Cell-based allometry: an approach for evaluation of complexity in morphogenesis

Ali Tarihi, Mojtaba Tarihi, Taki Tiraihi

PDF(4317 KB)
PDF(4317 KB)
Quant. Biol. ›› 2023, Vol. 11 ›› Issue (2) : 183-203. DOI: 10.15302/J-QB-022-0319
RESEARCH ARTICLE
RESEARCH ARTICLE

Cell-based allometry: an approach for evaluation of complexity in morphogenesis

Author information +
History +

Abstract

Background: Morphogenesis is a complex process in a developing animal at the organ, cellular and molecular levels. In this investigation, allometry at the cellular level was evaluated.

Methods: Geometric information, including the time-lapse Cartesian coordinates of each cell’s center, was used for calculating the allometric coefficients. A zero-centroaxial skew-symmetrical matrix (CSSM), was generated and used for constructing another square matrix (basic square matrix: BSM), then the determinant of BSM was calculated (d). The logarithms of absolute d (Lad) of cell group at different stages of development were plotted for all of the cells in a range of development stages; the slope of the regression line was estimated then used as the allometric coefficient. Moreover, the lineage growth rate (LGR) was also calculated by plotting the Lad against the logarithm of the time. The complexity index at each stage was calculated. The method was tested on a developing Caenorhabditis elegans embryo.

Results: We explored two out of the four first generated blastomeres in C. elegans embryo. The ABp and EMS lineages show that the allometric coefficient of ABp was higher than that of EMS, which was consistent with the complexity index as well as LGR.

Conclusion: The conclusion of this study is that the complexity of the differentiating cells in a developing embryo can be evaluated by allometric scaling based on the data derived from the Cartesian coordinates of the cells at different stages of development.

Author summary

This paper addresses evaluation of morphogenesis in Caenorhabditis elegans based on cellular strucuture of the organism, using allometry for studying of complexity. The x, y, z coordinates of a cell were considered in order to generate zero-centroaxial skew-symmetrical matrices (CSSMs) and used for constructing basic square matrices (BSMs). The complexity was determined using BSM determinant. The results were compared with complexity index based on calculation of the branching of the mitotic tree of developing embryos, and were found to be consistent with those of BSM. The lineage growth rate was also evaluated.

Graphical abstract

Keywords

embryogenesis / allometry / complexity / C. elegans / bioinformatics / skew matrix / morphogenesis

Cite this article

Download citation ▾
Ali Tarihi, Mojtaba Tarihi, Taki Tiraihi. Cell-based allometry: an approach for evaluation of complexity in morphogenesis. Quant. Biol., 2023, 11(2): 183‒203 https://doi.org/10.15302/J-QB-022-0319

