DeepDrug: A general graph-based deep learning framework for drug-drug interactions and drug-target interactions prediction

Qijin Yin, Rui Fan, Xusheng Cao, Qiao Liu, Rui Jiang, Wanwen Zeng

PDF(5368 KB)
PDF(5368 KB)
Quant. Biol. ›› 2023, Vol. 11 ›› Issue (3) : 260-274. DOI: 10.15302/J-QB-022-0320
RESEARCH ARTICLE
RESEARCH ARTICLE

DeepDrug: A general graph-based deep learning framework for drug-drug interactions and drug-target interactions prediction

Author information +
History +

Abstract

Background: Computational approaches for accurate prediction of drug interactions, such as drug-drug interactions (DDIs) and drug-target interactions (DTIs), are highly demanded for biochemical researchers. Despite the fact that many methods have been proposed and developed to predict DDIs and DTIs respectively, their success is still limited due to a lack of systematic evaluation of the intrinsic properties embedded in the corresponding chemical structure.

Methods: In this paper, we develop DeepDrug, a deep learning framework for overcoming the above limitation by using residual graph convolutional networks (Res-GCNs) and convolutional networks (CNNs) to learn the comprehensive structure- and sequence-based representations of drugs and proteins.

Results: DeepDrug outperforms state-of-the-art methods in a series of systematic experiments, including binary-class DDIs, multi-class/multi-label DDIs, binary-class DTIs classification and DTIs regression tasks. Furthermore, we visualize the structural features learned by DeepDrug Res-GCN module, which displays compatible and accordant patterns in chemical properties and drug categories, providing additional evidence to support the strong predictive power of DeepDrug. Ultimately, we apply DeepDrug to perform drug repositioning on the whole DrugBank database to discover the potential drug candidates against SARS-CoV-2, where 7 out of 10 top-ranked drugs are reported to be repurposed to potentially treat coronavirus disease 2019 (COVID-19).

Conclusions: To sum up, we believe that DeepDrug is an efficient tool in accurate prediction of DDIs and DTIs and provides a promising insight in understanding the underlying mechanism of these biochemical relations.

Author summary

Computational methods for DDIs and DTIs prediction are essential for accelerating the drug discovery process. We proposed a novel deep learning method DeepDrug, to tackle these two problems within a unified framework. DeepDrug is capable of extracting comprehensive features of both drug and target protein, thus demonstrating a superior prediction performance in a series of experiments. The downstream applications show that DeepDrug is useful in facilitating drug repositioning and discovering the potential drug against specific disease.

Graphical abstract

Keywords

drug-drug interaction / drug-target interaction / graph neural network / deep learning

Cite this article

Download citation ▾
Qijin Yin, Rui Fan, Xusheng Cao, Qiao Liu, Rui Jiang, Wanwen Zeng. DeepDrug: A general graph-based deep learning framework for drug-drug interactions and drug-target interactions prediction. Quant. Biol., 2023, 11(3): 260‒274 https://doi.org/10.15302/J-QB-022-0320

