Computational methods for identifying enhancer-promoter interactions

Haiyan Gong , Zhengyuan Chen , Yuxin Tang , Minghong Li , Sichen Zhang , Xiaotong Zhang , Yang Chen

Quant. Biol. ›› 2023, Vol. 11 ›› Issue (2) : 122 -142.

PDF (4491KB)
Quant. Biol. ›› 2023, Vol. 11 ›› Issue (2) : 122 -142. DOI: 10.15302/J-QB-022-0322
REVIEW
REVIEW

Computational methods for identifying enhancer-promoter interactions

Author information +
History +
PDF (4491KB)

Abstract

Background: As parts of the cis-regulatory mechanism of the human genome, interactions between distal enhancers and proximal promoters play a crucial role. Enhancers, promoters, and enhancer-promoter interactions (EPIs) can be detected using many sequencing technologies and computation models. However, a systematic review that summarizes these EPI identification methods and that can help researchers apply and optimize them is still needed.

Results: In this review, we first emphasize the role of EPIs in regulating gene expression and describe a generic framework for predicting enhancer-promoter interaction. Next, we review prediction methods for enhancers, promoters, loops, and enhancer-promoter interactions using different data features that have emerged since 2010, and we summarize the websites available for obtaining enhancers, promoters, and enhancer-promoter interaction datasets. Finally, we review the application of the methods for identifying EPIs in diseases such as cancer.

Conclusions: The advance of computer technology has allowed traditional machine learning, and deep learning methods to be used to predict enhancer, promoter, and EPIs from genetic, genomic, and epigenomic features. In the past decade, models based on deep learning, especially transfer learning, have been proposed for directly predicting enhancer-promoter interactions from DNA sequences, and these models can reduce the parameter training time required of bioinformatics researchers. We believe this review can provide detailed research frameworks for researchers who are beginning to study enhancers, promoters, and their interactions.

Graphical abstract

Keywords

enhancer / promoter / enhancer-promoter interaction / machine learning / deep learning

Cite this article

Download citation ▾
Haiyan Gong, Zhengyuan Chen, Yuxin Tang, Minghong Li, Sichen Zhang, Xiaotong Zhang, Yang Chen. Computational methods for identifying enhancer-promoter interactions. Quant. Biol., 2023, 11(2): 122-142 DOI:10.15302/J-QB-022-0322

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bondarenko,V. A., Liu,Y. V., Jiang,Y. I. Studitsky,V. (2003). Communication over a large distance: enhancers and insulators. Biochem. Cell Biol., 81: 241–251

[2]

Plank,J. L. (2014). Enhancer function: mechanistic and genome-wide insights come together. Mol. Cell, 55: 5–14

[3]

Haberle,V. (2016). Promoter architectures and developmental gene regulation. Semin. Cell Dev. Biol., 57: 11–23

[4]

Harismendy,O., Notani,D., Song,X., Rahim,N. G., Tanasa,B., Heintzman,N., Ren,B., Fu,X. D., Topol,E. J., Rosenfeld,M. G. . (2011). 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Nature, 470: 264–268

[5]

Luo,X., Liu,Y., Dang,D., Hu,T., Hou,Y., Meng,X., Zhang,F., Li,T., Wang,C., Li,M. . (2021). 3D Genome of macaque fetal brain reveals evolutionary innovations during primate corticogenesis. Cell, 184: 723–740.e21

[6]

Schmitt,A. D., Hu,M., Jung,I., Xu,Z., Qiu,Y., Tan,C. L., Li,Y., Lin,S., Lin,Y., Barr,C. L. . (2016). A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep., 17: 2042–2059

[7]

Policarpi,C., Crepaldi,L., Brookes,E., Nitarska,J., French,S. M., Coatti,A. (2017). Enhancer sines link pol III to pol II transcription in neurons. Cell Rep., 21: 2879–2894

[8]

Mumbach,M. R., Satpathy,A. T., Boyle,E. A., Dai,C., Gowen,B. G., Cho,S. W., Nguyen,M. L., Rubin,A. J., Granja,J. M., Kazane,K. R. . (2017). Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nat. Genet., 49: 1602–1612

[9]

May,D., Blow,M. J., Kaplan,T., McCulley,D. J., Jensen,B. C., Akiyama,J. A., Holt,A., Plajzer-Frick,I., Shoukry,M., Wright,C. . (2011). Large-scale discovery of enhancers from human heart tissue. Nat. Genet., 44: 89–93

[10]

Davison,L. J., Wallace,C., Cooper,J. D., Cope,N. F., Wilson,N. K., Smyth,D. J., Howson,J. M., Saleh,N., Al-Jeffery,A., Angus,K. L. . (2012). Long-range DNA looping and gene expression analyses identify DEXI as an autoimmune disease candidate gene. Hum. Mol. Genet., 21: 322–333

[11]

Smemo,S., Tena,J. J., Kim,K. Gamazon,E. R., Sakabe,N. J., Aneas,I., Credidio,F. L., Sobreira,D. R., Wasserman,N. F. . (2014). Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature, 507: 371–375

[12]

Schmidl,C., Rendeiro,A. F., Sheffield,N. C. (2015). ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors. Nat. Methods, 12: 963–965

[13]

Carey,M. F., Peterson,C. L. Smale,S. (2009). Chromatin immunoprecipitation (ChIP). Cold Spring Harb. Protoc., 2009: pdb.prot5279

[14]

Skene,P. J. (2017). An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife, 6: e21856

[15]

Belton,J. M., McCord,R. P., Gibcus,J. H., Naumova,N., Zhan,Y. (2012). Hi-C: a comprehensive technique to capture the conformation of genomes. Methods, 58: 268–276

[16]

Liang,Z., Li,G., Wang,Z., Djekidel,M. N., Li,Y., Qian,M. Zhang,M. Q. (2017). BL-Hi-C is an efficient and sensitive approach for capturing structural and regulatory chromatin interactions. Nat. Commun., 8: 1622