References

[1]
Kaletta, T. Hengartner, M. (2006). Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov., 5: 387–399
CrossRef Google scholar
[2]
Meneely, P. M., Dahlberg, C. L. Rose, J. (2019). Working with worms: Caenorhabditis elegans as a model organism. Curr. Protoc. Essent. Lab. Tech., 19: e35
CrossRef Google scholar
[3]
Uppaluri, S., Weber, S. C. Brangwynne, C. (2016). Hierarchical size scaling during multicellular growth and development. Cell Rep., 17: 345–352
CrossRef Google scholar
[4]
Tiraihi, A., Tiraihi, M. (2011). Self-organization of developing embryo using scale-invariant approach. Theor. Biol. Med. Model., 8: 17
CrossRef Google scholar
[5]
Dubois, E. (1897). Sur le rapport du poids de l’encéphale avec la grandeur du corps chez les mammifères. Bull. Mem. Soc. Anthropol. Paris, 8: 337–376
[6]
Huxley, J. (1924). Constant differential growth-ratios and their significance. Nature, 114: 895–896
CrossRef Google scholar
[7]
Huxley, J. S. (1936). Terminology of relative growth. Nature, 137: 780–781
CrossRef Google scholar
[8]
ChampyCh. (1924) Sexualité et Hormones. Paris: Ches Gaston Doin
[9]
Gayon, J. (2000). History of the concept of allometry. Am. Zool., 40: 748–758
[10]
AlsousJ.VilloutreixP.,BerezhkovskiiA.ShvartsmanS.. (2017) Collective growth in a small cell network. Curr. Biol. 27, 2670–2676. e4
[11]
Adameyko, I. (2018). Supracellular contractions propel migration. Science, 362: 290–291
CrossRef Google scholar
[12]
Shellard, A. (2019). Supracellular migratio—beyond collective cell migration. J. Cell Sci., 132: jcs226142
CrossRef Google scholar
[13]
LabouesseM.. (2011) Forces and Tension in Development. Vol. 95, New York: Academic Press
[14]
Schweisguth, F. (2019). Self-organization in pattern formation. Dev. Cell, 49: 659–677
CrossRef Google scholar
[15]
Tiraihi, A. (2007). Early onset of regionalization in EMS lineage of C. elegans embryo: a quantitative study. Biosystems, 90: 676–686
CrossRef Google scholar
[16]
Johnston, I. A., Bower, N. I. Macqueen, D. (2011). Growth and the regulation of myotomal muscle mass in teleost fish. J. Exp. Biol., 214: 1617–1628
CrossRef Google scholar
[17]
Levitt, P. (2003). Structural and functional maturation of the developing primate brain. J. Pediatr., 143: 35–45
CrossRef Google scholar
[18]
Giagtzoglou, N., Ly, C. V. Bellen, H. (2009). Cell adhesion, the backbone of the synapse: “vertebrate” and “invertebrate” perspectives. Cold Spring Harb. Perspect. Biol., 1: a003079
CrossRef Google scholar
[19]
Azevedo, R. B., Lohaus, R., Braun, V., Gumbel, M., Umamaheshwar, M., Agapow, P. M., Houthoofd, W., Platzer, U., Borgonie, G., Meinzer, H. P. . (2005). The simplicity of metazoan cell lineages. Nature, 433: 152–156
CrossRef Google scholar
[20]
Savageau, M. (1979). Allometric morphogenesis of complex systems: derivation of the basic equations from first principles. Proc. Natl. Acad. Sci. USA, 76: 6023–6025
CrossRef Google scholar
[21]
Bailly, F., Longo, G. (2011). A 2-dimensional geometry for biological time. Prog. Biophys. Mol. Biol., 106: 474–484
CrossRef Google scholar
[22]
SkjeltorpA.. (2012) Complexity from Microscopic to Macroscopic Scales: Coherence and Large Deviations. New York: Springer Science & Business Media
[23]
Burggren, W. (2005). Developing animals flout prominent assumptions of ecological physiology. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 141: 430–439
CrossRef Google scholar
[24]
Burggren, W. W. Monticino, M. (2005). Assessing physiological complexity. J. Exp. Biol., 208: 3221–3232
CrossRef Google scholar
[25]
CoveneyP.. (2003) Self-organization and complexity: a new age for theory, computation and experiment. Philos. Trans. Math. Phys. Eng. Sci., 361, 1057–1079
[26]
