DeepDrug: A general graph-based deep learning framework for drug-drug interactions and drug-target interactions prediction
Qijin Yin, Rui Fan, Xusheng Cao, Qiao Liu, Rui Jiang, Wanwen Zeng
DeepDrug: A general graph-based deep learning framework for drug-drug interactions and drug-target interactions prediction
Background: Computational approaches for accurate prediction of drug interactions, such as drug-drug interactions (DDIs) and drug-target interactions (DTIs), are highly demanded for biochemical researchers. Despite the fact that many methods have been proposed and developed to predict DDIs and DTIs respectively, their success is still limited due to a lack of systematic evaluation of the intrinsic properties embedded in the corresponding chemical structure.
Methods: In this paper, we develop DeepDrug, a deep learning framework for overcoming the above limitation by using residual graph convolutional networks (Res-GCNs) and convolutional networks (CNNs) to learn the comprehensive structure- and sequence-based representations of drugs and proteins.
Results: DeepDrug outperforms state-of-the-art methods in a series of systematic experiments, including binary-class DDIs, multi-class/multi-label DDIs, binary-class DTIs classification and DTIs regression tasks. Furthermore, we visualize the structural features learned by DeepDrug Res-GCN module, which displays compatible and accordant patterns in chemical properties and drug categories, providing additional evidence to support the strong predictive power of DeepDrug. Ultimately, we apply DeepDrug to perform drug repositioning on the whole DrugBank database to discover the potential drug candidates against SARS-CoV-2, where 7 out of 10 top-ranked drugs are reported to be repurposed to potentially treat coronavirus disease 2019 (COVID-19).
Conclusions: To sum up, we believe that DeepDrug is an efficient tool in accurate prediction of DDIs and DTIs and provides a promising insight in understanding the underlying mechanism of these biochemical relations.
Computational methods for DDIs and DTIs prediction are essential for accelerating the drug discovery process. We proposed a novel deep learning method DeepDrug, to tackle these two problems within a unified framework. DeepDrug is capable of extracting comprehensive features of both drug and target protein, thus demonstrating a superior prediction performance in a series of experiments. The downstream applications show that DeepDrug is useful in facilitating drug repositioning and discovering the potential drug against specific disease.
drug-drug interaction / drug-target interaction / graph neural network / deep learning
[1] |
Bleakley, K. (2009). Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics, 25: 2397–2403
CrossRef
Google scholar
|
[2] |
Zitnik, M., Nguyen, F., Wang, B., Leskovec, J., Goldenberg, A. Hoffman, M. (2019). Machine learning for integrating data in biology and medicine: principles, practice, and opportunities. Inf. Fusion, 50: 71–91
CrossRef
Google scholar
|
[3] |
Boolell, M., Allen, M. J., Ballard, S. A., Gepi-Attee, S., Muirhead, G. J., Naylor, A. M., Osterloh, I. H. (1996). Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int. J. Impot. Res., 8: 47–52
|
[4] |
Jia, J., Zhu, F., Ma, X., Cao, Z., Cao, Z. W., Li, Y., Li, Y. X. Chen, Y. (2009). Mechanisms of drug combinations: interaction and network perspectives. Nat. Rev. Drug Discov., 8: 111–128
CrossRef
Google scholar
|
[5] |
Han, K., Jeng, E. E., Hess, G. T., Morgens, D. W., Li, A. Bassik, M. (2017). Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat. Biotechnol., 35: 463–474
CrossRef
Google scholar
|
[6] |
Sun, Y., Sheng, Z., Ma, C., Tang, K., Zhu, R., Wu, Z., Shen, R., Feng, J., Wu, D., Huang, D.
CrossRef
Google scholar
|
[7] |
Lazarou, J., Pomeranz, B. H. Corey, P. (1998). Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA, 279: 1200–1205
CrossRef
Google scholar
|
[8] |
Gallagher, P. F., Barry, P. J., Ryan, C., Hartigan, I. (2008). Inappropriate prescribing in an acutely ill population of elderly patients as determined by Beers’ Criteria. Age Ageing, 37: 96–101
CrossRef
Google scholar
|
[9] |
Meinertz, T. (2001). Mibefradil—a drug which may enhance the propensity for the development of abnormal QT prolongation. Eur. Heart J. Suppl., 3: K89–K92
CrossRef
Google scholar
|
[10] |
Staffa, J. A., Chang, J. (2002). Cerivastatin and reports of fatal rhabdomyolysis. N. Engl. J. Med., 346: 539–540
CrossRef
Google scholar
|
[11] |
Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z. (2006). DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res., 34: D668–D672
CrossRef
Google scholar
|
[12] |
Tatonetti, N. P., Ye, P. P., Daneshjou, R. Altman, R. (2012). Data-driven prediction of drug effects and interactions. Sci. Transl. Med., 4: 125ra31
CrossRef
Google scholar
|
[13] |
Burley, S. K., Berman, H. M., Bhikadiya, C., Bi, C., Chen, L., Di Costanzo, L., Christie, C., Dalenberg, K., Duarte, J. M., Dutta, S.