[17]

Schoenfelder,S., Javierre,B. M., Furlan-Magaril,M., Wingett,S. W. (2018). Promoter capture Hi-C: high-resolution, genome-wide profiling of promoter interactions. J. Vis. Exp., (136): e57320

[18]

Li,G., Ruan,X., Auerbach,R. K., Sandhu,K. S., Zheng,M., Wang,P., Poh,H. M., Goh,Y., Lim,J., Zhang,J. . (2012). Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell, 148: 84–98

[19]

Mumbach,M. R., Rubin,A. J., Flynn,R. A., Dai,C., Khavari,P. A., Greenleaf,W. J. Chang,H. (2016). HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods, 13: 919–922

[20]

Khan,Z. U., Pi,D. C., Yao,S. L., Nawaz,A., Ali,F. (2021). Pienpred: a bi-layered discriminative model for enhancers and their subtypes via novel cascade multi-level subset feature selection algorithm. Front. Comput. Sci., 15: 1–11

[21]

Visel,A., Rubin,E. M. Pennacchio,L. (2009). Genomic views of distant-acting enhancers. Nature, 461: 199–205

[22]

Levine,M. (2010). Transcriptional enhancers in animal development and evolution. Curr. Biol., 20: R754–R763

[23]

Bulger,M. (2011). Functional and mechanistic diversity of distal transcription enhancers. Cell, 144: 327–339

[24]

Kim,T. K. (2015). Architectural and functional commonalities between enhancers and promoters. Cell, 162: 948–959

[25]

Ong,C. T. Corces,V. (2011). Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet., 12: 283–293

[26]

Calo,E. (2013). Modification of enhancer chromatin: what, how, and why? Mol. Cell, 49: 825–837

[27]

Yao,L., Berman,B. P. Farnham,P. (2015). Demystifying the secret mission of enhancers: linking distal regulatory elements to target genes. Crit. Rev. Biochem. Mol. Biol., 50: 550–573

[28]

Kleftogiannis,D., Kalnis,P. Bajic,V. (2016). Progress and challenges in bioinformatics approaches for enhancer identification. Brief. Bioinform., 17: 967–979

[29]

Lim,L. W. K., Chung,H. H., Chong,Y. L. Lee,N. (2018). A survey of recently emerged genome-wide computational enhancer predictor tools. Comput. Biol. Chem., 74: 132–141

[30]

Kaur,A., Chauhan,A. P. S., Aggarwal,A. K. (2019). Machine learning based comparative analysis of methods for enhancer prediction in genomic data. In: 2019 2nd International Conference on Intelligent Communication and Computational Techniques (ICCT), 142–145

[31]

Kyrchanova,O. (2021). Mechanisms of enhancer-promoter interactions in higher eukaryotes. Int. J. Mol. Sci., 22: 671

[32]

Mora,A., Sandve,G. K., Gabrielsen,O. S. (2016). In the loop: promoter-enhancer interactions and bioinformatics. Brief. Bioinform., 17: 980–995

[33]

Vanhaeren,T., Divina,F., a-Torres,M., mez-Vela,F., Vanhoof,W. (2020). A comparative study of supervised machine learning algorithms for the prediction of long-range chromatin interactions. Genes (Basel), 11: 985

[34]

Tao,H., Li,H., Xu,K., Hong,H., Jiang,S., Du,G., Wang,J., Sun,Y., Huang,X., Ding,Y. . (2021). Computational methods for the prediction of chromatin interaction and organization using sequence and epigenomic profiles. Brief. Bioinform., 22: bbaa405

[35]

Xu,H., Zhang,S., Yi,X., Plewczynski,D. Li,M. (2020). Exploring 3D chromatin contacts in gene regulation: the evolution of approaches for the identification of functional enhancer-promoter interaction. Comput. Struct. Biotechnol. J., 18: 558–570

[36]

He,C., Li,G., Nadhir,D. M., Chen,Y., Wang,X. Zhang,M. (2016). Advances in computational CHiA-PET data analysis. Quant. Biol., 4: 217–225

[37]

Min,X., Lu,F. (2021). Sequence-based deep learning frameworks on enhancer-promoter interactions prediction. Curr. Pharm. Des., 27: 1847–1855

[38]

Schoenfelder,S. (2019). Long-range enhancer-promoter contacts in gene expression control. Nat. Rev. Genet., 20: 437–455

[39]

Kulaeva,O. I., Nizovtseva,E. V., Polikanov,Y. S., Ulianov,S. V. Studitsky,V. (2012). Distant activation of transcription: mechanisms of enhancer action. Mol. Cell. Biol., 32: 4892–4897

[40]

Williams,A., Spilianakis,C. G. Flavell,R. (2010). Interchromosomal association and gene regulation in trans. Trends Genet., 26: 188–197

[41]

Maass,P. G., Barutcu,A. R. Rinn,J. (2019). Interchromosomal interactions: a genomic love story of kissing chromosomes. J. Cell Biol., 218: 27–38

[42]

He,B., Chen,C., Teng,L. (2014). Global view of enhancer-promoter interactome in human cells. Proc. Natl. Acad. Sci. USA, 111: E2191–E2199

[43]

Patel,B., Kang,Y., Cui,K., Litt,M., Riberio,M. S., Deng,C., Salz,T., Casada,S., Fu,X., Qiu,Y. . (2014). Aberrant TAL1 activation is mediated by an interchromosomal interaction in human T-cell acute lymphoblastic leukemia. Leukemia, 28: 349–361

[44]

Lee,D., Karchin,R. Beer,M. (2011). Discriminative prediction of mammalian enhancers from DNA sequence. Genome Res., 21: 2167–2180

[45]

Taher,L., Narlikar,L. (2012). Clare: cracking the language of regulatory elements. Bioinformatics, 28: 581–583

