Cell-based allometry: an approach for evaluation of complexity in morphogenesis

Ali Tarihi , Mojtaba Tarihi , Taki Tiraihi

Quant. Biol. ›› 2023, Vol. 11 ›› Issue (2) : 183 -203.

PDF (4317KB)
Quant. Biol. ›› 2023, Vol. 11 ›› Issue (2) : 183 -203. DOI: 10.15302/J-QB-022-0319
RESEARCH ARTICLE
RESEARCH ARTICLE

Cell-based allometry: an approach for evaluation of complexity in morphogenesis

Author information +
History +
PDF (4317KB)

Abstract

Background: Morphogenesis is a complex process in a developing animal at the organ, cellular and molecular levels. In this investigation, allometry at the cellular level was evaluated.

Methods: Geometric information, including the time-lapse Cartesian coordinates of each cell’s center, was used for calculating the allometric coefficients. A zero-centroaxial skew-symmetrical matrix (CSSM), was generated and used for constructing another square matrix (basic square matrix: BSM), then the determinant of BSM was calculated (d). The logarithms of absolute d (Lad) of cell group at different stages of development were plotted for all of the cells in a range of development stages; the slope of the regression line was estimated then used as the allometric coefficient. Moreover, the lineage growth rate (LGR) was also calculated by plotting the Lad against the logarithm of the time. The complexity index at each stage was calculated. The method was tested on a developing Caenorhabditis elegans embryo.

Results: We explored two out of the four first generated blastomeres in C. elegans embryo. The ABp and EMS lineages show that the allometric coefficient of ABp was higher than that of EMS, which was consistent with the complexity index as well as LGR.

Conclusion: The conclusion of this study is that the complexity of the differentiating cells in a developing embryo can be evaluated by allometric scaling based on the data derived from the Cartesian coordinates of the cells at different stages of development.

Graphical abstract

Keywords

embryogenesis / allometry / complexity / C. elegans / bioinformatics / skew matrix / morphogenesis

Cite this article

Download citation ▾
Ali Tarihi, Mojtaba Tarihi, Taki Tiraihi. Cell-based allometry: an approach for evaluation of complexity in morphogenesis. Quant. Biol., 2023, 11(2): 183-203 DOI:10.15302/J-QB-022-0319

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kaletta, T. Hengartner, M. (2006). Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov., 5: 387–399

[2]

Meneely, P. M., Dahlberg, C. L. Rose, J. (2019). Working with worms: Caenorhabditis elegans as a model organism. Curr. Protoc. Essent. Lab. Tech., 19: e35

[3]

Uppaluri, S., Weber, S. C. Brangwynne, C. (2016). Hierarchical size scaling during multicellular growth and development. Cell Rep., 17: 345–352

[4]

Tiraihi, A., Tiraihi, M. (2011). Self-organization of developing embryo using scale-invariant approach. Theor. Biol. Med. Model., 8: 17

[5]

Dubois, E. (1897). Sur le rapport du poids de l’encéphale avec la grandeur du corps chez les mammifères. Bull. Mem. Soc. Anthropol. Paris, 8: 337–376

[6]

Huxley, J. (1924). Constant differential growth-ratios and their significance. Nature, 114: 895–896

[7]

Huxley, J. S. (1936). Terminology of relative growth. Nature, 137: 780–781

[8]

ChampyCh. (1924) Sexualité et Hormones. Paris: Ches Gaston Doin

[9]

Gayon, J. (2000). History of the concept of allometry. Am. Zool., 40: 748–758

[10]

AlsousJ.VilloutreixP.,BerezhkovskiiA.ShvartsmanS.. (2017) Collective growth in a small cell network. Curr. Biol. 27, 2670–2676. e4

[11]

Adameyko, I. (2018). Supracellular contractions propel migration. Science, 362: 290–291

[12]

Shellard, A. (2019). Supracellular migratio—beyond collective cell migration. J. Cell Sci., 132: jcs226142

[13]

LabouesseM.. (2011) Forces and Tension in Development. Vol. 95, New York: Academic Press

[14]

Schweisguth, F. (2019). Self-organization in pattern formation. Dev. Cell, 49: 659–677

[15]

Tiraihi, A. (2007). Early onset of regionalization in EMS lineage of C. elegans embryo: a quantitative study. Biosystems, 90: 676–686

[16]