Coveney, P. V. Fowler, P. (2005). Modelling biological complexity: a physical scientist’s perspective. J. R. Soc. Interface, 2: 267–280
CrossRef Google scholar
[27]
West, G. B. Brown, J. (2005). The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J. Exp. Biol., 208: 1575–1592
CrossRef Google scholar
[28]
Luecke, R. H., Wosilait, W. D. Young, J. (1995). Mathematical representation of organ growth in the human embryo/fetus. Int. J. Biomed. Comput., 39: 337–347
CrossRef Google scholar
[29]
Salazar-Ciudad, (2009). Looking at the origin of phenotypic variation from pattern formation gene networks. J. Biosci., 34: 573–587
CrossRef Google scholar
[30]
Meinhardt, H. (2008). Models of biological pattern formation: from elementary steps to the organization of embryonic axes. Curr. Top. Dev. Biol., 81: 1–63
CrossRef Google scholar
[31]
Wolpert, L. Lewis, J. (1975). Towards a theory of development. Fed. Proc., 34: 14–20
[32]
BanchoffT.. (1993) Linear Algebra Through Geometry. New York: Springer Science & Business Media
[33]
JungersW. L.SusmanR.. (1984). Body size and skeletal allometry in African apes. In: The Pygmy Chimpanzee, pp. 131–17, New York: Springer
[34]
HeJ.. (2004) A brief review on allometric scaling in biology. In: International Conference on Computational and Information Science, pp. 652–658, New York: Springer
[35]
He, J. (2006). A novel model for allometric scaling laws for different organs. Chaos Solitons Fractals, 27: 1108–1114
CrossRef Google scholar
[36]
EvesH.. (1980) Elementary Matrix Theory. New York: Courier Dover Publications
[37]
GentleJ.. (2007) Matrix Algebra Theory, Computations, and Applications in Statistics. New York: Springer
[38]
HadleyG.. (1961) Linear Algebra. Massachusetts: Addison-Wesley
[39]
BloomD.. (1979) Linear Algebra and Geometry. Cambridge: Cambridge university press
[40]
Cao, J., Guan, G., Ho, V. W. S., Wong, M. Chan, L. Tang, C., Zhao, Z. (2020). Establishment of a morphological atlas of the Caenorhabditis elegans embryo using deep-learning-based 4D segmentation. Nat. Commun., 11: 6254
CrossRef Google scholar
[41]
PackerJ.ZhuQ.,HuynhC.,SivaramakrishnanP.,PrestonE.,DueckH.,StefanikD.,TanK.,TrapnellC.,KimJ.. (2019) A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution. Science. 365, eaax1971
[42]
Kuang, X., Guan, G., Tang, C., (2023). MorphoSim: an efficient and scalable phase-field framework for accurately simulating multicellular morphologies. NPJ Syst. Biol. Appl., 9: 6
CrossRef Google scholar
[43]
Guignard, L., za, U. M., Leggio, B., Laussu, J., Faure, E., Michelin, G., Biasuz, K., Hufnagel, L., Malandain, G., Godin, C. . (2020). Contact area-dependent cell communication and the morphological invariance of ascidian embryogenesis. Science, 369: eaar5663
CrossRef Google scholar
[44]
Bortolan, G. (2012). T-wave alternans detection by a combined method of principal component analysis and T-wave amplitude. Physiol. Meas., 33: 333–343
CrossRef Google scholar
[45]
Lagarde, P., rot, G., Kauffmann, A., Brulard, C., Dapremont, V., Hostein, I., Neuville, A., Wozniak, A., Sciot, R., ffski, P. . (2012). Mitotic checkpoints and chromosome instability are strong predictors of clinical outcome in gastrointestinal stromal tumors. Clin. Cancer Res., 18: 826–838
CrossRef Google scholar
[46]
Krugers, H. J., Oomen, C. A., Gumbs, M., Li, M., Velzing, E. H., Joels, M. Lucassen, P. (2012). Maternal deprivation and dendritic complexity in the basolateral amygdala. Neuropharmacology, 62: 534–537
CrossRef Google scholar
[47]
Ferrari, C. M., Castro, L. H., Settervall, C. H., de Moura, R. M., Coutinho, P. A., Oshiro, I. E., Alves, R. B. de Sousa, R. (2011). Validity and reliability of the Portuguese version of the epilepsy medication treatment complexity index for Brazil. Epilepsy Behav., 21: 467–472
