Computational methods for identifying enhancer-promoter interactions
Haiyan Gong, Zhengyuan Chen, Yuxin Tang, Minghong Li, Sichen Zhang, Xiaotong Zhang, Yang Chen
Computational methods for identifying enhancer-promoter interactions
Background: As parts of the cis-regulatory mechanism of the human genome, interactions between distal enhancers and proximal promoters play a crucial role. Enhancers, promoters, and enhancer-promoter interactions (EPIs) can be detected using many sequencing technologies and computation models. However, a systematic review that summarizes these EPI identification methods and that can help researchers apply and optimize them is still needed.
Results: In this review, we first emphasize the role of EPIs in regulating gene expression and describe a generic framework for predicting enhancer-promoter interaction. Next, we review prediction methods for enhancers, promoters, loops, and enhancer-promoter interactions using different data features that have emerged since 2010, and we summarize the websites available for obtaining enhancers, promoters, and enhancer-promoter interaction datasets. Finally, we review the application of the methods for identifying EPIs in diseases such as cancer.
Conclusions: The advance of computer technology has allowed traditional machine learning, and deep learning methods to be used to predict enhancer, promoter, and EPIs from genetic, genomic, and epigenomic features. In the past decade, models based on deep learning, especially transfer learning, have been proposed for directly predicting enhancer-promoter interactions from DNA sequences, and these models can reduce the parameter training time required of bioinformatics researchers. We believe this review can provide detailed research frameworks for researchers who are beginning to study enhancers, promoters, and their interactions.
In this review article, we discuss prediction methods for enhancers, promoters, and enhancer-promoter interactions that may help researchers choose methods for identifying cis-regulatory elements.
enhancer / promoter / enhancer-promoter interaction / machine learning / deep learning
[1] |
Bondarenko,V. A., Liu,Y. V., Jiang,Y. I. Studitsky,V. (2003). Communication over a large distance: enhancers and insulators. Biochem. Cell Biol., 81: 241–251
CrossRef
Google scholar
|
[2] |
Plank,J. L. (2014). Enhancer function: mechanistic and genome-wide insights come together. Mol. Cell, 55: 5–14
CrossRef
Google scholar
|
[3] |
Haberle,V. (2016). Promoter architectures and developmental gene regulation. Semin. Cell Dev. Biol., 57: 11–23
CrossRef
Google scholar
|
[4] |
Harismendy,O., Notani,D., Song,X., Rahim,N. G., Tanasa,B., Heintzman,N., Ren,B., Fu,X. D., Topol,E. J., Rosenfeld,M. G.
CrossRef
Google scholar
|
[5] |
Luo,X., Liu,Y., Dang,D., Hu,T., Hou,Y., Meng,X., Zhang,F., Li,T., Wang,C., Li,M.
CrossRef
Google scholar
|
[6] |
Schmitt,A. D., Hu,M., Jung,I., Xu,Z., Qiu,Y., Tan,C. L., Li,Y., Lin,S., Lin,Y., Barr,C. L.
CrossRef
Google scholar
|
[7] |
Policarpi,C., Crepaldi,L., Brookes,E., Nitarska,J., French,S. M., Coatti,A. (2017). Enhancer sines link pol III to pol II transcription in neurons. Cell Rep., 21: 2879–2894
CrossRef
Google scholar
|
[8] |
Mumbach,M. R., Satpathy,A. T., Boyle,E. A., Dai,C., Gowen,B. G., Cho,S. W., Nguyen,M. L., Rubin,A. J., Granja,J. M., Kazane,K. R.
CrossRef
Google scholar
|
[9] |
May,D., Blow,M. J., Kaplan,T., McCulley,D. J., Jensen,B. C., Akiyama,J. A., Holt,A., Plajzer-Frick,I., Shoukry,M., Wright,C.
CrossRef
Google scholar
|
[10] |
Davison,L. J., Wallace,C., Cooper,J. D., Cope,N. F., Wilson,N. K., Smyth,D. J., Howson,J. M., Saleh,N., Al-Jeffery,A., Angus,K. L.
CrossRef
Google scholar
|
[11] |
Smemo,S., Tena,J. J., Kim,K. Gamazon,E. R., Sakabe,N. J., Aneas,I., Credidio,F. L., Sobreira,D. R., Wasserman,N. F.
CrossRef
Google scholar
|
[12] |
Schmidl,C., Rendeiro,A. F., Sheffield,N. C. (2015). ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors. Nat. Methods, 12: 963–965
CrossRef
Google scholar
|
[13] |
Carey,M. F., Peterson,C. L. Smale,S. (2009). Chromatin immunoprecipitation (ChIP). Cold Spring Harb. Protoc., 2009: pdb.prot5279
|
[14] |
Skene,P. J. (2017). An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife, 6: e21856
CrossRef
Google scholar
|
[15] |
Belton,J. M., McCord,R. P., Gibcus,J. H., Naumova,N., Zhan,Y. (2012). Hi-C: a comprehensive technique to capture the conformation of genomes. Methods, 58: 268–276
CrossRef
Google scholar
|
[16] |
Liang,Z., Li,G., Wang,Z., Djekidel,M. N., Li,Y., Qian,M. Zhang,M. Q. (2017). BL-Hi-C is an efficient and sensitive approach for capturing structural and regulatory chromatin interactions. Nat. Commun., 8: 1622
CrossRef
Google scholar
|
[17] |
Schoenfelder,S., Javierre,B. M., Furlan-Magaril,M., Wingett,S. W. (2018). Promoter capture Hi-C: high-resolution, genome-wide profiling of promoter interactions. J. Vis. Exp.,
|
[18] |
Li,G., Ruan,X., Auerbach,R. K., Sandhu,K. S., Zheng,M., Wang,P., Poh,H. M., Goh,Y., Lim,J., Zhang,J.