Johnston, I. A., Bower, N. I. Macqueen, D. (2011). Growth and the regulation of myotomal muscle mass in teleost fish. J. Exp. Biol., 214: 1617–1628

[17]

Levitt, P. (2003). Structural and functional maturation of the developing primate brain. J. Pediatr., 143: 35–45

[18]

Giagtzoglou, N., Ly, C. V. Bellen, H. (2009). Cell adhesion, the backbone of the synapse: “vertebrate” and “invertebrate” perspectives. Cold Spring Harb. Perspect. Biol., 1: a003079

[19]

Azevedo, R. B., Lohaus, R., Braun, V., Gumbel, M., Umamaheshwar, M., Agapow, P. M., Houthoofd, W., Platzer, U., Borgonie, G., Meinzer, H. P. . (2005). The simplicity of metazoan cell lineages. Nature, 433: 152–156

[20]

Savageau, M. (1979). Allometric morphogenesis of complex systems: derivation of the basic equations from first principles. Proc. Natl. Acad. Sci. USA, 76: 6023–6025

[21]

Bailly, F., Longo, G. (2011). A 2-dimensional geometry for biological time. Prog. Biophys. Mol. Biol., 106: 474–484

[22]

SkjeltorpA.. (2012) Complexity from Microscopic to Macroscopic Scales: Coherence and Large Deviations. New York: Springer Science & Business Media

[23]

Burggren, W. (2005). Developing animals flout prominent assumptions of ecological physiology. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 141: 430–439

[24]

Burggren, W. W. Monticino, M. (2005). Assessing physiological complexity. J. Exp. Biol., 208: 3221–3232

[25]

CoveneyP.. (2003) Self-organization and complexity: a new age for theory, computation and experiment. Philos. Trans. Math. Phys. Eng. Sci., 361, 1057–1079

[26]

Coveney, P. V. Fowler, P. (2005). Modelling biological complexity: a physical scientist’s perspective. J. R. Soc. Interface, 2: 267–280

[27]

West, G. B. Brown, J. (2005). The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J. Exp. Biol., 208: 1575–1592

[28]

Luecke, R. H., Wosilait, W. D. Young, J. (1995). Mathematical representation of organ growth in the human embryo/fetus. Int. J. Biomed. Comput., 39: 337–347

[29]

Salazar-Ciudad, (2009). Looking at the origin of phenotypic variation from pattern formation gene networks. J. Biosci., 34: 573–587

[30]

Meinhardt, H. (2008). Models of biological pattern formation: from elementary steps to the organization of embryonic axes. Curr. Top. Dev. Biol., 81: 1–63

[31]

Wolpert, L. Lewis, J. (1975). Towards a theory of development. Fed. Proc., 34: 14–20

[32]

BanchoffT.. (1993) Linear Algebra Through Geometry. New York: Springer Science & Business Media

[33]

JungersW. L.SusmanR.. (1984). Body size and skeletal allometry in African apes. In: The Pygmy Chimpanzee, pp. 131–17, New York: Springer

[34]

HeJ.. (2004) A brief review on allometric scaling in biology. In: International Conference on Computational and Information Science, pp. 652–658, New York: Springer

[35]

He, J. (2006). A novel model for allometric scaling laws for different organs. Chaos Solitons Fractals, 27: 1108–1114

[36]

EvesH.. (1980) Elementary Matrix Theory. New York: Courier Dover Publications

[37]

GentleJ.. (2007) Matrix Algebra Theory, Computations, and Applications in Statistics. New York: Springer

[38]

HadleyG.. (1961) Linear Algebra. Massachusetts: Addison-Wesley

[39]

BloomD.. (1979) Linear Algebra and Geometry. Cambridge: Cambridge university press

[40]

Cao, J., Guan, G., Ho, V. W. S., Wong, M. Chan, L. Tang, C., Zhao, Z. (2020). Establishment of a morphological atlas of the Caenorhabditis elegans embryo using deep-learning-based 4D segmentation. Nat. Commun., 11: 6254

[41]

PackerJ.ZhuQ.,HuynhC.,SivaramakrishnanP.,PrestonE.,DueckH.,StefanikD.,TanK.,TrapnellC.,KimJ.. (2019) A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution. Science. 365, eaax1971

[42]

Kuang, X., Guan, G., Tang, C., (2023). MorphoSim: an efficient and scalable phase-field framework for accurately simulating multicellular morphologies. NPJ Syst. Biol. Appl., 9: 6