CrossRef
Google scholar
|
[14] |
Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B.
CrossRef
Google scholar
|
[15] |
Rohani, N. (2019). Drug-drug interaction predicting by neural network using integrated similarity. Sci. Rep., 9: 13645
CrossRef
Google scholar
|
[16] |
Ryu, J. Y., Kim, H. U. Lee, S. (2018). Deep learning improves prediction of drug-drug and drug-food interactions. Proc. Natl. Acad. Sci. USA, 115: E4304–E4311
CrossRef
Google scholar
|
[17] |
Liu, Q., Hu, Z., Jiang, R. (2020). DeepCDR: a hybrid graph convolutional network for predicting cancer drug response. Bioinformatics, 36: i911–i918
CrossRef
Google scholar
|
[18] |
Ma, T., Liu, Q., Li, H., Zhou, M., Jiang, R. (2022). DualGCN: a dual graph convolutional network model to predict cancer drug response. BMC Bioinformatics, 23: 129
CrossRef
Google scholar
|
[19] |
Yan, X., Zhang, S., Yiu, S. (2021). Interpretable prediction of drug-cell line response by triple matrix factorization. Quant. Biol., 9: 426–439
|
[20] |
Wang, C. (2020). Survey of similarity-based prediction of drug-protein interactions. Curr. Med. Chem., 27: 5856–5886
CrossRef
Google scholar
|
[21] |
Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W. (2008). Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24: i232–i240
CrossRef
Google scholar
|
[22] |
Zitnik, M., Agrawal, M. (2018). Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics, 34: i457–i466
CrossRef
Google scholar
|
[23] |
Zhang, T., Leng, J. (2020). Deep learning for drug-drug interaction extraction from the literature: a review. Brief. Bioinform., 21: 1609–1627
CrossRef
Google scholar
|
[24] |
Bagherian, M., Sabeti, E., Wang, K., Sartor, M. A., Nikolovska-Coleska, Z. (2021). Machine learning approaches and databases for prediction of drug-target interaction: a survey paper. Brief. Bioinform., 22: 247–269
CrossRef
Google scholar
|
[25] |
Huang, K., Fu, T., Glass, L. M., Zitnik, M., Xiao, C. (2021). DeepPurpose: a deep learning library for drug-target interaction prediction. Bioinformatics, 36: 5545–5547
CrossRef
Google scholar
|
[26] |
rk, H., (2018). DeepDTA: deep drug-target binding affinity prediction. Bioinformatics, 34: i821–i829
CrossRef
Google scholar
|
[27] |
NguyenT.,LeH.,QuinnT. P.,NguyenT.,LeT. D.. (2020) Graphdta: predicting drug–target binding affinity with graph neural networks. bioRxiv. 684662
|
[28] |
Deng, Y., Xu, X., Qiu, Y., Xia, J., Zhang, W. (2020). A multimodal deep learning framework for predicting drug-drug interaction events. Bioinformatics, 36: 4316–4322
CrossRef
Google scholar
|
[29] |
Huang, K., Xiao, C., Glass, L. M., Zitnik, M. (2020). SkipGNN: predicting molecular interactions with skip-graph networks. Sci. Rep., 10: 21092
CrossRef
Google scholar
|
[30] |
Bajusz, D., cz, A. (2015). Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J.. Cheminform, 7: 20
CrossRef
Google scholar
|
[31] |
Mousavian, Z. (2014). Drug-target interaction prediction via chemogenomic space: learning-based methods. Expert Opin. Drug Metab. Toxicol., 10: 1273–1287
CrossRef
Google scholar
|
[32] |
Luo, Y., Zhao, X., Zhou, J., Yang, J., Zhang, Y., Kuang, W., Peng, J., Chen, L. (2017). A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat. Commun., 8: 573
CrossRef
Google scholar
|
[33] |
KipfT. N.. (2016) Semi-supervised classification with graph convolutional networks. arXiv, 160902907
|
[34] |
CucurullG.,CasanovaA.,RomeroA.,LioP.. (2017) Graph attention networks. arXiv, 171010903