CrossRef
Google scholar
|
[19] |
Mumbach,M. R., Rubin,A. J., Flynn,R. A., Dai,C., Khavari,P. A., Greenleaf,W. J. Chang,H. (2016). HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods, 13: 919–922
CrossRef
Google scholar
|
[20] |
Khan,Z. U., Pi,D. C., Yao,S. L., Nawaz,A., Ali,F. (2021). Pienpred: a bi-layered discriminative model for enhancers and their subtypes via novel cascade multi-level subset feature selection algorithm. Front. Comput. Sci., 15: 1–11
CrossRef
Google scholar
|
[21] |
Visel,A., Rubin,E. M. Pennacchio,L. (2009). Genomic views of distant-acting enhancers. Nature, 461: 199–205
CrossRef
Google scholar
|
[22] |
Levine,M. (2010). Transcriptional enhancers in animal development and evolution. Curr. Biol., 20: R754–R763
CrossRef
Google scholar
|
[23] |
Bulger,M. (2011). Functional and mechanistic diversity of distal transcription enhancers. Cell, 144: 327–339
CrossRef
Google scholar
|
[24] |
Kim,T. K. (2015). Architectural and functional commonalities between enhancers and promoters. Cell, 162: 948–959
CrossRef
Google scholar
|
[25] |
Ong,C. T. Corces,V. (2011). Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet., 12: 283–293
CrossRef
Google scholar
|
[26] |
Calo,E. (2013). Modification of enhancer chromatin: what, how, and why? Mol. Cell, 49: 825–837
CrossRef
Google scholar
|
[27] |
Yao,L., Berman,B. P. Farnham,P. (2015). Demystifying the secret mission of enhancers: linking distal regulatory elements to target genes. Crit. Rev. Biochem. Mol. Biol., 50: 550–573
CrossRef
Google scholar
|
[28] |
Kleftogiannis,D., Kalnis,P. Bajic,V. (2016). Progress and challenges in bioinformatics approaches for enhancer identification. Brief. Bioinform., 17: 967–979
CrossRef
Google scholar
|
[29] |
Lim,L. W. K., Chung,H. H., Chong,Y. L. Lee,N. (2018). A survey of recently emerged genome-wide computational enhancer predictor tools. Comput. Biol. Chem., 74: 132–141
CrossRef
Google scholar
|
[30] |
Kaur,A., Chauhan,A. P. S., Aggarwal,A. K. (2019). Machine learning based comparative analysis of methods for enhancer prediction in genomic data. In: 2019 2nd International Conference on Intelligent Communication and Computational Techniques (ICCT),
|
[31] |
Kyrchanova,O. (2021). Mechanisms of enhancer-promoter interactions in higher eukaryotes. Int. J. Mol. Sci., 22: 671
CrossRef
Google scholar
|
[32] |
Mora,A., Sandve,G. K., Gabrielsen,O. S. (2016). In the loop: promoter-enhancer interactions and bioinformatics. Brief. Bioinform., 17: 980–995
|
[33] |
Vanhaeren,T., Divina,F., a-Torres,M., mez-Vela,F., Vanhoof,W. (2020). A comparative study of supervised machine learning algorithms for the prediction of long-range chromatin interactions. Genes (Basel), 11: 985
CrossRef
Google scholar
|
[34] |
Tao,H., Li,H., Xu,K., Hong,H., Jiang,S., Du,G., Wang,J., Sun,Y., Huang,X., Ding,Y.
CrossRef
Google scholar
|
[35] |
Xu,H., Zhang,S., Yi,X., Plewczynski,D. Li,M. (2020). Exploring 3D chromatin contacts in gene regulation: the evolution of approaches for the identification of functional enhancer-promoter interaction. Comput. Struct. Biotechnol. J., 18: 558–570
CrossRef
Google scholar
|
[36] |
He,C., Li,G., Nadhir,D. M., Chen,Y., Wang,X. Zhang,M. (2016). Advances in computational CHiA-PET data analysis. Quant. Biol., 4: 217–225
CrossRef
Google scholar
|
[37] |
Min,X., Lu,F. (2021). Sequence-based deep learning frameworks on enhancer-promoter interactions prediction. Curr. Pharm. Des., 27: 1847–1855
CrossRef
Google scholar
|
[38] |
Schoenfelder,S. (2019). Long-range enhancer-promoter contacts in gene expression control. Nat. Rev. Genet., 20: 437–455
CrossRef
Google scholar
|
[39] |
Kulaeva,O. I., Nizovtseva,E. V., Polikanov,Y. S., Ulianov,S. V. Studitsky,V. (2012). Distant activation of transcription: mechanisms of enhancer action. Mol. Cell. Biol., 32: 4892–4897
CrossRef
Google scholar
|
[40] |
Williams,A., Spilianakis,C. G. Flavell,R. (2010). Interchromosomal association and gene regulation in trans. Trends Genet., 26: 188–197
CrossRef
Google scholar
|
[41] |
Maass,P. G., Barutcu,A. R. Rinn,J. (2019). Interchromosomal interactions: a genomic love story of kissing chromosomes. J. Cell Biol., 218: 27–38
CrossRef
Google scholar
|
[42] |
He,B., Chen,C., Teng,L. (2014). Global view of enhancer-promoter interactome in human cells. Proc. Natl. Acad. Sci. USA, 111: E2191–E2199
CrossRef
Google scholar
|
[43] |
Patel,B., Kang,Y., Cui,K., Litt,M., Riberio,M. S., Deng,C., Salz,T., Casada,S., Fu,X., Qiu,Y.