[43]

Guignard, L., za, U. M., Leggio, B., Laussu, J., Faure, E., Michelin, G., Biasuz, K., Hufnagel, L., Malandain, G., Godin, C. . (2020). Contact area-dependent cell communication and the morphological invariance of ascidian embryogenesis. Science, 369: eaar5663

[44]

Bortolan, G. (2012). T-wave alternans detection by a combined method of principal component analysis and T-wave amplitude. Physiol. Meas., 33: 333–343

[45]

Lagarde, P., rot, G., Kauffmann, A., Brulard, C., Dapremont, V., Hostein, I., Neuville, A., Wozniak, A., Sciot, R., ffski, P. . (2012). Mitotic checkpoints and chromosome instability are strong predictors of clinical outcome in gastrointestinal stromal tumors. Clin. Cancer Res., 18: 826–838

[46]

Krugers, H. J., Oomen, C. A., Gumbs, M., Li, M., Velzing, E. H., Joels, M. Lucassen, P. (2012). Maternal deprivation and dendritic complexity in the basolateral amygdala. Neuropharmacology, 62: 534–537

[47]

Ferrari, C. M., Castro, L. H., Settervall, C. H., de Moura, R. M., Coutinho, P. A., Oshiro, I. E., Alves, R. B. de Sousa, R. (2011). Validity and reliability of the Portuguese version of the epilepsy medication treatment complexity index for Brazil. Epilepsy Behav., 21: 467–472

[48]

Correr, C. J., Melchiors, A. C., Fernandez-Llimos, F. (2011). Effects of a pharmacotherapy follow-up in community pharmacies on type 2 diabetes patients in Brazil. Int. J. Clin. Pharm., 33: 273–280

[49]

van Hasselt, F. N., Cornelisse, S., Zhang, T. Y., Meaney, M. J., Velzing, E. H., Krugers, H. J. (2012). Adult hippocampal glucocorticoid receptor expression and dentate synaptic plasticity correlate with maternal care received by individuals early in life. Hippocampus, 22: 255–266

[50]

Smit-Rigter, L. A., Champagne, D. L. van Hooft, J. (2009). Lifelong impact of variations in maternal care on dendritic structure and function of cortical layer 2/3 pyramidal neurons in rat offspring. PLoS One, 4: e5167

[51]

RichterS.. (1996) The structure of anuran podocyte-determined by ecology? Acta Zool., 77, 335–348

[52]

Kirchner, L. M., Schmidt, S. P. Gruber, B. (1996). Quantitation of angiogenesis in the chick chorioallantoic membrane model using fractal analysis. Microvasc. Res., 51: 2–14

[53]

Tiraihi, A. (2007). Early onset of regionalization in EMS lineage of C. elegans embryo: a quantitative study.. Biosystems, 90: 676–686

[54]

Schulze, J. (2011). Evolution of embryonic development in nematodes. Evodevo, 2: 18

[55]

Olejarz, J., Kaveh, K., Veller, C. Nowak, M. (2018). Selection for synchronized cell division in simple multicellular organisms. J. Theor. Biol., 457: 170–179

[56]

West, B. (2010). Fractal physiology and the fractional calculus: a perspective. Front. Physiol., 1: 12

[57]

Grizzi, F. (2005). The complexity of anatomical systems. Theor. Biol. Med. Model., 2: 26

[58]

Bharathi, M. S., Lebyodkin, M., Ananthakrishna, G., Fressengeas, C. Kubin, L. (2001). Multifractal burst in the spatiotemporal dynamics of jerky flow. Phys. Rev. Lett., 87: 165508

[59]

EstellerR.,VachtsevanosG.,EchauzJ.,HenryT.,PennellP.,EpsteinC.,BakayR.,BowenC.. (1999) Fractal dimension characterizes seizure onset in epileptic patients. In: 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 2343–2346

[60]

Yamamoto, Y., Hughson, R. L. (1992). Autonomic nervous system responses to exercise in relation to ventilatory threshold. Chest, 101: 206S–210S

[61]

Gillooly, J. F., Allen, A. (2008). Energetic constraints on an early developmental stage: a comparative view. Biol. Lett., 4: 123–126

[62]

Williams, L. E., Lopatin, G., Kaplan, D. D., Liu, A. Wong, J. (2008). Review: update on selection of optimal radiopharmaceuticals for clinical trials. Cancer Biother. Radiopharm., 23: 797–806