References

[1]
Bleakley, K. (2009). Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics, 25: 2397–2403
CrossRef Google scholar
[2]
Zitnik, M., Nguyen, F., Wang, B., Leskovec, J., Goldenberg, A. Hoffman, M. (2019). Machine learning for integrating data in biology and medicine: principles, practice, and opportunities. Inf. Fusion, 50: 71–91
CrossRef Google scholar
[3]
Boolell, M., Allen, M. J., Ballard, S. A., Gepi-Attee, S., Muirhead, G. J., Naylor, A. M., Osterloh, I. H. (1996). Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int. J. Impot. Res., 8: 47–52
[4]
Jia, J., Zhu, F., Ma, X., Cao, Z., Cao, Z. W., Li, Y., Li, Y. X. Chen, Y. (2009). Mechanisms of drug combinations: interaction and network perspectives. Nat. Rev. Drug Discov., 8: 111–128
CrossRef Google scholar
[5]
Han, K., Jeng, E. E., Hess, G. T., Morgens, D. W., Li, A. Bassik, M. (2017). Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat. Biotechnol., 35: 463–474
CrossRef Google scholar
[6]
Sun, Y., Sheng, Z., Ma, C., Tang, K., Zhu, R., Wu, Z., Shen, R., Feng, J., Wu, D., Huang, D. . (2015). Combining genomic and network characteristics for extended capability in predicting synergistic drugs for cancer. Nat. Commun., 6: 8481
CrossRef Google scholar
[7]
Lazarou, J., Pomeranz, B. H. Corey, P. (1998). Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA, 279: 1200–1205
CrossRef Google scholar
[8]
Gallagher, P. F., Barry, P. J., Ryan, C., Hartigan, I. (2008). Inappropriate prescribing in an acutely ill population of elderly patients as determined by Beers’ Criteria. Age Ageing, 37: 96–101
CrossRef Google scholar
[9]
Meinertz, T. (2001). Mibefradil—a drug which may enhance the propensity for the development of abnormal QT prolongation. Eur. Heart J. Suppl., 3: K89–K92
CrossRef Google scholar
[10]
Staffa, J. A., Chang, J. (2002). Cerivastatin and reports of fatal rhabdomyolysis. N. Engl. J. Med., 346: 539–540
CrossRef Google scholar
[11]
Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z. (2006). DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res., 34: D668–D672
CrossRef Google scholar
[12]
Tatonetti, N. P., Ye, P. P., Daneshjou, R. Altman, R. (2012). Data-driven prediction of drug effects and interactions. Sci. Transl. Med., 4: 125ra31
CrossRef Google scholar
[13]
Burley, S. K., Berman, H. M., Bhikadiya, C., Bi, C., Chen, L., Di Costanzo, L., Christie, C., Dalenberg, K., Duarte, J. M., Dutta, S. . (2019). RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res., 47: D464–D474
CrossRef Google scholar
[14]
Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B. . (2019). PubChem 2019 update: improved access to chemical data. Nucleic Acids Res., 47: D1102–D1109
CrossRef Google scholar
[15]
Rohani, N. (2019). Drug-drug interaction predicting by neural network using integrated similarity. Sci. Rep., 9: 13645
CrossRef Google scholar
[16]
Ryu, J. Y., Kim, H. U. Lee, S. (2018). Deep learning improves prediction of drug-drug and drug-food interactions. Proc. Natl. Acad. Sci. USA, 115: E4304–E4311
CrossRef Google scholar
[17]
Liu, Q., Hu, Z., Jiang, R. (2020). DeepCDR: a hybrid graph convolutional network for predicting cancer drug response. Bioinformatics, 36: i911–i918
CrossRef Google scholar
[18]
Ma, T., Liu, Q., Li, H., Zhou, M., Jiang, R. (2022). DualGCN: a dual graph convolutional network model to predict cancer drug response. BMC Bioinformatics, 23: 129
CrossRef Google scholar
[19]
Yan, X., Zhang, S., Yiu, S. (2021). Interpretable prediction of drug-cell line response by triple matrix factorization. Quant. Biol., 9: 426–439
[20]
Wang, C. (2020). Survey of similarity-based prediction of drug-protein interactions. Curr. Med. Chem., 27: 5856–5886