[46]

ndez,M. (2012). Genome-wide enhancer prediction from epigenetic signatures using genetic algorithm-optimized support vector machines. Nucleic Acids Res., 40: e77–e77

[47]

Rajagopal,N., Xie,W., Li,Y., Wagner,U., Wang,W., Stamatoyannopoulos,J., Ernst,J., Kellis,M. (2013). RFECS: a random-forest based algorithm for enhancer identification from chromatin state. PLOS Comput. Biol., 9: e1002968

[48]

Ghandi,M., Lee,D., Mohammad-Noori,M. Beer,M. (2014). Enhanced regulatory sequence prediction using gapped k-mer features. PLOS Comput. Biol., 10: e1003711

[49]

Erwin,G. D., Oksenberg,N., Truty,R. M., Kostka,D., Murphy,K. K., Ahituv,N., Pollard,K. S. Capra,J. (2014). Integrating diverse datasets improves developmental enhancer prediction. PLOS Comput. Biol., 10: e1003677

[50]

Lu,Y., Qu,W., Shan,G. (2015). Delta: a distal enhancer locating tool based on AdaBoost algorithm and shape features of chromatin modifications. PLoS One, 10: e0130622

[51]

Kleftogiannis,D., Kalnis,P. Bajic,V. (2015). DEEP: a general computational framework for predicting enhancers. Nucleic Acids Res., 43: e6

[52]

Liu,B. (2016). Ienhancer-psedeknc: identification of enhancers and their subgroups based on pseudo degenerate kmer nucleotide composition. Neurocomputing, 217: 46–52

[53]

Liu,B., Fang,L., Long,R., Lan,X. Chou,K. (2016). iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics, 32: 362–369

[54]

Jia,C. (2016). EnhancerPred: a predictor for discovering enhancers based on the combination and selection of multiple features. Sci. Rep., 6: 38741

[55]

Xu,J., Hu,H. (2016). Lmethyr-svm: predict human enhancers using low methylated regions based on weighted support vector machines. PLoS One, 11: e0163491

[56]

Colbran,L. L., Chen,L. Capra,J. (2017). Short DNA sequence patterns accurately identify broadly active human enhancers. BMC Genomics, 18: 536

[57]

He,W. (2017). EnhancerPred2.0: predicting enhancers and their strength based on position-specific trinucleotide propensity and electron-ion interaction potential feature selection. Mol. Biosyst., 13: 767–774

[58]

He,Y., Gorkin,D. U., Dickel,D. E., Nery,J. R., Castanon,R. G., Lee,A. Y., Shen,Y., Visel,A., Pennacchio,L. A., Ren,B. . (2017). Improved regulatory element prediction based on tissue-specific local epigenomic signatures. Proc. Natl. Acad. Sci. USA, 114: E1633–E1640

[59]

Liu,B., Li,K., Huang,D. S. Chou,K. (2018). iEnhancer-EL: identifying enhancers and their strength with ensemble learning approach. Bioinformatics, 34: 3835–3842

[60]

Kleftogiannis,D., Ashoor,H. Bajic,V. (2018). Tels: a novel computational framework for identifying motif signatures of transcribed enhancers. Genom. Proteom. Bioinf., 16: 332–341

[61]

Singh,A. P., Mishra,S. (2018). Sequence based prediction of enhancer regions from DNA random walk. Sci. Rep., 8: 15912

[62]

Sethi,A., Gu,M., Gumusgoz,E., Chan,L., Yan,K. K., Rozowsky,J., Barozzi,I., Afzal,V., Akiyama,J. A., Plajzer-Frick,I. . (2020). Supervised enhancer prediction with epigenetic pattern recognition and targeted validation. Nat. Methods, 17: 807–814

[63]

Lim,D. Y., Khanal,J., Tayara,H. Chong,K. (2021). Ienhancer-rf: identifying enhancers and their strength by enhanced feature representation using random forest. Chemom. Intell. Lab. Syst., 212: 104284

[64]

Lyu,Y., Zhang,Z., Li,J., He,W., Ding,Y. (2021). Ienhancer-kl: a novel two-layer predictor for identifying enhancers by position specific of nucleotide composition. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 18: 2809–2815

[65]

Niu,X., Deng,K., Liu,L., Yang,K. (2021). A statistical framework for predicting critical regions of p53-dependent enhancers. Brief. Bioinform., 22: bbaa053

[66]

Basith,S., Hasan,M. M., Lee,G., Wei,L. (2021). Integrative machine learning framework for the identification of cell-specific enhancers from the human genome. Brief. Bioinform., 22: bbab252

[67]

Firpi,H. A., Ucar,D. (2010). Discover regulatory DNA elements using chromatin signatures and artificial neural network. Bioinformatics, 26: 1579–1586

[68]

Liu,F., Li,H., Ren,C., Bo,X. (2016). PEDLA: predicting enhancers with a deep learning-based algorithmic framework. Sci. Rep., 6: 28517

[69]

Min,X., Zeng,W., Chen,S., Chen,N., Chen,T. (2017). Predicting enhancers with deep convolutional neural networks. BMC Bioinformatics, 18: 478

[70]

Yang,B., Liu,F., Ren,C., Ouyang,Z., Xie,Z., Bo,X. (2017). BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone. Bioinformatics, 33: 1930–1936

[71]

Thibodeau,A., Uyar,A., Khetan,S., Stitzel,M. L. (2018). A neural network based model effectively predicts enhancers from clinical ATAC-seq samples. Sci. Rep., 8: 16048

[72]

Le,N. Q. K., Yapp,E. K. Y., Ho,Q. T., Nagasundaram,N., Ou,Y. Y. Yeh,H. (2019). iEnhancer-5Step: identifying enhancers using hidden information of DNA sequences via Chou’s 5-step rule and word embedding. Anal. Biochem., 571: 53–61