CrossRef
Google scholar
|
[44] |
Lee,D., Karchin,R. Beer,M. (2011). Discriminative prediction of mammalian enhancers from DNA sequence. Genome Res., 21: 2167–2180
CrossRef
Google scholar
|
[45] |
Taher,L., Narlikar,L. (2012). Clare: cracking the language of regulatory elements. Bioinformatics, 28: 581–583
CrossRef
Google scholar
|
[46] |
ndez,M. (2012). Genome-wide enhancer prediction from epigenetic signatures using genetic algorithm-optimized support vector machines. Nucleic Acids Res., 40: e77–e77
CrossRef
Google scholar
|
[47] |
Rajagopal,N., Xie,W., Li,Y., Wagner,U., Wang,W., Stamatoyannopoulos,J., Ernst,J., Kellis,M. (2013). RFECS: a random-forest based algorithm for enhancer identification from chromatin state. PLOS Comput. Biol., 9: e1002968
CrossRef
Google scholar
|
[48] |
Ghandi,M., Lee,D., Mohammad-Noori,M. Beer,M. (2014). Enhanced regulatory sequence prediction using gapped k-mer features. PLOS Comput. Biol., 10: e1003711
CrossRef
Google scholar
|
[49] |
Erwin,G. D., Oksenberg,N., Truty,R. M., Kostka,D., Murphy,K. K., Ahituv,N., Pollard,K. S. Capra,J. (2014). Integrating diverse datasets improves developmental enhancer prediction. PLOS Comput. Biol., 10: e1003677
CrossRef
Google scholar
|
[50] |
Lu,Y., Qu,W., Shan,G. (2015). Delta: a distal enhancer locating tool based on AdaBoost algorithm and shape features of chromatin modifications. PLoS One, 10: e0130622
CrossRef
Google scholar
|
[51] |
Kleftogiannis,D., Kalnis,P. Bajic,V. (2015). DEEP: a general computational framework for predicting enhancers. Nucleic Acids Res., 43: e6
CrossRef
Google scholar
|
[52] |
Liu,B. (2016). Ienhancer-psedeknc: identification of enhancers and their subgroups based on pseudo degenerate kmer nucleotide composition. Neurocomputing, 217: 46–52
CrossRef
Google scholar
|
[53] |
Liu,B., Fang,L., Long,R., Lan,X. Chou,K. (2016). iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics, 32: 362–369
CrossRef
Google scholar
|
[54] |
Jia,C. (2016). EnhancerPred: a predictor for discovering enhancers based on the combination and selection of multiple features. Sci. Rep., 6: 38741
CrossRef
Google scholar
|
[55] |
Xu,J., Hu,H. (2016). Lmethyr-svm: predict human enhancers using low methylated regions based on weighted support vector machines. PLoS One, 11: e0163491
CrossRef
Google scholar
|
[56] |
Colbran,L. L., Chen,L. Capra,J. (2017). Short DNA sequence patterns accurately identify broadly active human enhancers. BMC Genomics, 18: 536
CrossRef
Google scholar
|
[57] |
He,W. (2017). EnhancerPred2.0: predicting enhancers and their strength based on position-specific trinucleotide propensity and electron-ion interaction potential feature selection. Mol. Biosyst., 13: 767–774
CrossRef
Google scholar
|
[58] |
He,Y., Gorkin,D. U., Dickel,D. E., Nery,J. R., Castanon,R. G., Lee,A. Y., Shen,Y., Visel,A., Pennacchio,L. A., Ren,B.
CrossRef
Google scholar
|
[59] |
Liu,B., Li,K., Huang,D. S. Chou,K. (2018). iEnhancer-EL: identifying enhancers and their strength with ensemble learning approach. Bioinformatics, 34: 3835–3842
CrossRef
Google scholar
|
[60] |
Kleftogiannis,D., Ashoor,H. Bajic,V. (2018). Tels: a novel computational framework for identifying motif signatures of transcribed enhancers. Genom. Proteom. Bioinf., 16: 332–341
CrossRef
Google scholar
|
[61] |
Singh,A. P., Mishra,S. (2018). Sequence based prediction of enhancer regions from DNA random walk. Sci. Rep., 8: 15912
CrossRef
Google scholar
|
[62] |
Sethi,A., Gu,M., Gumusgoz,E., Chan,L., Yan,K. K., Rozowsky,J., Barozzi,I., Afzal,V., Akiyama,J. A., Plajzer-Frick,I.
CrossRef
Google scholar
|
[63] |
Lim,D. Y., Khanal,J., Tayara,H. Chong,K. (2021). Ienhancer-rf: identifying enhancers and their strength by enhanced feature representation using random forest. Chemom. Intell. Lab. Syst., 212: 104284
CrossRef
Google scholar
|
[64] |
Lyu,Y., Zhang,Z., Li,J., He,W., Ding,Y. (2021). Ienhancer-kl: a novel two-layer predictor for identifying enhancers by position specific of nucleotide composition. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 18: 2809–2815
CrossRef
Google scholar
|
[65] |
Niu,X., Deng,K., Liu,L., Yang,K. (2021). A statistical framework for predicting critical regions of p53-dependent enhancers. Brief. Bioinform., 22: bbaa053
CrossRef
Google scholar
|
[66] |
Basith,S., Hasan,M. M., Lee,G., Wei,L. (2021). Integrative machine learning framework for the identification of cell-specific enhancers from the human genome. Brief. Bioinform., 22: bbab252
CrossRef
Google scholar
|
[67] |
Firpi,H. A., Ucar,D. (2010). Discover regulatory DNA elements using chromatin signatures and artificial neural network. Bioinformatics, 26: 1579–1586
CrossRef
Google scholar
|
[68] |
Liu,F., Li,H., Ren,C., Bo,X. (2016). PEDLA: predicting enhancers with a deep learning-based algorithmic framework. Sci. Rep., 6: 28517
CrossRef
Google scholar
|
[69] |
Min,X., Zeng,W., Chen,S., Chen,N., Chen,T. (2017). Predicting enhancers with deep convolutional neural networks. BMC Bioinformatics, 18: 478
CrossRef
Google scholar
|
[70] |
Yang,B., Liu,F., Ren,C., Ouyang,Z., Xie,Z., Bo,X. (2017). BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone. Bioinformatics, 33: 1930–1936
CrossRef
Google scholar
|
[71] |
Thibodeau,A., Uyar,A., Khetan,S., Stitzel,M. L. (2018). A neural network based model effectively predicts enhancers from clinical ATAC-seq samples. Sci. Rep., 8: 16048