|
[35] |
LiY.,TarlowD.,BrockschmidtM.. (2015) Gated graph sequence neural networks. arXiv,151105493
|
[36] |
BressonX.. (2017) Residual gated graph convnets. arXiv,171107553
|
[37] |
Xu, C., Liu, Q., Huang, M. (2020). Reinforced molecular optimization with neighborhood-controlled grammars. Adv. Neural Inf. Process. Syst., 33: 8366–8377
|
[38] |
DingK.,ZhouM.,WangZ.,LiuQ.,ArnoldC. W.,ZhangS.MetaxasD.. (2022) Graph convolutional networks for multi-modality medical imaging: methods, architectures, and clinical applications. arXiv, 220208916
|
[39] |
Yin, Q., Liu, Q., Fu, Z., Zeng, W., Zhang, B., Zhang, X., Jiang, R. (2022). scGraph: a graph neural network-based approach to automatically identify cell types. Bioinformatics, 38: 2996–3003
CrossRef
Google scholar
|
[40] |
DuvenaudD. K.,MaclaurinD.,IparraguirreJ.,BombarellR.,HirzelT.,Aspuru-GuzikA.AdamsR.. (2015) Convolutional networks on graphs for learning molecular fingerprints. In: Proceedings of the 28th International Conference on Neural Information Processing Systems Adv. Neural Inf. Process. Syst., pp. 2224–2232
|
[41] |
FoutA.,ByrdJ.,ShariatB.. (2017) Protein interface prediction using graph convolutional networks. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 6533–6542
|
[42] |
FengQ.,DuevaE.,. and Ester, M. (2018) Padme: a deep learning-based framework for drug-target interaction prediction. arXiv,180709741
|
[43] |
Zamora-ResendizR.. (2019) Structural learning of proteins using graph convolutional neural networks. bioRxiv. 610444
|
[44] |
Schwarz, K., Allam, A., Perez Gonzalez, N. A. (2021). AttentionDDI: Siamese attention-based deep learning method for drug-drug interaction predictions. BMC Bioinformatics, 22: 412
CrossRef
Google scholar
|
[45] |
Xiong, G., Yang, Z., Yi, J., Wang, N., Wang, L., Zhu, H., Wu, C., Lu, A., Chen, X., Liu, S.
CrossRef
Google scholar
|
[46] |
Bansal, M., Yang, J., Karan, C., Menden, M. P., Costello, J. C., Tang, H., Xiao, G., Li, Y., Allen, J., Zhong, R.
CrossRef
Google scholar
|
[47] |
Huang, K., Fu, T., Glass, L. M., Zitnik, M., Xiao, C. (2021). DeepPurpose: a deep learning library for drug-target interaction prediction. Bioinformatics, 36: 5545–5547
CrossRef
Google scholar
|
[48] |
Tsubaki, M., Tomii, K. (2019). Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics, 35: 309–318
CrossRef
Google scholar
|
[49] |
Huang, K., Xiao, C., Glass, L. M. (2021). MolTrans: molecular interaction transformer for drug-target interaction prediction. Bioinformatics, 37: 830–836
CrossRef
Google scholar
|
[50] |
Chen, L., Tan, X., Wang, D., Zhong, F., Liu, X., Yang, T., Luo, X., Chen, K., Jiang, H. (2020). TransformerCPI: improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments. Bioinformatics, 36: 4406–4414
CrossRef
Google scholar
|
[51] |
Herrero-Zazo, M., Segura-Bedmar, I., nez, P. (2013). The DDI corpus: an annotated corpus with pharmacological substances and drug-drug interactions. J. Biomed. Inform., 46: 914–920
CrossRef
Google scholar
|
[52] |
Surjit, M. Lal, S. (2008). The SARS-CoV nucleocapsid protein: a protein with multifarious activities. Infect. Genet. Evol., 8: 397–405
CrossRef
Google scholar
|
[53] |
Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., Meara, M. J., Rezelj, V. V., Guo, J. Z., Swaney, D. L.
CrossRef
Google scholar
|
[54] |
Stukalov, A., Girault, V., Grass, V., Karayel, O., Bergant, V., Urban, C., Haas, D. A., Huang, Y., Oubraham, L., Wang, A.