[63]

Beardall, J., Allen, D., Bragg, J., Finkel, Z. V., Flynn, K. J., Quigg, A., Rees, T. A. V., Richardson, A. Raven, J. (2009). Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton. New Phytol., 181: 295–309

[64]

SrinivasN. R.. (2009) Prediction of human pharmacokinetic parameters using animal data and principles of allometry. A case using bicifadine, a non-narcotic analgesic, as an example. Arzneimittelforschung, 59, 625–630

[65]

Fagerholm, U. (2007). Prediction of human pharmacokinetics—renal metabolic and excretion clearance. J. Pharm. Pharmacol., 59: 1463–1471

[66]

Anderson, B. J. Holford, N. (2008). Mechanism-based concepts of size and maturity in pharmacokinetics. Annu. Rev. Pharmacol. Toxicol., 48: 303–332

[67]

Singer, D. (2007). Perinatal adaptation in mammals: the impact of metabolic rate. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 148: 780–784

[68]

Shingleton, A. W., Frankino, W. A., Flatt, T., Nijhout, H. F. Emlen, D. (2007). Size and shape: the developmental regulation of static allometry in insects. BioEssays, 29: 536–548

[69]

Bonduriansky, R. (2007). Sexual selection and allometry: a critical reappraisal of the evidence and ideas. Evolution, 61: 838–849

[70]

Emlen, D. J., Szafran, Q., Corley, L. S. (2006). Insulin signaling and limb-patterning: candidate pathways for the origin and evolutionary diversification of beetle ‘horns’. Heredity, 97: 179–191

[71]

Glazier, D. (2005). Beyond the: variation in the intra- and inter-specific scaling of metabolic rate in animals. Biol. Rev. Camb. Philos. Soc., 80: 611–662

[72]

Angelini, D. R. Kaufman, T. (2005). Insect appendages and comparative ontogenetics. Dev. Biol., 286: 57–77

[73]

Biewener, A. (2005). Biomechanical consequences of scaling. J. Exp. Biol., 208: 1665–1676

[74]

Lague, M. (2003). Patterns of joint size dimorphism in the elbow and knee of catarrhine primates. Am. J. Phys. Anthropol., 120: 278–297

[75]

Porter, R. (2001). Allometry of mammalian cellular oxygen consumption. Cell. Mol. Life Sci., 58: 815–822

[76]

Singer, D. (1999). Neonatal tolerance to hypoxia: a comparative-physiological approach. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 123: 221–234

[77]

Pigliucci, M. (1998). Developmental phenotypic plasticity: where internal programming meets the external environment. Curr. Opin. Plant Biol., 1: 87–91

[78]

Stern, D. L. Emlen, D. (1999). The developmental basis for allometry in insects. Development, 126: 1091–1101

[79]

Klingenberg, C. (1998). Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biol. Rev. Camb. Philos. Soc., 73: 79–123

[80]

Richardson, M. K., Hanken, J., Gooneratne, M. L., Pieau, C., Raynaud, A., Selwood, L. Wright, G. (1997). There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development. Anat. Embryol. (Berl.), 196: 91–106

[81]

Patton, P. E. (1995). Connection matrix of the hippocampal formation: I. The dentate gyrus. Hippocampus, 5: 245–286

[82]

Weder, A. B. Schork, N. (1994). Adaptation, allometry, and hypertension. Hypertension, 24: 145–156

[83]

Pesce Delfino, V., Lettini, T., Vacca, E., Potente, F., Ragone, P. (1992). Biological image analysis for microscopical diagnosis: the work-station S.A.M. (Shape Analytical Morphometry). Pathol. Res. Pract., 188: 587–592

[84]

Armstrong, E. (1990). Brains, bodies and metabolism. Brain Behav. Evol., 36: 166–176

[85]

German, R. Z. Meyers, L. (1989). The role of time and size in ontogenetic allometry: I. Review. Growth Dev. Aging, 53: 101–106

[86]

Pesce, C. M. Carli, F. (1989). Advances in formal pathogenesis: allometry and allied comparative methods of stereology for recognizing relative growth in proliferative lesions. Pathol. Immunopathol. Res., 8: 95–103

[87]

Gould, S. (1975). Allometry in primates, with emphasis on scaling and the evolution of the brain. Contrib. Primatol., 5: 244–292