CrossRef
Google scholar
|
[72] |
Le,N. Q. K., Yapp,E. K. Y., Ho,Q. T., Nagasundaram,N., Ou,Y. Y. Yeh,H. (2019). iEnhancer-5Step: identifying enhancers using hidden information of DNA sequences via Chou’s 5-step rule and word embedding. Anal. Biochem., 571: 53–61
CrossRef
Google scholar
|
[73] |
Khanal,J., Tayara,H. Chong,K. (2020). Identifying enhancers and their strength by the integration of word embedding and convolution neural network. IEEE Access, 8: 58369–58376
CrossRef
Google scholar
|
[74] |
Chen,S., Gan,M., Lv,H. (2021). Deepcape: a deep convolutional neural network for the accurate prediction of enhancers. Genom. Proteom. Bioinf., 19: 565–577
CrossRef
Google scholar
|
[75] |
Chen,Z., Zhang,J., Liu,J., Dai,Y., Lee,D., Min,M. R., Xu,M. (2021). DECODE: a Deep-learning framework for condensing enhancers and refining boundaries with large-scale functional assays. Bioinformatics, 37: i280–i288
CrossRef
Google scholar
|
[76] |
Zhang,T. H., Flores,M. (2021). ES-ARCNN: predicting enhancer strength by using data augmentation and residual convolutional neural network. Anal. Biochem., 618: 114120
CrossRef
Google scholar
|
[77] |
Inayat,N., Khan,M., Iqbal,N., Khan,S., Raza,M., Khan,D. M., Khan,A. Wei,D. (2021). Ienhancer-dhf: identification of enhancers and their strengths using optimize deep neural network with multiple features extraction methods. IEEE Access, 9: 40783–40796
CrossRef
Google scholar
|
[78] |
Yang,R., Wu,F., Zhang,C. (2021). Ienhancer-gan: a deep learning framework in combination with word embedding and sequence generative adversarial net to identify enhancers and their strength. Int. J. Mol. Sci., 22: 3589
CrossRef
Google scholar
|
[79] |
Gao,Y., Chen,Y., Feng,H., Zhang,Y. (2022). Ricenn: prediction of rice enhancers with neural network based on DNA sequences. Interdiscip. Sci., 14: 555–565
CrossRef
Google scholar
|
[80] |
Amilpur,S. (2022). A sequence-based two-layer predictor for identifying enhancers and their strength through enhanced feature extraction. J. Bioinform. Comput. Biol., 20: 2250005
CrossRef
Google scholar
|
[81] |
Kamran,H., Tahir,M., Tayara,H. Chong,K. (2022). Ienhancer-deep: a computational predictor for enhancer sites and their strength using deep learning. Appl. Sci. (Basel), 12: 2120
CrossRef
Google scholar
|
[82] |
Zhao,S., Pan,Q., Zou,Q., Ju,Y., Shi,L. (2022). Identifying and classifying enhancers by dinucleotide-based auto-cross covariance and attention-based Bi-LSTM. Comput. Math. Methods Med., 2022: 7518779
CrossRef
Google scholar
|
[83] |
Song,K. (2012). Recognition of prokaryotic promoters based on a novel variable-window Z-curve method. Nucleic Acids Res., 40: 963–971
CrossRef
Google scholar
|
[84] |
Li,Y., Chen,C. Y. Wasserman,W. (2016). Deep feature selection: theory and application to identify enhancers and promoters. J. Comput. Biol., 23: 322–336
CrossRef
Google scholar
|
[85] |
Umarov,R. K. Solovyev,V. (2017). Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks. PLoS One, 12: e0171410
CrossRef
Google scholar
|
[86] |
Coelho,R. V., de Avila E Silva,S., Echeverrigaray,S., Delamare,A. P. L. Delamare,A. P. (2018). Bacillus subtilis promoter sequences data set for promoter prediction in Gram-positive bacteria. Data Brief, 19: 264–270
CrossRef
Google scholar
|
[87] |
Liu,B., Yang,F., Huang,D. S. Chou,K. (2018). iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC. Bioinformatics, 34: 33–40
CrossRef
Google scholar
|
[88] |
Oubounyt,M., Louadi,Z., Tayara,H. Chong,K. (2019). Deepromoter: robust promoter predictor using deep learning. Front. Genet., 10: 286
CrossRef
Google scholar
|
[89] |
Le,N. Q. K., Yapp,E. K. Y., Nagasundaram,N. Yeh,H. (2019). Classifying promoters by interpreting the hidden information of DNA sequences via deep learning and combination of continuous fasttext N-grams. Front. Bioeng. Biotechnol., 7: 305
CrossRef
Google scholar
|
[90] |
Umarov,R., Kuwahara,H., Li,Y., Gao,X. (2019). Promoter analysis and prediction in the human genome using sequence-based deep learning models. Bioinformatics, 35: 2730–2737
CrossRef
Google scholar
|
[91] |
Lai,H. Y., Zhang,Z. Y., Su,Z. D., Su,W., Ding,H., Chen,W. (2019). Iproep: a computational predictor for predicting promoter. Mol. Ther. Nucleic Acids, 17: 337–346
CrossRef
Google scholar
|
[92] |
Liu,B. (2019). Ipromoter-2l2. 0: identifying promoters and their types by combining smoothing cutting window algorithm and sequence-based features. Mol. Ther. Nucleic Acids, 18: 80–87
CrossRef
Google scholar
|
[93] |
Rahman,M. S., Aktar,U., Jani,M. R. (2019). iPromoter-FSEn: identification of bacterial σ70 promoter sequences using feature subspace based ensemble classifier. Genomics, 111: 1160–1166
CrossRef
Google scholar
|
[94] |
Rahman,M. S., Aktar,U., Jani,M. R. (2019). iPro70-FMWin: identifying Sigma70 promoters using multiple windowing and minimal features. Mol. Genet. Genomics, 294: 69–84
CrossRef
Google scholar
|
[95] |
Xiao,X., Xu,Z. C., Qiu,W. R., Wang,P., Ge,H. T. Chou,K. (2019). iPSW(2L)-PseKNC: a two-layer predictor for identifying promoters and their strength by hybrid features via pseudo k-tuple nucleotide composition. Genomics, 111: 1785–1793
CrossRef
Google scholar
|
[96] |
Zhang,M., Li,F., Marquez-Lago,T. T., Leier,A., Fan,C., Kwoh,C. K., Chou,K. C., Song,J. (2019). MULTiPly: a novel multi-layer predictor for discovering general and specific types of promoters. Bioinformatics, 35: 2957–2965