CrossRef Google scholar
[21]
Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W. (2008). Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24: i232–i240
CrossRef Google scholar
[22]
Zitnik, M., Agrawal, M. (2018). Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics, 34: i457–i466
CrossRef Google scholar
[23]
Zhang, T., Leng, J. (2020). Deep learning for drug-drug interaction extraction from the literature: a review. Brief. Bioinform., 21: 1609–1627
CrossRef Google scholar
[24]
Bagherian, M., Sabeti, E., Wang, K., Sartor, M. A., Nikolovska-Coleska, Z. (2021). Machine learning approaches and databases for prediction of drug-target interaction: a survey paper. Brief. Bioinform., 22: 247–269
CrossRef Google scholar
[25]
Huang, K., Fu, T., Glass, L. M., Zitnik, M., Xiao, C. (2021). DeepPurpose: a deep learning library for drug-target interaction prediction. Bioinformatics, 36: 5545–5547
CrossRef Google scholar
[26]
rk, H., (2018). DeepDTA: deep drug-target binding affinity prediction. Bioinformatics, 34: i821–i829
CrossRef Google scholar
[27]
NguyenT.,LeH.,QuinnT. P.,NguyenT.,LeT. D.. (2020) Graphdta: predicting drug–target binding affinity with graph neural networks. bioRxiv. 684662
[28]
Deng, Y., Xu, X., Qiu, Y., Xia, J., Zhang, W. (2020). A multimodal deep learning framework for predicting drug-drug interaction events. Bioinformatics, 36: 4316–4322
CrossRef Google scholar
[29]
Huang, K., Xiao, C., Glass, L. M., Zitnik, M. (2020). SkipGNN: predicting molecular interactions with skip-graph networks. Sci. Rep., 10: 21092
CrossRef Google scholar
[30]
Bajusz, D., cz, A. (2015). Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J.. Cheminform, 7: 20
CrossRef Google scholar
[31]
Mousavian, Z. (2014). Drug-target interaction prediction via chemogenomic space: learning-based methods. Expert Opin. Drug Metab. Toxicol., 10: 1273–1287
CrossRef Google scholar
[32]
Luo, Y., Zhao, X., Zhou, J., Yang, J., Zhang, Y., Kuang, W., Peng, J., Chen, L. (2017). A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat. Commun., 8: 573
CrossRef Google scholar
[33]
KipfT. N.. (2016) Semi-supervised classification with graph convolutional networks. arXiv, 160902907
[34]
CucurullG.,CasanovaA.,RomeroA.,LioP.. (2017) Graph attention networks. arXiv, 171010903
[35]
LiY.,TarlowD.,BrockschmidtM.. (2015) Gated graph sequence neural networks. arXiv,151105493
[36]
BressonX.. (2017) Residual gated graph convnets. arXiv,171107553
[37]
Xu, C., Liu, Q., Huang, M. (2020). Reinforced molecular optimization with neighborhood-controlled grammars. Adv. Neural Inf. Process. Syst., 33: 8366–8377
[38]
DingK.,ZhouM.,WangZ.,LiuQ.,ArnoldC. W.,ZhangS.MetaxasD.. (2022) Graph convolutional networks for multi-modality medical imaging: methods, architectures, and clinical applications. arXiv, 220208916
[39]
Yin, Q., Liu, Q., Fu, Z., Zeng, W., Zhang, B., Zhang, X., Jiang, R. (2022). scGraph: a graph neural network-based approach to automatically identify cell types. Bioinformatics, 38: 2996–3003
CrossRef Google scholar
[40]
DuvenaudD. K.,MaclaurinD.,IparraguirreJ.,BombarellR.,HirzelT.,Aspuru-GuzikA.AdamsR.. (2015) Convolutional networks on graphs for learning molecular fingerprints. In: Proceedings of the 28th International Conference on Neural Information Processing Systems Adv. Neural Inf. Process. Syst., pp. 2224–2232
[41]
FoutA.,ByrdJ.,ShariatB.. (2017) Protein interface prediction using graph convolutional networks. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 6533–6542
[42]
FengQ.,DuevaE.,. and Ester, M. (2018) Padme: a deep learning-based framework for drug-target interaction prediction. arXiv,180709741
[43]
Zamora-ResendizR.. (2019) Structural learning of proteins using graph convolutional neural networks. bioRxiv. 610444