[73]

Khanal,J., Tayara,H. Chong,K. (2020). Identifying enhancers and their strength by the integration of word embedding and convolution neural network. IEEE Access, 8: 58369–58376

[74]

Chen,S., Gan,M., Lv,H. (2021). Deepcape: a deep convolutional neural network for the accurate prediction of enhancers. Genom. Proteom. Bioinf., 19: 565–577

[75]

Chen,Z., Zhang,J., Liu,J., Dai,Y., Lee,D., Min,M. R., Xu,M. (2021). DECODE: a Deep-learning framework for condensing enhancers and refining boundaries with large-scale functional assays. Bioinformatics, 37: i280–i288

[76]

Zhang,T. H., Flores,M. (2021). ES-ARCNN: predicting enhancer strength by using data augmentation and residual convolutional neural network. Anal. Biochem., 618: 114120

[77]

Inayat,N., Khan,M., Iqbal,N., Khan,S., Raza,M., Khan,D. M., Khan,A. Wei,D. (2021). Ienhancer-dhf: identification of enhancers and their strengths using optimize deep neural network with multiple features extraction methods. IEEE Access, 9: 40783–40796

[78]

Yang,R., Wu,F., Zhang,C. (2021). Ienhancer-gan: a deep learning framework in combination with word embedding and sequence generative adversarial net to identify enhancers and their strength. Int. J. Mol. Sci., 22: 3589

[79]

Gao,Y., Chen,Y., Feng,H., Zhang,Y. (2022). Ricenn: prediction of rice enhancers with neural network based on DNA sequences. Interdiscip. Sci., 14: 555–565

[80]

Amilpur,S. (2022). A sequence-based two-layer predictor for identifying enhancers and their strength through enhanced feature extraction. J. Bioinform. Comput. Biol., 20: 2250005

[81]

Kamran,H., Tahir,M., Tayara,H. Chong,K. (2022). Ienhancer-deep: a computational predictor for enhancer sites and their strength using deep learning. Appl. Sci. (Basel), 12: 2120

[82]

Zhao,S., Pan,Q., Zou,Q., Ju,Y., Shi,L. (2022). Identifying and classifying enhancers by dinucleotide-based auto-cross covariance and attention-based Bi-LSTM. Comput. Math. Methods Med., 2022: 7518779

[83]

Song,K. (2012). Recognition of prokaryotic promoters based on a novel variable-window Z-curve method. Nucleic Acids Res., 40: 963–971

[84]

Li,Y., Chen,C. Y. Wasserman,W. (2016). Deep feature selection: theory and application to identify enhancers and promoters. J. Comput. Biol., 23: 322–336

[85]

Umarov,R. K. Solovyev,V. (2017). Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks. PLoS One, 12: e0171410

[86]

Coelho,R. V., de Avila E Silva,S., Echeverrigaray,S., Delamare,A. P. L. Delamare,A. P. (2018). Bacillus subtilis promoter sequences data set for promoter prediction in Gram-positive bacteria. Data Brief, 19: 264–270

[87]

Liu,B., Yang,F., Huang,D. S. Chou,K. (2018). iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC. Bioinformatics, 34: 33–40

[88]

Oubounyt,M., Louadi,Z., Tayara,H. Chong,K. (2019). Deepromoter: robust promoter predictor using deep learning. Front. Genet., 10: 286

[89]

Le,N. Q. K., Yapp,E. K. Y., Nagasundaram,N. Yeh,H. (2019). Classifying promoters by interpreting the hidden information of DNA sequences via deep learning and combination of continuous fasttext N-grams. Front. Bioeng. Biotechnol., 7: 305

[90]

Umarov,R., Kuwahara,H., Li,Y., Gao,X. (2019). Promoter analysis and prediction in the human genome using sequence-based deep learning models. Bioinformatics, 35: 2730–2737

[91]

Lai,H. Y., Zhang,Z. Y., Su,Z. D., Su,W., Ding,H., Chen,W. (2019). Iproep: a computational predictor for predicting promoter. Mol. Ther. Nucleic Acids, 17: 337–346

[92]

Liu,B. (2019). Ipromoter-2l2. 0: identifying promoters and their types by combining smoothing cutting window algorithm and sequence-based features. Mol. Ther. Nucleic Acids, 18: 80–87

[93]

Rahman,M. S., Aktar,U., Jani,M. R. (2019). iPromoter-FSEn: identification of bacterial σ70 promoter sequences using feature subspace based ensemble classifier. Genomics, 111: 1160–1166

[94]

Rahman,M. S., Aktar,U., Jani,M. R. (2019). iPro70-FMWin: identifying Sigma70 promoters using multiple windowing and minimal features. Mol. Genet. Genomics, 294: 69–84

[95]

Xiao,X., Xu,Z. C., Qiu,W. R., Wang,P., Ge,H. T. Chou,K. (2019). iPSW(2L)-PseKNC: a two-layer predictor for identifying promoters and their strength by hybrid features via pseudo k-tuple nucleotide composition. Genomics, 111: 1785–1793

[96]

Zhang,M., Li,F., Marquez-Lago,T. T., Leier,A., Fan,C., Kwoh,C. K., Chou,K. C., Song,J. (2019). MULTiPly: a novel multi-layer predictor for discovering general and specific types of promoters. Bioinformatics, 35: 2957–2965

[97]

Chen,Y. L., Guo,D. H. Li,Q. (2020). An energy model for recognizing the prokaryotic promoters based on molecular structure. Genomics, 112: 2072–2079

[98]

Amin,R., Rahman,C. R., Ahmed,S., Sifat,M. H. R., Liton,M. N. K., Rahman,M. M., Khan,M. Z. H. (2020). iPromoter-BnCNN: a novel branched CNN-based predictor for identifying and classifying sigma promoters. Bioinformatics, 36: 4869–4875

[99]