[88]

Pilbeam, D. Gould, S. (1974). Size and scaling in human evolution. Science, 186: 892–901

[89]

Goldsmith, M. I., Iovine, M. K., Reilly-Pol, T. Johnson, S. (2006). A developmental transition in growth control during zebrafish caudal fin development. Dev. Biol., 296: 450–457

[90]

Gonzalez-Voyer, A., Winberg, S. (2009). Brain structure evolution in a basal vertebrate clade: evidence from phylogenetic comparative analysis of cichlid fishes. BMC Evol. Biol., 9: 238

[91]

Finlay, B. (2008). The developing and evolving retina: using time to organize form. Brain Res., 1192: 5–16

[92]

Azevedo, R. B. Leroi, A. (2001). A power law for cells. Proc. Natl. Acad. Sci. USA, 98: 5699–5704

[93]

Rosas, A. (2004). Geometric morphometric analysis of allometric variation in the mandibular morphology of the hominids of Atapuerca, Sima de los Huesos site. Anat. Rec. A Discov. Mol. Cell. Evol. Biol., 278: 551–560

[94]

RatkowskyD.. (1983) Non-Linear Regression Modelling: A Unified Practical Approach. New York: Marcer Dekker

[95]

Cabana, T., Jolicoeur, P. (1990). Brain and body growth and allometry in the Mongolian gerbil (Meriones unguiculatus). Growth Dev. Aging, 54: 23–30

[96]

Lohaus, R., Geard, N. L., Wiles, J. Azevedo, R. (2007). A generative bias towards average complexity in artificial cell lineages. Proc. Biol. Sci., 274: 1741–1751

[97]

Wu, R. (2006). A hyperspace model to decipher the genetic architecture of developmental processes: allometry meets ontogeny. Genetics, 172: 627–637

[98]

JungersW.. (2013) Size and Scaling in Primate Biology. New York: Springer Science & Business Media

[99]

Yamamoto, K. (2017). An asymmetric attraction model for the diversity and robustness of cell arrangement in nematodes. Development, 144: 4437–4449

[100]

Labouesse, M. Mango, S. (1999). Patterning the C. elegans embryo: moving beyond the cell lineage. Trends Genet., 15: 307–313

[101]

Brakefield, P. (2006). Evo-devo and constraints on selection. Trends Ecol. Evol., 21: 362–368

[102]

Zhao, Z., Boyle, T. J., Bao, Z., Murray, J. I., Mericle, B. Waterston, R. (2008). Comparative analysis of embryonic cell lineage between Caenorhabditis briggsae and Caenorhabditis elegans. Dev. Biol., 314: 93–99

[103]

GuanG.,Ming-KinW.,Lu-YanC.,WingS. H. V.,XiaomengA.,ZhongyingZ.. (2021) Investigating spatio-temporal cellular interactions in embryonic morphogenesis by 4D nucleus tracking and systematic comparative analysis—taking nematodes C. elegans and C. briggsae as examples. In: 2021 9th International Conference on Bioinformatics and Computational Biology (ICBCB), IEEE, pp. 6–14

[104]

Harrell, J. R. (2011). Internalization of multiple cells during C. elegans gastrulation depends on common cytoskeletal mechanisms but different cell polarity and cell fate regulators.. Dev. Biol., 350: 1–12

[105]

Pohl, C., Tiongson, M., Moore, J. L., Santella, A. (2012). Actomyosin-based self-organization of cell internalization during C. elegans gastrulation. BMC Biol., 10: 94

[106]

MiaoJ.,GuanG.. (2021) Spontaneous cell internalization of a spatially-confined proliferating blastomere: a mechanical interpretation on worm gastrulation. ArXiv, 2105.05795

[107]

Robertson, S. M., Medina, J. (2014). Uncoupling different characteristics of the C. elegans E lineage from differentiation of intestinal markers.. PLoS One, 9: e106309

[108]

Jelier, R., Kruger, A., Swoger, J., Zimmermann, T. (2016). Compensatory cell movements confer robustness to mechanical deformation during embryonic development. Cell Syst., 3: 160–171

[109]

MarcusL. F.,CortiM.,LoyA.,NaylorG. J.SliceD.. (2013) Advances in Morphometrics. New York: Springer Science & Business Media

[110]

BrownJ.. (2000) Scaling In Biology. New York: Oxford University Press

[111]