CrossRef
Google scholar
|
[97] |
Chen,Y. L., Guo,D. H. Li,Q. (2020). An energy model for recognizing the prokaryotic promoters based on molecular structure. Genomics, 112: 2072–2079
CrossRef
Google scholar
|
[98] |
Amin,R., Rahman,C. R., Ahmed,S., Sifat,M. H. R., Liton,M. N. K., Rahman,M. M., Khan,M. Z. H. (2020). iPromoter-BnCNN: a novel branched CNN-based predictor for identifying and classifying sigma promoters. Bioinformatics, 36: 4869–4875
CrossRef
Google scholar
|
[99] |
Tayara,H., Tahir,M. Chong,K. (2020). Identification of prokaryotic promoters and their strength by integrating heterogeneous features. Genomics, 112: 1396–1403
CrossRef
Google scholar
|
[100] |
Shujaat,M., Wahab,A., Tayara,H. Chong,K. (2020). Pcpromoter-CNN: a CNN-based prediction and classification of promoters. Genes (Basel), 11: 1529
CrossRef
Google scholar
|
[101] |
Liang,Y., Zhang,S., Qiao,H. (2021). iPromoter-ET: identifying promoters and their strength by extremely randomized trees-based feature selection. Anal. Biochem., 630: 114335
CrossRef
Google scholar
|
[102] |
Shujaat,M., Lee,S. B., Tayara,H. Chong,K. (2021). Cr-prom: a convolutional neural network-based model for the prediction of rice promoters. IEEE Access, 9: 81485–81491
CrossRef
Google scholar
|
[103] |
Lyu,Y., He,W., Li,S., Zou,Q. (2021). Ipro2l-pstknc: a two-layer predictor for discovering various types of promoters by position specific of nucleotide composition. IEEE J. Biomed. Health Inform., 25: 2329–2337
CrossRef
Google scholar
|
[104] |
Sun,A., Xiao,X. (2021). Iptt(2 L)-CNN: a two-layer predictor for identifying promoters and their types in plant genomes by convolutional neural network. Comput. Math. Methods Med., 2021: 6636350
CrossRef
Google scholar
|
[105] |
Zhu,Y., Li,F., Xiang,D., Akutsu,T., Song,J. (2021). Computational identification of eukaryotic promoters based on cascaded deep capsule neural networks. Brief. Bioinform., 22: bbaa299
CrossRef
Google scholar
|
[106] |
Bhukya,R., Kumari,A., Amilpur,S. Dasari,C. (2022). PPred-PCKSM: a multi-layer predictor for identifying promoter and its variants using position based features. Comput. Biol. Chem., 97: 107623
CrossRef
Google scholar
|
[107] |
Li,H., Shi,L., Gao,W., Zhang,Z., Zhang,L., Zhao,Y. (2022). dPromoter-XGBoost: detecting promoters and strength by combining multiple descriptors and feature selection using XGBoost. Methods, 204: 215–222
CrossRef
Google scholar
|
[108] |
Li,Q. W., Zhang,L. C., Xu,L., Zou,Q., Wu,J. Li,Q. (2022). Identification and classification of promoters using the attention mechanism based on long short-term memory. Front. Comput. Sci., 16: 164348
CrossRef
Google scholar
|
[109] |
Qiao,H., Zhang,S., Xue,T., Wang,J. (2022). iPro-GAN: a novel model based on generative adversarial learning for identifying promoters and their strength. Comput. Methods Programs Biomed., 215: 106625
CrossRef
Google scholar
|
[110] |
Wang,Y., Peng,Q., Mou,X., Wang,X., Li,H., Han,T., Sun,Z. (2022). A successful hybrid deep learning model aiming at promoter identification. BMC Bioinformatics, 23: 206
CrossRef
Google scholar
|
[111] |
Wei,P. J., Pang,Z. Z., Jiang,L. J., Tan,D. Y., Su,Y. S. Zheng,C. (2022). Promoter prediction in nannochloropsis based on densely connected convolutional neural networks. Methods, 204: 38–46
CrossRef
Google scholar
|
[112] |
Mifsud,B., Tavares-Cadete,F., Young,A. N., Sugar,R., Schoenfelder,S., Ferreira,L., Wingett,S. W., Andrews,S., Grey,W., Ewels,P. A.
CrossRef
Google scholar
|
[113] |
Javierre,B. M., Burren,O. S., Wilder,S. P., Kreuzhuber,R., Hill,S. M., Sewitz,S., Cairns,J., Wingett,S. W., rnai,C., Thiecke,M. J.
CrossRef
Google scholar
|
[114] |
Mikolov,T., Yih,W. (2013). Linguistic regularities in continuous space word representations. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human language technologies,
|
[115] |
Pennington,J., Socher,R. Manning,C. (2014). Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
|
[116] |
Ng,P. (2017). Dna2vec: consistent vector representations of variable-length k-mers. arXiv,
|
[117] |
Jiang,Y., Qian,F., Bai,X., Liu,Y., Wang,Q., Ai,B., Han,X., Shi,S., Zhang,J., Li,X.
CrossRef
Google scholar
|
[118] |
rier,R. C., Praz,V., Junier,T., Bonnard,C. (2000). The eukaryotic promoter database (EPD). Nucleic Acids Res., 28: 302–303
CrossRef
Google scholar
|
[119] |
Ferretti,V., Poitras,C., Bergeron,D., Coulombe,B., Robert,F. (2007). PReMod: a database of genome-wide mammalian cis-regulatory module predictions. Nucleic Acids Res., 35: D122–D126
CrossRef
Google scholar
|
[120] |
Andersson,R., Gebhard,C., Miguel-Escalada,I., Hoof,I., Bornholdt,J., Boyd,M., Chen,Y., Zhao,X., Schmidl,C., Suzuki,T.
CrossRef
Google scholar
|
[121] |
Visel,A., Minovitsky,S., Dubchak,I. Pennacchio,L. (2007). VISTA Enhancer Browser—a database of tissue-specific human enhancers. Nucleic Acids Res., 35: D88–D92
CrossRef
Google scholar
|
[122] |
Hoke,H. A., Lin,C. Y., Lau,A., Orlando,D. A., Vakoc,C. R., Bradner,J. E., Lee,T. I. Young,R. (2013). Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell, 153: 320–334
CrossRef
Google scholar
|
[123] |
Bai,X., Shi,S., Ai,B., Jiang,Y., Liu,Y., Han,X., Xu,M., Pan,Q., Wang,F., Wang,Q.
|
[124] |
Wei,Y., Zhang,S., Shang,S., Zhang,B., Li,S., Wang,X., Wang,F., Su,J., Wu,Q., Liu,H.