Tayara,H., Tahir,M. Chong,K. (2020). Identification of prokaryotic promoters and their strength by integrating heterogeneous features. Genomics, 112: 1396–1403

[100]

Shujaat,M., Wahab,A., Tayara,H. Chong,K. (2020). Pcpromoter-CNN: a CNN-based prediction and classification of promoters. Genes (Basel), 11: 1529

[101]

Liang,Y., Zhang,S., Qiao,H. (2021). iPromoter-ET: identifying promoters and their strength by extremely randomized trees-based feature selection. Anal. Biochem., 630: 114335

[102]

Shujaat,M., Lee,S. B., Tayara,H. Chong,K. (2021). Cr-prom: a convolutional neural network-based model for the prediction of rice promoters. IEEE Access, 9: 81485–81491

[103]

Lyu,Y., He,W., Li,S., Zou,Q. (2021). Ipro2l-pstknc: a two-layer predictor for discovering various types of promoters by position specific of nucleotide composition. IEEE J. Biomed. Health Inform., 25: 2329–2337

[104]

Sun,A., Xiao,X. (2021). Iptt(2 L)-CNN: a two-layer predictor for identifying promoters and their types in plant genomes by convolutional neural network. Comput. Math. Methods Med., 2021: 6636350

[105]

Zhu,Y., Li,F., Xiang,D., Akutsu,T., Song,J. (2021). Computational identification of eukaryotic promoters based on cascaded deep capsule neural networks. Brief. Bioinform., 22: bbaa299

[106]

Bhukya,R., Kumari,A., Amilpur,S. Dasari,C. (2022). PPred-PCKSM: a multi-layer predictor for identifying promoter and its variants using position based features. Comput. Biol. Chem., 97: 107623

[107]

Li,H., Shi,L., Gao,W., Zhang,Z., Zhang,L., Zhao,Y. (2022). dPromoter-XGBoost: detecting promoters and strength by combining multiple descriptors and feature selection using XGBoost. Methods, 204: 215–222

[108]

Li,Q. W., Zhang,L. C., Xu,L., Zou,Q., Wu,J. Li,Q. (2022). Identification and classification of promoters using the attention mechanism based on long short-term memory. Front. Comput. Sci., 16: 164348

[109]

Qiao,H., Zhang,S., Xue,T., Wang,J. (2022). iPro-GAN: a novel model based on generative adversarial learning for identifying promoters and their strength. Comput. Methods Programs Biomed., 215: 106625

[110]

Wang,Y., Peng,Q., Mou,X., Wang,X., Li,H., Han,T., Sun,Z. (2022). A successful hybrid deep learning model aiming at promoter identification. BMC Bioinformatics, 23: 206

[111]

Wei,P. J., Pang,Z. Z., Jiang,L. J., Tan,D. Y., Su,Y. S. Zheng,C. (2022). Promoter prediction in nannochloropsis based on densely connected convolutional neural networks. Methods, 204: 38–46

[112]

Mifsud,B., Tavares-Cadete,F., Young,A. N., Sugar,R., Schoenfelder,S., Ferreira,L., Wingett,S. W., Andrews,S., Grey,W., Ewels,P. A. . (2015). Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet., 47: 598–606

[113]

Javierre,B. M., Burren,O. S., Wilder,S. P., Kreuzhuber,R., Hill,S. M., Sewitz,S., Cairns,J., Wingett,S. W., rnai,C., Thiecke,M. J. . (2016). Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell, 167: 1369–1384.e19

[114]

Mikolov,T., Yih,W. (2013). Linguistic regularities in continuous space word representations. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human language technologies, 746–751

[115]

Pennington,J., Socher,R. Manning,C. (2014). Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543

[116]

Ng,P. (2017). Dna2vec: consistent vector representations of variable-length k-mers. arXiv, 1701.06279

[117]

Jiang,Y., Qian,F., Bai,X., Liu,Y., Wang,Q., Ai,B., Han,X., Shi,S., Zhang,J., Li,X. . (2019). SEdb: a comprehensive human super-enhancer database. Nucleic Acids Res., 47: D235–D243

[118]

rier,R. C., Praz,V., Junier,T., Bonnard,C. (2000). The eukaryotic promoter database (EPD). Nucleic Acids Res., 28: 302–303

[119]

Ferretti,V., Poitras,C., Bergeron,D., Coulombe,B., Robert,F. (2007). PReMod: a database of genome-wide mammalian cis-regulatory module predictions. Nucleic Acids Res., 35: D122–D126

[120]

Andersson,R., Gebhard,C., Miguel-Escalada,I., Hoof,I., Bornholdt,J., Boyd,M., Chen,Y., Zhao,X., Schmidl,C., Suzuki,T. . (2014). An atlas of active enhancers across human cell types and tissues. Nature, 507: 455–461

[121]

Visel,A., Minovitsky,S., Dubchak,I. Pennacchio,L. (2007). VISTA Enhancer Browser—a database of tissue-specific human enhancers. Nucleic Acids Res., 35: D88–D92

[122]

Hoke,H. A., Lin,C. Y., Lau,A., Orlando,D. A., Vakoc,C. R., Bradner,J. E., Lee,T. I. Young,R. (2013). Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell, 153: 320–334

[123]

Bai,X., Shi,S., Ai,B., Jiang,Y., Liu,Y., Han,X., Xu,M., Pan,Q., Wang,F., Wang,Q. . (2020). ENdb: a manually curated database of experimentally supported enhancers for human and mouse. Nucleic Acids Res., 48: D51–D57

[124]

Wei,Y., Zhang,S., Shang,S., Zhang,B., Li,S., Wang,X., Wang,F., Su,J., Wu,Q., Liu,H. . (2016). SEA: a super-enhancer archive. Nucleic Acids Res., 44: D172–D179

[125]