Katz, M. (1980). Allometry formula: a cellular model. Growth, 44: 89–96

[112]

Klingenberg, C. P. Nijhout, H. (1998). Competition among growing organs and developmental control of morphological asymmetry. Proc. Biol. Sci., 265: 1135–1139

[113]

Tomkins, J. L., Kotiaho, J. S. Lebas, N. (2005). Phenotypic plasticity in the developmental integration of morphological trade-offs and secondary sexual trait compensation. Proc. Biol. Sci., 272: 543–551

[114]

Lockley, M. (2008). Morphodynamic perspectives on convergence between the feet and limbs of sauropods and humans: two cases of hypermorphosis. Ichnos, 15: 140–157

[115]

BonnerJ.DawidI.,GerhartJ.MadersonP.DavidsonE.FreemanG.GouldS.HornH.OsterG.and SauerH.. (2012). Evolution and Development: Report of the Dahlem Workshop on Evolution and Development Berlin 1981, May 10–15. Vol. 22, New York: Springer Science & Business Media

[116]

Steiner, T., Jin, Y. (2009). Vector field embryogeny. PLoS One, 4: e8177

[117]

Wong, M. Guan, D., Ng, K. H. C., Ho, V. W. S., An, X., Li, R., Ren, X. (2016). Timing of tissue-specific cell division requires a differential onset of zygotic transcription during metazoan embryogenesis. J. Biol. Chem., 291: 12501–12513

[118]

Arata, Y., Takagi, H., Sako, Y. (2015). Power law relationship between cell cycle duration and cell volume in the early embryonic development of Caenorhabditis elegans. Front. Physiol., 5: 529

[119]

Hara, Y. (2013). An allometric relationship between mitotic spindle width, spindle length, and ploidy in Caenorhabditis elegans embryos. Mol. Biol. Cell, 24: 1411–1419

[120]

Needleman, D. (2009). Cellular allometry: the spindle in development and inheritance. Curr. Biol., 19: R846–R847

[121]

FanJ.,JiT.,WangK.,HuangJ.,WangM.,ManningL.,DongX.,ShiY.,ZhangX.,ShaoZ.,. (2020) A muscle-epidermis-glia signaling axis sustains synaptic specificity during allometric growth in Caenorhabditis elegans. eLife, e558909

[122]

Zhu, M., Tao, H., Samani, M., Luo, M., Wang, X., Hopyan, S. (2020). Spatial mapping of tissue properties in vivo reveals a 3D stiffness gradient in the mouse limb bud. Proc. Natl. Acad. Sci. USA, 117: 4781–4791

[123]

Guan, G., Kuang, X., Tang, C. (2022). Comparison between phase-field model and coarse-grained model for characterizing cell-resolved morphological and mechanical properties in a multicellular system. Commun. Nonlinear Sci. Numer. Simul., 117: 106966

[124]

Solnica-Krezel, L. Sepich, D. (2012). Gastrulation: making and shaping germ layers. Annu. Rev. Cell Dev. Biol., 28: 687–717

[125]

Wozniak, M. A. Chen, C. (2009). Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol., 10: 34–43

[126]

Chesbro, W., Evans, T. (1979). Very slow growth of Escherichia coli. J. Bacteriol., 139: 625–638

[127]

Goedbloed, J. (1972). The embryonic and postnatal growth of rat and mouse. I. The embryonic and early postnatal growth of the whole embryo. A model with exponential growth and sudden changes in growth rate. Acta Anat. (Basel), 82: 305–336

[128]

Luecke, R. H., Wosilait, W. D. Young, J. (1999). Mathematical modeling of human embryonic and fetal growth rates. Growth Dev. Aging, 63: 49–59

[129]

Sbarbati, R. (1982). A simple polynomial model of the growth of the gastro-intestinal tract in the mouse embryo. J. Anat., 134: 809–815

[130]

Cowan, R. Morris, V. (1986). Cell population dynamics during the differentiative phase of tissue development. J. Theor. Biol., 122: 205–224

[131]

Juraver-Geslin, H. Durand, B. (2015). Early development of the neural plate: new roles for apoptosis and for one of its main effectors caspase-3. Genesis, 53: 203–224

[132]

DevlinK.. (2012) Introduction to Mathematical Thinking. New York: Pearson Education Inc

[133]