CrossRef Google scholar
[48]
Correr, C. J., Melchiors, A. C., Fernandez-Llimos, F. (2011). Effects of a pharmacotherapy follow-up in community pharmacies on type 2 diabetes patients in Brazil. Int. J. Clin. Pharm., 33: 273–280
CrossRef Google scholar
[49]
van Hasselt, F. N., Cornelisse, S., Zhang, T. Y., Meaney, M. J., Velzing, E. H., Krugers, H. J. (2012). Adult hippocampal glucocorticoid receptor expression and dentate synaptic plasticity correlate with maternal care received by individuals early in life. Hippocampus, 22: 255–266
CrossRef Google scholar
[50]
Smit-Rigter, L. A., Champagne, D. L. van Hooft, J. (2009). Lifelong impact of variations in maternal care on dendritic structure and function of cortical layer 2/3 pyramidal neurons in rat offspring. PLoS One, 4: e5167
CrossRef Google scholar
[51]
RichterS.. (1996) The structure of anuran podocyte-determined by ecology? Acta Zool., 77, 335–348
[52]
Kirchner, L. M., Schmidt, S. P. Gruber, B. (1996). Quantitation of angiogenesis in the chick chorioallantoic membrane model using fractal analysis. Microvasc. Res., 51: 2–14
CrossRef Google scholar
[53]
Tiraihi, A. (2007). Early onset of regionalization in EMS lineage of C. elegans embryo: a quantitative study.. Biosystems, 90: 676–686
CrossRef Google scholar
[54]
Schulze, J. (2011). Evolution of embryonic development in nematodes. Evodevo, 2: 18
CrossRef Google scholar
[55]
Olejarz, J., Kaveh, K., Veller, C. Nowak, M. (2018). Selection for synchronized cell division in simple multicellular organisms. J. Theor. Biol., 457: 170–179
CrossRef Google scholar
[56]
West, B. (2010). Fractal physiology and the fractional calculus: a perspective. Front. Physiol., 1: 12
CrossRef Google scholar
[57]
Grizzi, F. (2005). The complexity of anatomical systems. Theor. Biol. Med. Model., 2: 26
CrossRef Google scholar
[58]
Bharathi, M. S., Lebyodkin, M., Ananthakrishna, G., Fressengeas, C. Kubin, L. (2001). Multifractal burst in the spatiotemporal dynamics of jerky flow. Phys. Rev. Lett., 87: 165508
CrossRef Google scholar
[59]
EstellerR.,VachtsevanosG.,EchauzJ.,HenryT.,PennellP.,EpsteinC.,BakayR.,BowenC.. (1999) Fractal dimension characterizes seizure onset in epileptic patients. In: 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 2343–2346
[60]
Yamamoto, Y., Hughson, R. L. (1992). Autonomic nervous system responses to exercise in relation to ventilatory threshold. Chest, 101: 206S–210S
CrossRef Google scholar
[61]
Gillooly, J. F., Allen, A. (2008). Energetic constraints on an early developmental stage: a comparative view. Biol. Lett., 4: 123–126
CrossRef Google scholar
[62]
Williams, L. E., Lopatin, G., Kaplan, D. D., Liu, A. Wong, J. (2008). Review: update on selection of optimal radiopharmaceuticals for clinical trials. Cancer Biother. Radiopharm., 23: 797–806
CrossRef Google scholar
[63]
Beardall, J., Allen, D., Bragg, J., Finkel, Z. V., Flynn, K. J., Quigg, A., Rees, T. A. V., Richardson, A. Raven, J. (2009). Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton. New Phytol., 181: 295–309
CrossRef Google scholar
[64]
SrinivasN. R.. (2009) Prediction of human pharmacokinetic parameters using animal data and principles of allometry. A case using bicifadine, a non-narcotic analgesic, as an example. Arzneimittelforschung, 59, 625–630
[65]
Fagerholm, U. (2007). Prediction of human pharmacokinetics—renal metabolic and excretion clearance. J. Pharm. Pharmacol., 59: 1463–1471
CrossRef Google scholar
[66]
Anderson, B. J. Holford, N. (2008). Mechanism-based concepts of size and maturity in pharmacokinetics. Annu. Rev. Pharmacol. Toxicol., 48: 303–332
CrossRef Google scholar
[67]