Cai,Z. N., Cui,Y., Tan,Z. Y., Zhang,G. H., Tan,Z. Y., Zhang,X. L. Peng,Y. (2019). RAEdb: A database of enhancers identified by high-throughput reporter assays. Database (Oxford), bay140

[126]

Guo,Z. W., Xie,C., Li,K., Zhai,X. M., Cai,G. X., Yang,X. X. Wu,Y. (2019). Seler: a database of super-enhancer-associated lncRNA-directed transcriptional regulation in human cancers. Database (Oxford), baz027

[127]

Zeng,W. W., Min,X. (2019). Endisease: a manually curated database for enhancer-disease associations. Database (Oxford), baz020

[128]

Huang,M., Wang,Y., Yang,M., Yan,J., Yang,H., Zhuang,W., Xu,Y., Koeffler,H. P., Lin,D. C. (2020). dbInDel: a database of enhancer-associated insertion and deletion variants by analysis of H3K27ac ChIP-Seq. Bioinformatics, 36: 1649–1651

[129]

Kumar,R., Lathwal,A., Kumar,V., Patiyal,S., Raghav,P. K. Raghava,G. P. (2020). CancerEnD: a database of cancer associated enhancers. Genomics, 112: 3696–3702

[130]

Vasyuchenko,E. P., Orekhov,P. S., Armeev,G. A. Bozdaganyan,M. (2021). Cpe-db: an open database of chemical penetration enhancers. Pharmaceutics, 13: 66

[131]

Jin,W., Jiang,G., Yang,Y., Yang,J., Yang,W., Wang,D., Niu,X., Zhong,R., Zhang,Z. (2022). Animal-eRNAdb: a comprehensive animal enhancer RNA database. Nucleic Acids Res., 50: D46–D53

[132]

Shahmuradov,I. A., Gammerman,A. J., Hancock,J. M., Bramley,P. M. Solovyev,V. (2003). PlantProm: a database of plant promoter sequences. Nucleic Acids Res., 31: 114–117

[133]

Smirnova,O. G., Ibragimova,S. S. Kochetov,A. (2012). Simple database to select promoters for plant transgenesis. Transgenic Res., 21: 429–437

[134]

Grienberg,I. (2005). Osteo-Promoter Database (OPD)—promoter analysis in skeletal cells. BMC Genomics, 6: 46

[135]

Morris,R. T., Connor,T. R. Wyrick,J. (2008). Osiris: an integrated promoter database for Oryza sativa L. Bioinformatics, 24: 2915–2917

[136]

Chen,X., Wu,J. M., Hornischer,K., Kel,A. (2006). Tiprod: the tissue-specific promoter database. Nucleic Acids Res., 34: D104–D107

[137]

Nishikata,K., Cox,R. S. Shimoyama,S., Yoshida,Y., Matsui,M., Makita,Y. (2014). Database construction for PromoterCAD: synthetic promoter design for mammals and plants. ACS Synth. Biol., 3: 192–196

[138]

Dreos,R., Ambrosini,G., rier,R. C. (2015). The Eukaryotic Promoter Database: expansion of EPDnew and new promoter analysis tools. Nucleic Acids Res., 43: D92–D96

[139]

Su,W., Liu,M. L., Yang,Y. H., Wang,J. S., Li,S. H., Lv,H., Dao,F. Y., Yang,H. (2021). Ppd: a manually curated database for experimentally verified prokaryotic promoters. J. Mol. Biol., 433: 166860

[140]

Gordon,L., Chervonenkis,A. Y., Gammerman,A. J., Shahmuradov,I. A. Solovyev,V. (2003). Sequence alignment kernel for recognition of promoter regions. Bioinformatics, 19: 1964–1971

[141]

Towsey,M., Timms,P., Hogan,J. Mathews,S. (2008). The cross-species prediction of bacterial promoters using a support vector machine. Comput. Biol. Chem., 32: 359–366

[142]

Knudsen,S. (1999). Promoter2.0: for the recognition of PolII promoter sequences. Bioinformatics, 15: 356–361

[143]

Whalen,S., Truty,R. M. Pollard,K. (2016). Enhancer-promoter interactions are encoded by complex genomic signatures on looping chromatin. Nat. Genet., 48: 488–496

[144]

Yang,Y., Zhang,R., Singh,S. (2017). Exploiting sequence-based features for predicting enhancer-promoter interactions. Bioinformatics, 33: i252–i260

[145]

Zeng,W., Wu,M. (2018). Prediction of enhancer-promoter interactions via natural language processing. BMC Genomics, 19: 84

[146]

Singh,S., Yang,Y., czos,B. (2019). Predicting enhancer-promoter interaction from genomic sequence with deep neural networks. Quant. Biol., 7: 122–137

[147]

Zhang,T. (2019). An approach for recognition of enhancer-promoter associations based on random forest. In: Proceedings of the 2019 4th International Conference on Biomedical Signal and Image Processing (ICBIP 2019), 46–50

[148]

Zhuang,Z., Shen,X. (2019). A simple convolutional neural network for prediction of enhancer-promoter interactions with DNA sequence data. Bioinformatics, 35: 2899–2906

[149]

Hong,Z., Zeng,X., Wei,L. (2020). Identifying enhancer-promoter interactions with neural network based on pre-trained DNA vectors and attention mechanism. Bioinformatics, 36: 1037–1043

[150]

Singh,A. P., Mishra,S. (2018). Sequence based prediction of enhancer regions from DNA random walk. Sci Rep. 8, 15912

[151]

Min,X., Ye,C., Liu,X. (2021). Predicting enhancer-promoter interactions by deep learning and matching heuristic. Brief. Bioinform., 22: bbaa254

[152]

Zhang,M., Hu,Y. (2021). Epishilbert: prediction of enhancer-promoter interactions via hilbert curve encoding and transfer learning. Genes (Basel), 12: 1385

[153]