Davies, J. (2017). Using synthetic biology to explore principles of development. Development, 144: 1146–1158

[134]

Slack, J. (2014). Establishment of spatial pattern. Wiley Interdiscip. Rev. Dev. Biol., 3: 379–388

[135]

SabilloA.,RamirezJ.DomingoC.. (2016) Making muscle: morphogenetic movements and molecular mechanisms of myogenesis in Xenopus laevis. Semin. Cell Dev. Biol., 80–91

[136]

Rohde, L. A. Heisenberg, C. (2007). Zebrafish gastrulation: cell movements, signals, and mechanisms. Int. Rev. Cytol., 261: 159–192

[137]

Santella, A., Catena, R., Kovacevic, I., Shah, P., Yu, Z., Marquina-Solis, J., Kumar, A., Wu, Y., Schaff, J., n-Ramos, D. . (2015). WormGUIDES: an interactive single cell developmental atlas and tool for collaborative multidimensional data exploration. BMC Bioinformatics, 16: 189

[138]

Baldock, R. A., Bard, J. B. L., Burger, A., Burton, N., Christiansen, J., Feng, G., Hill, B., Houghton, D., Kaufman, M., Rao, J. . (2003). Emap and emage: a framework for understanding spatially organized data. Neuroinformatics, 1: 309–325

[139]

Smith, C. M., Finger, J. H., Kadin, J. A., Richardson, J. E. (2014). The gene expression database for mouse development (GXD): putting developmental expression information at your fingertips. Dev. Dyn., 243: 1176–1186

[140]

Yi, H., Xue, L., Guo, M. X., Ma, J., Zeng, Y., Wang, W., Cai, J. Y., Hu, H. M., Shu, H. B., Shi, Y. B. . (2010). Gene expression atlas for human embryogenesis. FASEB J., 24: 3341–3350

[141]

Schnabel, R., Hutter, H., Moerman, D. (1997). Assessing normal embryogenesis in Caenorhabditis elegans using a 4D microscope: variability of development and regional specification. Dev. Biol., 184: 234–265

[142]

Gasser, R. (2006). Evidence that some events of mammalian embryogenesis can result from differential growth, making migration unnecessary. Anat. Rec. B New Anat., 289B: 53–63

[143]

Savageau, M. (1979). Growth of complex systems can be related to the properties of their underlying determinants. Proc. Natl. Acad. Sci. USA, 76: 5413–5417

[144]

Zaman, M. H., Kamm, R. D., Matsudaira, P. Lauffenburger, D. (2005). Computational model for cell migration in three-dimensional matrices. Biophys. J., 89: 1389–1397

[145]

Boocock, C. (1989). Unidirectional displacement of cells in fibrillar matrices. Development, 107: 881–890

[146]

Tian, B., Guan, G., Tang, L. (2020). Why and how the nematode’s early embryogenesis can be precise and robust: a mechanical perspective. Phys. Biol., 17: 026001

[147]

Siegenfeld, A. F. (2020). An introduction to complex systems science and its applications. Complexity, 2020: 6105872

[148]

AyN.,OlbrichE.,BertschingerN.. (2006) A unifying framework for complexity measures of finite systems. In: Proceedings of ECCS

[149]

Kuang, X., Guan, G., Wong, M. Chan, L. Zhao, Z., Tang, C. (2022). Computable early Caenorhabditis elegans embryo with a phase field model. PLOS Comput. Biol., 18: e1009755

[150]

Havel, T. (1991). Some examples of the use of distances as coordinates for Euclidean geometry. J. Symbolic Comp., 11: 579–593

[151]

Gower, J. (1982). Euclidean distance geometry. Math. Sci., 7: 1–14

[152]

Chan, H., Shea, J., Withers, P. (2002). Podocyte complexity and terrestriality in frogs. J. R. Soc. West. Aust., 85: 181–182

[153]

Ricklefs, R. (1987). Comparative analysis of avian embryonic growth. J. Exp. Zool. (Supplement: published under auspices of the American Society of Zoologists and the Division of Comparative Physiology and Biochemistry), 1: 309–323

[154]

JungersW.. (1985) Body size and scaling of limb proportions in primates. In: Size and Scaling in Primate biology, pp. 345–381. New York: Springer

[155]

Blanchard, O. L. Smoliga, J. (2015). Translating dosages from animal models to human clinical trials-revisiting body surface area scaling. FASEB J., 29: 1629–1634