Singer, D. (2007). Perinatal adaptation in mammals: the impact of metabolic rate. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 148: 780–784
CrossRef Google scholar
[68]
Shingleton, A. W., Frankino, W. A., Flatt, T., Nijhout, H. F. Emlen, D. (2007). Size and shape: the developmental regulation of static allometry in insects. BioEssays, 29: 536–548
CrossRef Google scholar
[69]
Bonduriansky, R. (2007). Sexual selection and allometry: a critical reappraisal of the evidence and ideas. Evolution, 61: 838–849
CrossRef Google scholar
[70]
Emlen, D. J., Szafran, Q., Corley, L. S. (2006). Insulin signaling and limb-patterning: candidate pathways for the origin and evolutionary diversification of beetle ‘horns’. Heredity, 97: 179–191
CrossRef Google scholar
[71]
Glazier, D. (2005). Beyond the: variation in the intra- and inter-specific scaling of metabolic rate in animals. Biol. Rev. Camb. Philos. Soc., 80: 611–662
CrossRef Google scholar
[72]
Angelini, D. R. Kaufman, T. (2005). Insect appendages and comparative ontogenetics. Dev. Biol., 286: 57–77
CrossRef Google scholar
[73]
Biewener, A. (2005). Biomechanical consequences of scaling. J. Exp. Biol., 208: 1665–1676
CrossRef Google scholar
[74]
Lague, M. (2003). Patterns of joint size dimorphism in the elbow and knee of catarrhine primates. Am. J. Phys. Anthropol., 120: 278–297
CrossRef Google scholar
[75]
Porter, R. (2001). Allometry of mammalian cellular oxygen consumption. Cell. Mol. Life Sci., 58: 815–822
CrossRef Google scholar
[76]
Singer, D. (1999). Neonatal tolerance to hypoxia: a comparative-physiological approach. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 123: 221–234
CrossRef Google scholar
[77]
Pigliucci, M. (1998). Developmental phenotypic plasticity: where internal programming meets the external environment. Curr. Opin. Plant Biol., 1: 87–91
CrossRef Google scholar
[78]
Stern, D. L. Emlen, D. (1999). The developmental basis for allometry in insects. Development, 126: 1091–1101
CrossRef Google scholar
[79]
Klingenberg, C. (1998). Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biol. Rev. Camb. Philos. Soc., 73: 79–123
CrossRef Google scholar
[80]
Richardson, M. K., Hanken, J., Gooneratne, M. L., Pieau, C., Raynaud, A., Selwood, L. Wright, G. (1997). There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development. Anat. Embryol. (Berl.), 196: 91–106
CrossRef Google scholar
[81]
Patton, P. E. (1995). Connection matrix of the hippocampal formation: I. The dentate gyrus. Hippocampus, 5: 245–286
CrossRef Google scholar
[82]
Weder, A. B. Schork, N. (1994). Adaptation, allometry, and hypertension. Hypertension, 24: 145–156
CrossRef Google scholar
[83]
Pesce Delfino, V., Lettini, T., Vacca, E., Potente, F., Ragone, P. (1992). Biological image analysis for microscopical diagnosis: the work-station S.A.M. (Shape Analytical Morphometry). Pathol. Res. Pract., 188: 587–592
CrossRef Google scholar
[84]
Armstrong, E. (1990). Brains, bodies and metabolism. Brain Behav. Evol., 36: 166–176
CrossRef Google scholar
[85]
German, R. Z. Meyers, L. (1989). The role of time and size in ontogenetic allometry: I. Review. Growth Dev. Aging, 53: 101–106
[86]
Pesce, C. M. Carli, F. (1989). Advances in formal pathogenesis: allometry and allied comparative methods of stereology for recognizing relative growth in proliferative lesions. Pathol. Immunopathol. Res., 8: 95–103
CrossRef Google scholar
[87]
Gould, S. (1975). Allometry in primates, with emphasis on scaling and the evolution of the brain. Contrib. Primatol., 5: 244–292
[88]
Pilbeam, D. Gould, S. (1974). Size and scaling in human evolution. Science, 186: 892–901
CrossRef Google scholar
[89]
Goldsmith, M. I., Iovine, M. K., Reilly-Pol, T. Johnson, S. (2006). A developmental transition in growth control during zebrafish caudal fin development. Dev. Biol., 296: 450–457