CrossRef
Google scholar
|
[125] |
Cai,Z. N., Cui,Y., Tan,Z. Y., Zhang,G. H., Tan,Z. Y., Zhang,X. L. Peng,Y. (2019). RAEdb: A database of enhancers identified by high-throughput reporter assays. Database (Oxford),
|
[126] |
Guo,Z. W., Xie,C., Li,K., Zhai,X. M., Cai,G. X., Yang,X. X. Wu,Y. (2019). Seler: a database of super-enhancer-associated lncRNA-directed transcriptional regulation in human cancers. Database (Oxford),
|
[127] |
Zeng,W. W., Min,X. (2019). Endisease: a manually curated database for enhancer-disease associations. Database (Oxford),
|
[128] |
Huang,M., Wang,Y., Yang,M., Yan,J., Yang,H., Zhuang,W., Xu,Y., Koeffler,H. P., Lin,D. C. (2020). dbInDel: a database of enhancer-associated insertion and deletion variants by analysis of H3K27ac ChIP-Seq. Bioinformatics, 36: 1649–1651
|
[129] |
Kumar,R., Lathwal,A., Kumar,V., Patiyal,S., Raghav,P. K. Raghava,G. P. (2020). CancerEnD: a database of cancer associated enhancers. Genomics, 112: 3696–3702
CrossRef
Google scholar
|
[130] |
Vasyuchenko,E. P., Orekhov,P. S., Armeev,G. A. Bozdaganyan,M. (2021). Cpe-db: an open database of chemical penetration enhancers. Pharmaceutics, 13: 66
CrossRef
Google scholar
|
[131] |
Jin,W., Jiang,G., Yang,Y., Yang,J., Yang,W., Wang,D., Niu,X., Zhong,R., Zhang,Z. (2022). Animal-eRNAdb: a comprehensive animal enhancer RNA database. Nucleic Acids Res., 50: D46–D53
CrossRef
Google scholar
|
[132] |
Shahmuradov,I. A., Gammerman,A. J., Hancock,J. M., Bramley,P. M. Solovyev,V. (2003). PlantProm: a database of plant promoter sequences. Nucleic Acids Res., 31: 114–117
CrossRef
Google scholar
|
[133] |
Smirnova,O. G., Ibragimova,S. S. Kochetov,A. (2012). Simple database to select promoters for plant transgenesis. Transgenic Res., 21: 429–437
CrossRef
Google scholar
|
[134] |
Grienberg,I. (2005). Osteo-Promoter Database (OPD)—promoter analysis in skeletal cells. BMC Genomics, 6: 46
CrossRef
Google scholar
|
[135] |
Morris,R. T., Connor,T. R. Wyrick,J. (2008). Osiris: an integrated promoter database for Oryza sativa L. Bioinformatics, 24: 2915–2917
CrossRef
Google scholar
|
[136] |
Chen,X., Wu,J. M., Hornischer,K., Kel,A. (2006). Tiprod: the tissue-specific promoter database. Nucleic Acids Res., 34: D104–D107
CrossRef
Google scholar
|
[137] |
Nishikata,K., Cox,R. S. Shimoyama,S., Yoshida,Y., Matsui,M., Makita,Y. (2014). Database construction for PromoterCAD: synthetic promoter design for mammals and plants. ACS Synth. Biol., 3: 192–196
CrossRef
Google scholar
|
[138] |
Dreos,R., Ambrosini,G., rier,R. C. (2015). The Eukaryotic Promoter Database: expansion of EPDnew and new promoter analysis tools. Nucleic Acids Res., 43: D92–D96
CrossRef
Google scholar
|
[139] |
Su,W., Liu,M. L., Yang,Y. H., Wang,J. S., Li,S. H., Lv,H., Dao,F. Y., Yang,H. (2021). Ppd: a manually curated database for experimentally verified prokaryotic promoters. J. Mol. Biol., 433: 166860
CrossRef
Google scholar
|
[140] |
Gordon,L., Chervonenkis,A. Y., Gammerman,A. J., Shahmuradov,I. A. Solovyev,V. (2003). Sequence alignment kernel for recognition of promoter regions. Bioinformatics, 19: 1964–1971
CrossRef
Google scholar
|
[141] |
Towsey,M., Timms,P., Hogan,J. Mathews,S. (2008). The cross-species prediction of bacterial promoters using a support vector machine. Comput. Biol. Chem., 32: 359–366
CrossRef
Google scholar
|
[142] |
Knudsen,S. (1999). Promoter2.0: for the recognition of PolII promoter sequences. Bioinformatics, 15: 356–361
CrossRef
Google scholar
|
[143] |
Whalen,S., Truty,R. M. Pollard,K. (2016). Enhancer-promoter interactions are encoded by complex genomic signatures on looping chromatin. Nat. Genet., 48: 488–496
CrossRef
Google scholar
|
[144] |
Yang,Y., Zhang,R., Singh,S. (2017). Exploiting sequence-based features for predicting enhancer-promoter interactions. Bioinformatics, 33: i252–i260
CrossRef
Google scholar
|
[145] |
Zeng,W., Wu,M. (2018). Prediction of enhancer-promoter interactions via natural language processing. BMC Genomics, 19: 84
CrossRef
Google scholar
|
[146] |
Singh,S., Yang,Y., czos,B. (2019). Predicting enhancer-promoter interaction from genomic sequence with deep neural networks. Quant. Biol., 7: 122–137
CrossRef
Google scholar
|
[147] |
Zhang,T. (2019). An approach for recognition of enhancer-promoter associations based on random forest. In: Proceedings of the 2019 4th International Conference on Biomedical Signal and Image Processing (ICBIP 2019),
|
[148] |
Zhuang,Z., Shen,X. (2019). A simple convolutional neural network for prediction of enhancer-promoter interactions with DNA sequence data. Bioinformatics, 35: 2899–2906
CrossRef
Google scholar
|
[149] |
Hong,Z., Zeng,X., Wei,L. (2020). Identifying enhancer-promoter interactions with neural network based on pre-trained DNA vectors and attention mechanism. Bioinformatics, 36: 1037–1043
CrossRef
Google scholar
|
[150] |
Singh,A. P., Mishra,S. (2018). Sequence based prediction of enhancer regions from DNA random walk. Sci Rep. 8,
|
[151] |
Min,X., Ye,C., Liu,X. (2021). Predicting enhancer-promoter interactions by deep learning and matching heuristic. Brief. Bioinform., 22: bbaa254
CrossRef
Google scholar
|
[152] |
Zhang,M., Hu,Y. (2021). Epishilbert: prediction of enhancer-promoter interactions via hilbert curve encoding and transfer learning. Genes (Basel), 12: 1385
CrossRef
Google scholar
|
[153] |
Ni,Y., Fan,L., Wang,M., Zhang,N., Zuo,Y. (2022). Epi-mind: identifying enhancer-promoter interactions based on transformer mechanism. Interdiscip. Sci., 14: 786–794
CrossRef
Google scholar
|
[154] |
Talukder,A., Saadat,S., Li,X. (2019). EPIP: a novel approach for condition-specific enhancer-promoter interaction prediction. Bioinformatics, 35: 3877–3883
CrossRef
Google scholar
|
[155] |
Jing,F., Zhang,S. W. (2020). Prediction of enhancer-promoter interactions using the cross-cell type information and domain adversarial neural network. BMC Bioinformatics, 21: 507
CrossRef
Google scholar
|
[156] |
Chawla,N. V., Bowyer,K. W., Hall,L. O. Kegelmeyer,W. (2002). Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res., 16: 321–357
CrossRef
Google scholar
|
[157] |
Rao,S. S. P., Huntley,M. H., Durand,N. C., Stamenova,E. K., Bochkov,I. D., Robinson,J. T., Sanborn,A. L., Machol,I., Omer,A. D., Lander,E. S.