[44]
Schwarz, K., Allam, A., Perez Gonzalez, N. A. (2021). AttentionDDI: Siamese attention-based deep learning method for drug-drug interaction predictions. BMC Bioinformatics, 22: 412
CrossRef Google scholar
[45]
Xiong, G., Yang, Z., Yi, J., Wang, N., Wang, L., Zhu, H., Wu, C., Lu, A., Chen, X., Liu, S. . (2022). DDInter: an online drug-drug interaction database towards improving clinical decision-making and patient safety. Nucleic Acids Res., 50: D1200–D1207
CrossRef Google scholar
[46]
Bansal, M., Yang, J., Karan, C., Menden, M. P., Costello, J. C., Tang, H., Xiao, G., Li, Y., Allen, J., Zhong, R. . (2014). A community computational challenge to predict the activity of pairs of compounds. Nat. Biotechnol., 32: 1213–1222
CrossRef Google scholar
[47]
Huang, K., Fu, T., Glass, L. M., Zitnik, M., Xiao, C. (2021). DeepPurpose: a deep learning library for drug-target interaction prediction. Bioinformatics, 36: 5545–5547
CrossRef Google scholar
[48]
Tsubaki, M., Tomii, K. (2019). Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics, 35: 309–318
CrossRef Google scholar
[49]
Huang, K., Xiao, C., Glass, L. M. (2021). MolTrans: molecular interaction transformer for drug-target interaction prediction. Bioinformatics, 37: 830–836
CrossRef Google scholar
[50]
Chen, L., Tan, X., Wang, D., Zhong, F., Liu, X., Yang, T., Luo, X., Chen, K., Jiang, H. (2020). TransformerCPI: improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments. Bioinformatics, 36: 4406–4414
CrossRef Google scholar
[51]
Herrero-Zazo, M., Segura-Bedmar, I., nez, P. (2013). The DDI corpus: an annotated corpus with pharmacological substances and drug-drug interactions. J. Biomed. Inform., 46: 914–920
CrossRef Google scholar
[52]
Surjit, M. Lal, S. (2008). The SARS-CoV nucleocapsid protein: a protein with multifarious activities. Infect. Genet. Evol., 8: 397–405
CrossRef Google scholar
[53]
Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., Meara, M. J., Rezelj, V. V., Guo, J. Z., Swaney, D. L. . (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583: 459–468
CrossRef Google scholar
[54]
Stukalov, A., Girault, V., Grass, V., Karayel, O., Bergant, V., Urban, C., Haas, D. A., Huang, Y., Oubraham, L., Wang, A. . (2021). Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature, 594: 246–252
CrossRef Google scholar
[55]
Kang, K., Kim, H. H. (2020). Tiotropium is predicted to be a promising drug for COVID-19 through transcriptome-based comprehensive molecular pathway analysis. Viruses, 12: 776
CrossRef Google scholar
[56]
Chen, H., Zhang, Z., Wang, L., Huang, Z., Gong, F., Li, X., Chen, Y. Wu, J. (2020). First clinical study using HCV protease inhibitor danoprevir to treat COVID-19 patients. Medicine (Baltimore), 99: e23357
CrossRef Google scholar
[57]
Wang, Z., Liu, M., Luo, Y., Xu, Z., Xie, Y., Wang, L., Cai, L., Qi, Q., Yuan, Z., Yang, T. . (2022). Advanced graph and sequence neural networks for molecular property prediction and drug discovery. Bioinformatics, 38: 2579–2586
CrossRef Google scholar
[58]
Chen, X., Chen, S., Song, S., Gao, Z., Hou, L., Zhang, X., Lv, H. (2022). Cell type annotation of single-cell chromatin accessibility data via supervised bayesian embedding. Nat. Mach. Intell., 4: 116–126
CrossRef Google scholar
[59]
Liu, Q., Chen, S., Jiang, R. Wong, W. (2021). Simultaneous deep generative modeling and clustering of single cell genomic data. Nat. Mach. Intell., 3: 536–544
CrossRef Google scholar
[60]
Duren, Z., Chang, F., Naqing, F., Xin, J., Liu, Q. Wong, W. (2022). Regulatory analysis of single cell multiome gene expression and chromatin accessibility data with scREG. Genome Biol., 23: 114