Ni,Y., Fan,L., Wang,M., Zhang,N., Zuo,Y. (2022). Epi-mind: identifying enhancer-promoter interactions based on transformer mechanism. Interdiscip. Sci., 14: 786–794

[154]

Talukder,A., Saadat,S., Li,X. (2019). EPIP: a novel approach for condition-specific enhancer-promoter interaction prediction. Bioinformatics, 35: 3877–3883

[155]

Jing,F., Zhang,S. W. (2020). Prediction of enhancer-promoter interactions using the cross-cell type information and domain adversarial neural network. BMC Bioinformatics, 21: 507

[156]

Chawla,N. V., Bowyer,K. W., Hall,L. O. Kegelmeyer,W. (2002). Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res., 16: 321–357

[157]

Rao,S. S. P., Huntley,M. H., Durand,N. C., Stamenova,E. K., Bochkov,I. D., Robinson,J. T., Sanborn,A. L., Machol,I., Omer,A. D., Lander,E. S. . (2014). A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159: 1665–1680

[158]

Servant,N., Varoquaux,N., Lajoie,B. R., Viara,E., Chen,C. Vert,J. Heard,E., Dekker,J. (2015). HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol., 16: 259

[159]

Kerpedjiev,P., Abdennur,N., Lekschas,F., McCallum,C., Dinkla,K., Strobelt,H., Luber,J. M., Ouellette,S. B., Azhir,A., Kumar,N. . (2018). HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol., 19: 125

[160]

Cao,Y., Chen,Z., Chen,X., Ai,D., Chen,G., McDermott,J., Huang,Y., Guo,X. Han,J. (2020). Accurate loop calling for 3D genomic data with cLoops. Bioinformatics, 36: 666–675

[161]

Kaul,A., Bhattacharyya,S. (2020). Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2. Nat. Protoc., 15: 991–1012

[162]

Roayaei Ardakany,A., Gezer,H. T., Lonardi,S. (2020). Mustache: multi-scale detection of chromatin loops from Hi-C and Micro-C maps using scale-space representation. Genome Biol., 21: 256

[163]

Krietenstein,N., Abraham,S., Venev,S. V., Abdennur,N., Gibcus,J., Hsieh,T. S., Parsi,K. M., Yang,L., Maehr,R., Mirny,L. A. . (2020). Ultrastructural details of mammalian chromosome architecture. Mol. Cell, 78: 554–565.e7

[164]

Lagler,T. M., Abnousi,A., Hu,M., Yang,Y. (2021). HiC-ACT: improved detection of chromatin interactions from Hi-C data via aggregated Cauchy test. Am. J. Hum. Genet., 108: 257–268

[165]

Lee,H. Seo,P. (2021). Hicore: Hi-c analysis for identification of core chromatin looping regions with higher resolution. Mol. Cells, 44: 883–892

[166]

Lareau,C. A. Aryee,M. (2018). hichipper: a preprocessing pipeline for calling DNA loops from HiChIP data. Nat. Methods, 15: 155–156

[167]

Bhattacharyya,S., Chandra,V., Vijayanand,P. (2019). Identification of significant chromatin contacts from HiChIP data by FitHiChIP. Nat. Commun., 10: 4221

[168]

Fang,R., Yu,M., Li,G., Chee,S., Liu,T., Schmitt,A. D. (2016). Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res., 26: 1345–1348

[169]

Juric,I., Yu,M., Abnousi,A., Raviram,R., Fang,R., Zhao,Y., Zhang,Y., Qiu,Y., Yang,Y., Li,Y. . (2019). MAPS: model-based analysis of long-range chromatin interactions from PLAC-seq and HiChIP experiments. PLOS Comput. Biol., 15: e1006982

[170]

Shi,C., Rattray,M. (2020). HiChIP-Peaks: a HiChIP peak calling algorithm. Bioinformatics, 36: 3625–3631

[171]

Li,G., Fullwood,M. J., Xu,H., Mulawadi,F. H., Velkov,S., Vega,V., Ariyaratne,P. N., Mohamed,Y. B., Ooi,H. S., Tennakoon,C. . (2010). ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol., 11: R22

[172]

Paulsen,J., dland,E. A., Holden,L., Holden,M. (2014). A statistical model of ChIA-PET data for accurate detection of chromatin 3D interactions. Nucleic Acids Res., 42: e143

[173]

He,C., Zhang,M. Q. (2015). MICC: an R package for identifying chromatin interactions from ChIA-PET data. Bioinformatics, 31: 3832–3834

[174]

Djekidel,M. N., Liang,Z., Wang,Q., Hu,Z., Li,G., Chen,Y. Zhang,M. (2015). 3CPET: finding co-factor complexes from ChIA-PET data using a hierarchical Dirichlet process. Genome Biol., 16: 288

[175]

Li,G., Chen,Y., Snyder,M. P. Zhang,M. (2017). ChIA-PET2: a versatile and flexible pipeline for ChIA-PET data analysis. Nucleic Acids Res., 45: e4

[176]

Huang,W., Medvedovic,M., Zhang,J. (2019). ChIAPoP: a new tool for ChIA-PET data analysis. Nucleic Acids Res., 47: e37

[177]

Lee,B., Wang,J., Cai,L., Kim,M., Namburi,S., Tjong,H., Feng,Y., Wang,P., Tang,Z., Abbas,A. . (2020). ChIA-PIPE: a fully automated pipeline for comprehensive ChIA-PET data analysis and visualization. Sci. Adv., 6: eaay2078

[178]

Vardaxis,I., Rye,M. B. Lindqvist,B. (2020). MACPET: model-based analysis for ChIA-PET. Biostatistics, 21: 625–639

[179]

Yu,X. J., Zhou,J. G., Zhao,M. M., Yi,C., Duan,Q., Zhou,W. (2020). Exploiting XGboost for predicting enhancer-promoter interactions. Curr. Bioinform., 15: 1036–1045

[180]