CrossRef
Google scholar
|
[158] |
Servant,N., Varoquaux,N., Lajoie,B. R., Viara,E., Chen,C. Vert,J. Heard,E., Dekker,J. (2015). HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol., 16: 259
CrossRef
Google scholar
|
[159] |
Kerpedjiev,P., Abdennur,N., Lekschas,F., McCallum,C., Dinkla,K., Strobelt,H., Luber,J. M., Ouellette,S. B., Azhir,A., Kumar,N.
CrossRef
Google scholar
|
[160] |
Cao,Y., Chen,Z., Chen,X., Ai,D., Chen,G., McDermott,J., Huang,Y., Guo,X. Han,J. (2020). Accurate loop calling for 3D genomic data with cLoops. Bioinformatics, 36: 666–675
CrossRef
Google scholar
|
[161] |
Kaul,A., Bhattacharyya,S. (2020). Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2. Nat. Protoc., 15: 991–1012
CrossRef
Google scholar
|
[162] |
Roayaei Ardakany,A., Gezer,H. T., Lonardi,S. (2020). Mustache: multi-scale detection of chromatin loops from Hi-C and Micro-C maps using scale-space representation. Genome Biol., 21: 256
CrossRef
Google scholar
|
[163] |
Krietenstein,N., Abraham,S., Venev,S. V., Abdennur,N., Gibcus,J., Hsieh,T. S., Parsi,K. M., Yang,L., Maehr,R., Mirny,L. A.
CrossRef
Google scholar
|
[164] |
Lagler,T. M., Abnousi,A., Hu,M., Yang,Y. (2021). HiC-ACT: improved detection of chromatin interactions from Hi-C data via aggregated Cauchy test. Am. J. Hum. Genet., 108: 257–268
CrossRef
Google scholar
|
[165] |
Lee,H. Seo,P. (2021). Hicore: Hi-c analysis for identification of core chromatin looping regions with higher resolution. Mol. Cells, 44: 883–892
CrossRef
Google scholar
|
[166] |
Lareau,C. A. Aryee,M. (2018). hichipper: a preprocessing pipeline for calling DNA loops from HiChIP data. Nat. Methods, 15: 155–156
CrossRef
Google scholar
|
[167] |
Bhattacharyya,S., Chandra,V., Vijayanand,P. (2019). Identification of significant chromatin contacts from HiChIP data by FitHiChIP. Nat. Commun., 10: 4221
CrossRef
Google scholar
|
[168] |
Fang,R., Yu,M., Li,G., Chee,S., Liu,T., Schmitt,A. D. (2016). Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res., 26: 1345–1348
CrossRef
Google scholar
|
[169] |
Juric,I., Yu,M., Abnousi,A., Raviram,R., Fang,R., Zhao,Y., Zhang,Y., Qiu,Y., Yang,Y., Li,Y.
CrossRef
Google scholar
|
[170] |
Shi,C., Rattray,M. (2020). HiChIP-Peaks: a HiChIP peak calling algorithm. Bioinformatics, 36: 3625–3631
CrossRef
Google scholar
|
[171] |
Li,G., Fullwood,M. J., Xu,H., Mulawadi,F. H., Velkov,S., Vega,V., Ariyaratne,P. N., Mohamed,Y. B., Ooi,H. S., Tennakoon,C.
CrossRef
Google scholar
|
[172] |
Paulsen,J., dland,E. A., Holden,L., Holden,M. (2014). A statistical model of ChIA-PET data for accurate detection of chromatin 3D interactions. Nucleic Acids Res., 42: e143
CrossRef
Google scholar
|
[173] |
He,C., Zhang,M. Q. (2015). MICC: an R package for identifying chromatin interactions from ChIA-PET data. Bioinformatics, 31: 3832–3834
CrossRef
Google scholar
|
[174] |
Djekidel,M. N., Liang,Z., Wang,Q., Hu,Z., Li,G., Chen,Y. Zhang,M. (2015). 3CPET: finding co-factor complexes from ChIA-PET data using a hierarchical Dirichlet process. Genome Biol., 16: 288
CrossRef
Google scholar
|
[175] |
Li,G., Chen,Y., Snyder,M. P. Zhang,M. (2017). ChIA-PET2: a versatile and flexible pipeline for ChIA-PET data analysis. Nucleic Acids Res., 45: e4
CrossRef
Google scholar
|
[176] |
Huang,W., Medvedovic,M., Zhang,J. (2019). ChIAPoP: a new tool for ChIA-PET data analysis. Nucleic Acids Res., 47: e37
CrossRef
Google scholar
|
[177] |
Lee,B., Wang,J., Cai,L., Kim,M., Namburi,S., Tjong,H., Feng,Y., Wang,P., Tang,Z., Abbas,A.
CrossRef
Google scholar
|
[178] |
Vardaxis,I., Rye,M. B. Lindqvist,B. (2020). MACPET: model-based analysis for ChIA-PET. Biostatistics, 21: 625–639
CrossRef
Google scholar
|
[179] |
Yu,X. J., Zhou,J. G., Zhao,M. M., Yi,C., Duan,Q., Zhou,W. (2020). Exploiting XGboost for predicting enhancer-promoter interactions. Curr. Bioinform., 15: 1036–1045
CrossRef
Google scholar
|
[180] |
Bartlett,P. (2006). Adaboost is consistent. Adv. Neural Inf. Process. Syst., 8: 2347–2368
|
[181] |
Zhang,S., Dong,X. (2012). Synonym recognition based on user behaviors in E-commerce. Journal of Chinese Information Processing (in Chinese), 26: 79–85
|
[182] |
Chen,T. (2016). XgBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
|
[183] |
Feng,Z. X. Li,Q. (2017). Recognition of long-range enhancer-promoter interactions by adding genomic signatures of segmented regulatory regions. Genomics, 109: 341–352
CrossRef
Google scholar
|
[184] |
Chen,K., Zhao,H. (2022). Capturing large genomic contexts for accurately predicting enhancer-promoter interactions. Brief. Bioinform., 23: bbab577
CrossRef
Google scholar
|
[185] |
Tang,L., Zhong,Z., Lin,Y., Yang,Y., Wang,J., Martin,J. F. (2022). EPIXplorer: a web server for prediction, analysis and visualization of enhancer-promoter interactions. Nucleic Acids Res., 50: W290–W297
CrossRef
Google scholar
|
[186] |
Zhu,Y., Chen,Z., Zhang,K., Wang,M., Medovoy,D., Whitaker,J. W., Ding,B., Li,N., Zheng,L. (2016). Constructing 3D interaction maps from 1D epigenomes. Nat. Commun., 7: 10812
CrossRef
Google scholar
|
[187] |
Cao,Q., Anyansi,C., Hu,X., Xu,L., Xiong,L., Tang,W., Mok,M. T. S., Cheng,C., Fan,X., Gerstein,M.