CrossRef
Google scholar
|
[55] |
Kang, K., Kim, H. H. (2020). Tiotropium is predicted to be a promising drug for COVID-19 through transcriptome-based comprehensive molecular pathway analysis. Viruses, 12: 776
CrossRef
Google scholar
|
[56] |
Chen, H., Zhang, Z., Wang, L., Huang, Z., Gong, F., Li, X., Chen, Y. Wu, J. (2020). First clinical study using HCV protease inhibitor danoprevir to treat COVID-19 patients. Medicine (Baltimore), 99: e23357
CrossRef
Google scholar
|
[57] |
Wang, Z., Liu, M., Luo, Y., Xu, Z., Xie, Y., Wang, L., Cai, L., Qi, Q., Yuan, Z., Yang, T.
CrossRef
Google scholar
|
[58] |
Chen, X., Chen, S., Song, S., Gao, Z., Hou, L., Zhang, X., Lv, H. (2022). Cell type annotation of single-cell chromatin accessibility data via supervised bayesian embedding. Nat. Mach. Intell., 4: 116–126
CrossRef
Google scholar
|
[59] |
Liu, Q., Chen, S., Jiang, R. Wong, W. (2021). Simultaneous deep generative modeling and clustering of single cell genomic data. Nat. Mach. Intell., 3: 536–544
CrossRef
Google scholar
|
[60] |
Duren, Z., Chang, F., Naqing, F., Xin, J., Liu, Q. Wong, W. (2022). Regulatory analysis of single cell multiome gene expression and chromatin accessibility data with scREG. Genome Biol., 23: 114
CrossRef
Google scholar
|
[61] |
Yin, Q., Wu, M., Liu, Q., Lv, H. (2019). DeepHistone: a deep learning approach to predicting histone modifications. BMC Genomics, 20: 193
CrossRef
Google scholar
|
[62] |
LanceC.,LueckenM. D.,BurkhardtD. B.,CannoodtR.,RautenstrauchP.,LaddachA.,UbingazhibovA.,CaoZ.DengK.,KhanS.,. (2022) Multimodal single cell data integration challenge: results and lessons learned. In: Proceedings of the NeurIPS 2021 Competitions and Demonstrations Track, pp.162–176
|
[63] |
Liu, Q., Hua, K., Zhang, X., Wong, W. H. (2022). Deepcage: incorporating transcription factors in genome-wide prediction of chromatin accessibility. Genomics Proteomics Bioinformatics, 20: 496–507
CrossRef
Google scholar
|
[64] |
LiuQ.,ChenZ.WongW.. (2022) Causalegm: a general causal inference framework by encoding generative modeling. arXiv, 221205925
|
[65] |
Zeng, W., Liu, Q., Yin, Q., Jiang, R. Wong, W. (2023). HiChIPdb: a comprehensive database of HiChIP regulatory interactions. Nucleic Acids Res., 51: D159–D166
CrossRef
Google scholar
|
[66] |
Chen, S., Liu, Q., Cui, X., Feng, Z., Li, C., Wang, X., Zhang, X., Wang, Y. (2021). OpenAnnotate: a web server to annotate the chromatin accessibility of genomic regions. Nucleic Acids Res., 49: W483–W490
CrossRef
Google scholar
|
[67] |
Davis, A. P., Wiegers, T. C., Johnson, R. J., Sciaky, D., Wiegers, J. Mattingly, C. (2023). Comparative toxicogenomics database (ctd): Update 2023. Nucleic Acids Res., 51: D1257–D1262
CrossRef
Google scholar
|
[68] |
RamsundarB.,EastmanP.,WaltersP.. (2019) Deep Learning for the Life Sciences: Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More. Sebastopol, CA: O’Reilly Media
|
[69] |
Minhas, F., Geiss, B. J. (2014). PAIRpred: partner-specific prediction of interacting residues from sequence and structure. Proteins, 82: 1142–1155
CrossRef
Google scholar
|
[70] |
LiG.,XiongC.,ThabetA.. (2020) Deepergcn: All you need to train deeper GCNs. arXiv, 2006.07739
|
[71] |
BaJ. L.,KirosJ. R.HintonG.. (2016) Layer normalization. arXiv, 160706450
|
[72] |
Gilson, M. K., Liu, T., Baitaluk, M., Nicola, G., Hwang, L. (2016). BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res., 44: D1045–D1053
CrossRef
Google scholar
|
[73] |
PaszkeA.,GrossS.,MassaF.,LererA.,BradburyJ.,ChananG.,KilleenT.,LinZ.,GimelsheinN.. (2019) Pytorch: an imperative style, high-performance deep learning library. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp. 8026–8037
|
[74] |
MoritzP.,NishiharaR.,WangS.,TumanovA.,LiawR.,LiangE.,ElibolM.,YangZ.,PaulW.JordanM.. (2018) Ray: a distributed framework for emerging AI applications. In: 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18), pp. 561–577
|
/
〈 | 〉 |