Bartlett,P. (2006). Adaboost is consistent. Adv. Neural Inf. Process. Syst., 8: 2347–2368

[181]

Zhang,S., Dong,X. (2012). Synonym recognition based on user behaviors in E-commerce. Journal of Chinese Information Processing (in Chinese), 26: 79–85

[182]

Chen,T. (2016). XgBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794

[183]

Feng,Z. X. Li,Q. (2017). Recognition of long-range enhancer-promoter interactions by adding genomic signatures of segmented regulatory regions. Genomics, 109: 341–352

[184]

Chen,K., Zhao,H. (2022). Capturing large genomic contexts for accurately predicting enhancer-promoter interactions. Brief. Bioinform., 23: bbab577

[185]

Tang,L., Zhong,Z., Lin,Y., Yang,Y., Wang,J., Martin,J. F. (2022). EPIXplorer: a web server for prediction, analysis and visualization of enhancer-promoter interactions. Nucleic Acids Res., 50: W290–W297

[186]

Zhu,Y., Chen,Z., Zhang,K., Wang,M., Medovoy,D., Whitaker,J. W., Ding,B., Li,N., Zheng,L. (2016). Constructing 3D interaction maps from 1D epigenomes. Nat. Commun., 7: 10812

[187]

Cao,Q., Anyansi,C., Hu,X., Xu,L., Xiong,L., Tang,W., Mok,M. T. S., Cheng,C., Fan,X., Gerstein,M. . (2017). Reconstruction of enhancer-target networks in 935 samples of human primary cells, tissues and cell lines. Nat. Genet., 49: 1428–1436

[188]

Belokopytova,P. S., Nuriddinov,M. A., Mozheiko,E. A., Fishman,D. (2020). Quantitative prediction of enhancer-promoter interactions. Genome Res., 30: 72–84

[189]

Lareau,C. A. Aryee,M. (2018). diffloop: a computational framework for identifying and analyzing differential DNA loops from sequencing data. Bioinformatics, 34: 672–674

[190]

Lun,A. T. Smyth,G. (2015). diffHic: a Bioconductor package to detect differential genomic interactions in Hi-C data. BMC Bioinformatics, 16: 258

[191]

Djekidel,M. N., Chen,Y. Zhang,M. (2018). FIND: difFerential chromatin INteractions Detection using a spatial Poisson process. Genome Res., 28: 412–422

[192]

Stansfield,J. C., Cresswell,K. G., Vladimirov,V. I. Dozmorov,M. (2018). HiCcompare: an R-package for joint normalization and comparison of Hi-C datasets. BMC Bioinformatics, 19: 279

[193]

Stansfield,J. C., Cresswell,K. G. Dozmorov,M. (2019). multiHiCcompare: joint normalization and comparative analysis of complex Hi-C experiments. Bioinformatics, 35: 2916–2923

[194]

Baudry,L., Millot,G. A., Thierry,A., Koszul,R. Scolari,V. (2020). Serpentine: a flexible 2D binning method for differential Hi-C analysis. Bioinformatics, 36: 3645–3651

[195]

Karczewski,K. J., Dudley,J. T., Kukurba,K. R., Chen,R., Butte,A. J., Montgomery,S. B. (2013). Systematic functional regulatory assessment of disease-associated variants. Proc. Natl. Acad. Sci. USA, 110: 9607–9612

[196]

Corradin,O., Saiakhova,A., Akhtar-Zaidi,B., Myeroff,L., Willis,J., Cowper-Sal lari,R., Lupien,M., Markowitz,S. Scacheri,P. (2014). Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits. Genome Res., 24: 1–13

[197]

Carullo,N. V. N. Day,J. (2019). Genomic enhancers in brain health and disease. Genes (Basel), 10: 43

[198]

Marsman,J. Horsfield,J. (2012). Long distance relationships: enhancer-promoter communication and dynamic gene transcription. Gene Regulatory Mechanisms., 1819: 1217–1227

[199]

Li,Y., He,Y., Liang,Z., Wang,Y., Chen,F., Djekidel,M. N., Li,G., Zhang,X., Xiang,S., Wang,Z. . (2018). Alterations of specific chromatin conformation affect ATRA-induced leukemia cell differentiation. Cell Death Dis., 9: 200

[200]

Wang,H., Yang,J., Zhang,Y. (2021). Discover novel disease-associated genes based on regulatory networks of long-range chromatin interactions. Methods, 189: 22–33

[201]

Rodin,R. E., Dou,Y., Kwon,M., Sherman,M. A., Gama,A. M., Doan,R. N., Rento,L. M., Girskis,K. M., Bohrson,C. L., Kim,S. N. . (2021). The landscape of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by ultra-deep whole-genome sequencing. Nat. Neurosci., 24: 176–185

[202]

Fachal,L., Aschard,H., Beesley,J., Barnes,D. R., Allen,J., Kar,S., Pooley,K. A., Dennis,J., Michailidou,K., Turman,C. . (2020). Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nat. Genet., 52: 56–73

[203]

Dzida,T., Iqbal,M., Charapitsa,I., Reid,G., Stunnenberg,H., Matarese,F., Grote,K., Honkela,A. (2017). Predicting stimulation-dependent enhancer-promoter interactions from ChIP-Seq time course data. PeerJ, 5: e3742

[204]

Feng,Z. X., Li,Q. Z. Meng,J. (2018). Recognition of the long range enhancer-promoter interactions by further adding DNA structure properties and transcription factor binding motifs in human cell lines. J. Theor. Biol., 445: 136–150

[205]

Hait,T. A., Elkon,R. (2022). CT-FOCS: a novel method for inferring cell type-specific enhancer-promoter maps. Nucleic Acids Res., 50: e55

RIGHTS & PERMISSIONS

The Author(s). Published by Higher Education Press.

AI Summary AI Mindmap
PDF (4491KB)

2915

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/