa,I., Reid,G., Stunnenberg,H., Matarese,F., Grote,K., Honkela,A. (2017). Predicting stimulation-dependent enhancer-promoter interactions from ChIP-Seq time course data. PeerJ, 5: e3742
CrossRef Google scholar
[204]
Feng,Z. X., Li,Q. Z. Meng,J. (2018). Recognition of the long range enhancer-promoter interactions by further adding DNA structure properties and transcription factor binding motifs in human cell lines. J. Theor. Biol., 445: 136–150
CrossRef Google scholar
[205]
Hait,T. A., Elkon,R. (2022). CT-FOCS: a novel method for inferring cell type-specific enhancer-promoter maps. Nucleic Acids Res., 50: e55

ABBREVIATIONS

CREs cis-acting regulatory elements
EPI(s) Enhancer-promoter interaction(s)
TSS Transcription start sites
ChIP-seq Chromatin immunoprecipitation
CUT& RUN Cleavage under targets and release using nuclease
Hi-C High-throughput chromosome conformation capture
ChIA-PET Chromatin interaction analysis with paired-end-tag sequencing
TFs Transcription factors
TFBS Transcription factor binding sites
CKSNAP Composition of k-spaced nucleic acid pair
DCC Dinucleotide-based cross covariance
PseDNC Pseudo dinucleotide composition
PseKNC Pseudo k-tuple nucleotide composition
SVM Support vector machine
CNN Convolution neural network
GBDT Gradient boosting decision tree
LSTM Long short-term memory
DE Downstream element

ACKNOWLEDGEMENTS

This study was funded by grants from the Foshan Higher Education Foundation (No. BKBS202203), the National Key R&D Program of China (No. 2018YFA0801402), the National Natural Science Foundation of China (No. 61971031) and the CAMS Innovation Fund for Medical Sciences (Nos. 2021-RC310-007, 2021-I2M-1-020 and 2022-I2M-1-020). Funding for open access charge: Department of Computer Science and Technology, Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing. The authors thank AiMi Academic Services for English language editing and review services.

COMPLIANCE WITH ETHICS GUIDELINES

Haiyan Gong, Zhengyuan Chen, Yuxin Tang, Minghong Li, Sichen Zhang, Xiaotong Zhang, and Yang Chen declare that they have no conflict of interest.
This article is a review article and does not contain any studies with human or animal subjects performed by any of the authors.

OPEN ACCESS

This article is licensed by the CC By under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2023 The Author(s). Published by Higher Education Press.
AI Summary AI Mindmap
PDF(4491 KB)

Accesses

Citations

Detail

Sections
Recommended

/