CrossRef Google scholar
[61]
Yin, Q., Wu, M., Liu, Q., Lv, H. (2019). DeepHistone: a deep learning approach to predicting histone modifications. BMC Genomics, 20: 193
CrossRef Google scholar
[62]
LanceC.,LueckenM. D.,BurkhardtD. B.,CannoodtR.,RautenstrauchP.,LaddachA.,UbingazhibovA.,CaoZ.DengK.,KhanS.,. (2022) Multimodal single cell data integration challenge: results and lessons learned. In: Proceedings of the NeurIPS 2021 Competitions and Demonstrations Track, pp.162–176
[63]
Liu, Q., Hua, K., Zhang, X., Wong, W. H. (2022). Deepcage: incorporating transcription factors in genome-wide prediction of chromatin accessibility. Genomics Proteomics Bioinformatics, 20: 496–507
CrossRef Google scholar
[64]
LiuQ.,ChenZ.WongW.. (2022) Causalegm: a general causal inference framework by encoding generative modeling. arXiv, 221205925
[65]
Zeng, W., Liu, Q., Yin, Q., Jiang, R. Wong, W. (2023). HiChIPdb: a comprehensive database of HiChIP regulatory interactions. Nucleic Acids Res., 51: D159–D166
CrossRef Google scholar
[66]
Chen, S., Liu, Q., Cui, X., Feng, Z., Li, C., Wang, X., Zhang, X., Wang, Y. (2021). OpenAnnotate: a web server to annotate the chromatin accessibility of genomic regions. Nucleic Acids Res., 49: W483–W490
CrossRef Google scholar
[67]
Davis, A. P., Wiegers, T. C., Johnson, R. J., Sciaky, D., Wiegers, J. Mattingly, C. (2023). Comparative toxicogenomics database (ctd): Update 2023. Nucleic Acids Res., 51: D1257–D1262
CrossRef Google scholar
[68]
RamsundarB.,EastmanP.,WaltersP.. (2019) Deep Learning for the Life Sciences: Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More. Sebastopol, CA: O’Reilly Media
[69]
Minhas, F., Geiss, B. J. (2014). PAIRpred: partner-specific prediction of interacting residues from sequence and structure. Proteins, 82: 1142–1155
CrossRef Google scholar
[70]
LiG.,XiongC.,ThabetA.. (2020) Deepergcn: All you need to train deeper GCNs. arXiv, 2006.07739
[71]
BaJ. L.,KirosJ. R.HintonG.. (2016) Layer normalization. arXiv, 160706450
[72]
Gilson, M. K., Liu, T., Baitaluk, M., Nicola, G., Hwang, L. (2016). BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res., 44: D1045–D1053
CrossRef Google scholar
[73]
PaszkeA.,GrossS.,MassaF.,LererA.,BradburyJ.,ChananG.,KilleenT.,LinZ.,GimelsheinN.. (2019) Pytorch: an imperative style, high-performance deep learning library. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp. 8026–8037
[74]
MoritzP.,NishiharaR.,WangS.,TumanovA.,LiawR.,LiangE.,ElibolM.,YangZ.,PaulW.JordanM.. (2018) Ray: a distributed framework for emerging AI applications. In: 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18), pp. 561–577

AVAILABILITY AND IMPLEMENTATION

DeepDrug can be freely downloaded from GitHub website (wanwenzeng/deepdrug).

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at https://doi.org/10.15302/J-QB-022-0320.

ACKNOWLEDGEMENTS

We thank Daisy and Nicole for their helpful discussion. We acknowledge the fundings from National Key Research and Development Program of China (Nos. 2021YFF1200902 and 2020YFA0712402), and National Natural Science Foundation of China (Nos. 62273194, 61873141, 61721003 and 62003178).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Qijin Yin, Rui Fan, Xusheng Cao, Qiao Liu, Rui Jiang and Wanwen Zeng declare that they have no conflict of interest or financial conflicts to disclose.
This article does not contain any studies with human or animal materials performed by any of the authors.

OPEN ACCESS

This article is licensed by the CC By under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2023 The Author(s). Published by Higher Education Press.
AI Summary AI Mindmap
PDF(5368 KB)

Accesses

Citations

Detail

Sections
Recommended

/