[156]

Bassil, G., Zarzoso, M. Noujaim, S. (2017). Allometric scaling of electrical excitation and propagation in the mammalian heart. J. Theor. Biol., 419: 238–242

[157]

Howland, H. C., Merola, S. Basarab, J. (2004). The allometry and scaling of the size of vertebrate eyes. Vision Res., 44: 2043–2065

[158]

Beuchat, C. A. Braun, E. (1988). Allometry of the kidney: implications for the ontogeny of osmoregulation. Am. J. Physiol., 255: R760–R767

[159]

Pollock, C. M. Shadwick, R. (1994). Allometry of muscle, tendon, and elastic energy storage capacity in mammals. Am. J. Physiol., 266: R1022–R1031

[160]

Karamaoun, C., Dempsey, J. (2022). The origin of the allometric scaling of lung ventilation in mammals. Peer Community J., 2: 1–27

[161]

Ucciferri, N., Sbrana, T. (2014). Allometric scaling and cell ratios in multi-organ in vitro models of human metabolism. Front. Bioeng. Biotechnol., 2: 74

[162]

Needleman, D. (2009). Cellular allometry: the spindle in development and inheritance. Curr. Biol., 19: R846–R847

[163]

Godfrey, R. K., Swartzlander, M. (2021). Allometric analysis of brain cell number in Hymenoptera suggests ant brains diverge from general trends. Proc. Biol. Sci., 288: 20210199

[164]

Pond, C. M. Mattacks, C. (1986). Allometry of the cellular structure of intra-orbital adipose tissue in eutherian mammals. J. Zool. (Lond.), 209: 35–42

[165]

Stone, K. C., Mercer, R. R., Gehr, P., Stockstill, B. Crapo, J. (1992). Allometric relationships of cell numbers and size in the mammalian lung. Am. J. Respir. Cell Mol. Biol., 6: 235–243

[166]

Dingli, D. Pacheco, J. (2006). Allometric scaling of the active hematopoietic stem cell pool across mammals. PLoS One, 1: e2

[167]

Miettinen, T. P. (2017). Mitochondrial function and cell size: an allometric relationship. Trends Cell Biol., 27: 393–402

[168]

LopezM. L. D.,LinY.SchneiderS. Q.MachidaR.. (2021) Allometric scaling of RNA abundance from genes to communities. bioRxiv,

[169]

Poot, M., Rizk-Rabin, M., Hoehn, H. Pavlovitch, J. (1990). Cell size and RNA content correlate with cell differentiation and proliferative capacity of rat keratinocytes. J. Cell. Physiol., 143: 279–286

[170]

Wu, R. (2006). A hyperspace model to decipher the genetic architecture of developmental processes: allometry meets ontogeny. Genetics, 172: 627–637

[171]

Katz, D. C., Aponte, J. D., Liu, W., Green, R. M., Mayeux, J. M., Pollard, K. M., Pomp, D., Munger, S. C., Murray, S. A., Roseman, C. C. . (2020). Facial shape and allometry quantitative trait locus intervals in the Diversity Outbred mouse are enriched for known skeletal and facial development genes. PLoS One, 15: e0233377

[172]

West, G. B., Woodruff, W. H. Brown, J. (2002). Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc. Natl. Acad. Sci. USA, 99: 2473–2478

[173]

McKechnie, A. E. Wolf, B. (2004). The allometry of avian basal metabolic rate: good predictions need good data. Physiol. Biochem. Zool., 77: 502–521

[174]

Pavan Kumar, V. V. Srinivas, N. (2008). Application of allometry principles for the prediction of human pharmacokinetic parameters for irbesartan, a AT1 receptor antagonist, from animal data. Eur. J. Drug Metab. Pharmacokinet., 33: 247–252

[175]

Zuideveld, K. P., Van der Graaf, P. H., Peletier, L. A. (2007). Allometric scaling of pharmacodynamic responses: application to 5-Ht1A receptor mediated responses from rat to man. Pharm. Res., 24: 2031–2039

[176]

Mager, D. E., Woo, S. Jusko, W. (2009). Scaling pharmacodynamics from in vitro and preclinical animal studies to humans. Drug Metab. Pharmacokinet., 24: 16–24

RIGHTS & PERMISSIONS

The Author(s). Published by Higher Education Press.

AI Summary AI Mindmap
PDF (4317KB)

1307

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/