CrossRef
Google scholar
|
[188] |
Belokopytova,P. S., Nuriddinov,M. A., Mozheiko,E. A., Fishman,D. (2020). Quantitative prediction of enhancer-promoter interactions. Genome Res., 30: 72–84
CrossRef
Google scholar
|
[189] |
Lareau,C. A. Aryee,M. (2018). diffloop: a computational framework for identifying and analyzing differential DNA loops from sequencing data. Bioinformatics, 34: 672–674
CrossRef
Google scholar
|
[190] |
Lun,A. T. Smyth,G. (2015). diffHic: a Bioconductor package to detect differential genomic interactions in Hi-C data. BMC Bioinformatics, 16: 258
CrossRef
Google scholar
|
[191] |
Djekidel,M. N., Chen,Y. Zhang,M. (2018). FIND: difFerential chromatin INteractions Detection using a spatial Poisson process. Genome Res., 28: 412–422
CrossRef
Google scholar
|
[192] |
Stansfield,J. C., Cresswell,K. G., Vladimirov,V. I. Dozmorov,M. (2018). HiCcompare: an R-package for joint normalization and comparison of Hi-C datasets. BMC Bioinformatics, 19: 279
CrossRef
Google scholar
|
[193] |
Stansfield,J. C., Cresswell,K. G. Dozmorov,M. (2019). multiHiCcompare: joint normalization and comparative analysis of complex Hi-C experiments. Bioinformatics, 35: 2916–2923
CrossRef
Google scholar
|
[194] |
Baudry,L., Millot,G. A., Thierry,A., Koszul,R. Scolari,V. (2020). Serpentine: a flexible 2D binning method for differential Hi-C analysis. Bioinformatics, 36: 3645–3651
CrossRef
Google scholar
|
[195] |
Karczewski,K. J., Dudley,J. T., Kukurba,K. R., Chen,R., Butte,A. J., Montgomery,S. B. (2013). Systematic functional regulatory assessment of disease-associated variants. Proc. Natl. Acad. Sci. USA, 110: 9607–9612
CrossRef
Google scholar
|
[196] |
Corradin,O., Saiakhova,A., Akhtar-Zaidi,B., Myeroff,L., Willis,J., Cowper-Sal lari,R., Lupien,M., Markowitz,S. Scacheri,P. (2014). Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits. Genome Res., 24: 1–13
CrossRef
Google scholar
|
[197] |
Carullo,N. V. N. Day,J. (2019). Genomic enhancers in brain health and disease. Genes (Basel), 10: 43
CrossRef
Google scholar
|
[198] |
Marsman,J. Horsfield,J. (2012). Long distance relationships: enhancer-promoter communication and dynamic gene transcription. Gene Regulatory Mechanisms., 1819: 1217–1227
|
[199] |
Li,Y., He,Y., Liang,Z., Wang,Y., Chen,F., Djekidel,M. N., Li,G., Zhang,X., Xiang,S., Wang,Z.
CrossRef
Google scholar
|
[200] |
Wang,H., Yang,J., Zhang,Y. (2021). Discover novel disease-associated genes based on regulatory networks of long-range chromatin interactions. Methods, 189: 22–33
CrossRef
Google scholar
|
[201] |
Rodin,R. E., Dou,Y., Kwon,M., Sherman,M. A., Gama,A. M., Doan,R. N., Rento,L. M., Girskis,K. M., Bohrson,C. L., Kim,S. N.
CrossRef
Google scholar
|
[202] |
Fachal,L., Aschard,H., Beesley,J., Barnes,D. R., Allen,J., Kar,S., Pooley,K. A., Dennis,J., Michailidou,K., Turman,C.
CrossRef
Google scholar
|
[203] |
Dzida,T., Iqbal,M., Charapitsa,I., Reid,G., Stunnenberg,H., Matarese,F., Grote,K., Honkela,A. (2017). Predicting stimulation-dependent enhancer-promoter interactions from ChIP-Seq time course data. PeerJ, 5: e3742
CrossRef
Google scholar
|
[204] |
Feng,Z. X., Li,Q. Z. Meng,J. (2018). Recognition of the long range enhancer-promoter interactions by further adding DNA structure properties and transcription factor binding motifs in human cell lines. J. Theor. Biol., 445: 136–150
CrossRef
Google scholar
|
[205] |
Hait,T. A., Elkon,R. (2022). CT-FOCS: a novel method for inferring cell type-specific enhancer-promoter maps. Nucleic Acids Res., 50: e55
|
CREs | cis-acting regulatory elements |
EPI(s) | Enhancer-promoter interaction(s) |
TSS | Transcription start sites |
ChIP-seq | Chromatin immunoprecipitation |
CUT& RUN | Cleavage under targets and release using nuclease |
Hi-C | High-throughput chromosome conformation capture |
ChIA-PET | Chromatin interaction analysis with paired-end-tag sequencing |
TFs | Transcription factors |
TFBS | Transcription factor binding sites |
CKSNAP | Composition of k-spaced nucleic acid pair |
DCC | Dinucleotide-based cross covariance |
PseDNC | Pseudo dinucleotide composition |
PseKNC | Pseudo k-tuple nucleotide composition |
SVM | Support vector machine |
CNN | Convolution neural network |
GBDT | Gradient boosting decision tree |
LSTM | Long short-term memory |
DE | Downstream element |
/
〈 | 〉 |