CrossRef Google scholar
[90]
Gonzalez-Voyer, A., Winberg, S. (2009). Brain structure evolution in a basal vertebrate clade: evidence from phylogenetic comparative analysis of cichlid fishes. BMC Evol. Biol., 9: 238
CrossRef Google scholar
[91]
Finlay, B. (2008). The developing and evolving retina: using time to organize form. Brain Res., 1192: 5–16
CrossRef Google scholar
[92]
Azevedo, R. B. Leroi, A. (2001). A power law for cells. Proc. Natl. Acad. Sci. USA, 98: 5699–5704
CrossRef Google scholar
[93]
Rosas, A. (2004). Geometric morphometric analysis of allometric variation in the mandibular morphology of the hominids of Atapuerca, Sima de los Huesos site. Anat. Rec. A Discov. Mol. Cell. Evol. Biol., 278: 551–560
CrossRef Google scholar
[94]
RatkowskyD.. (1983) Non-Linear Regression Modelling: A Unified Practical Approach. New York: Marcer Dekker
[95]
Cabana, T., Jolicoeur, P. (1990). Brain and body growth and allometry in the Mongolian gerbil (Meriones unguiculatus). Growth Dev. Aging, 54: 23–30
[96]
Lohaus, R., Geard, N. L., Wiles, J. Azevedo, R. (2007). A generative bias towards average complexity in artificial cell lineages. Proc. Biol. Sci., 274: 1741–1751
CrossRef Google scholar
[97]
Wu, R. (2006). A hyperspace model to decipher the genetic architecture of developmental processes: allometry meets ontogeny. Genetics, 172: 627–637
CrossRef Google scholar
[98]
JungersW.. (2013) Size and Scaling in Primate Biology. New York: Springer Science & Business Media
[99]
Yamamoto, K. (2017). An asymmetric attraction model for the diversity and robustness of cell arrangement in nematodes. Development, 144: 4437–4449
CrossRef Google scholar
[100]
Labouesse, M. Mango, S. (1999). Patterning the C. elegans embryo: moving beyond the cell lineage. Trends Genet., 15: 307–313
CrossRef Google scholar
[101]
Brakefield, P. (2006). Evo-devo and constraints on selection. Trends Ecol. Evol., 21: 362–368
CrossRef Google scholar
[102]
Zhao, Z., Boyle, T. J., Bao, Z., Murray, J. I., Mericle, B. Waterston, R. (2008). Comparative analysis of embryonic cell lineage between Caenorhabditis briggsae and Caenorhabditis elegans. Dev. Biol., 314: 93–99
CrossRef Google scholar
[103]
GuanG.,Ming-KinW.,Lu-YanC.,WingS. H. V.,XiaomengA.,ZhongyingZ.. (2021) Investigating spatio-temporal cellular interactions in embryonic morphogenesis by 4D nucleus tracking and systematic comparative analysis—taking nematodes C. elegans and C. briggsae as examples. In: 2021 9th International Conference on Bioinformatics and Computational Biology (ICBCB), IEEE, pp. 6–14
[104]
Harrell, J. R. (2011). Internalization of multiple cells during C. elegans gastrulation depends on common cytoskeletal mechanisms but different cell polarity and cell fate regulators.. Dev. Biol., 350: 1–12
CrossRef Google scholar
[105]
Pohl, C., Tiongson, M., Moore, J. L., Santella, A. (2012). Actomyosin-based self-organization of cell internalization during C. elegans gastrulation. BMC Biol., 10: 94
CrossRef Google scholar
[106]
MiaoJ.,GuanG.. (2021) Spontaneous cell internalization of a spatially-confined proliferating blastomere: a mechanical interpretation on worm gastrulation. ArXiv, 2105.05795
[107]
Robertson, S. M., Medina, J. (2014). Uncoupling different characteristics of the C. elegans E lineage from differentiation of intestinal markers.. PLoS One, 9: e106309
CrossRef Google scholar
[108]
Jelier, R., Kruger, A., Swoger, J., Zimmermann, T. (2016). Compensatory cell movements confer robustness to mechanical deformation during embryonic development. Cell Syst., 3: 160–171
CrossRef Google scholar
[109]
MarcusL. F.,CortiM.,LoyA.,NaylorG. J.SliceD.. (2013) Advances in Morphometrics. New York: Springer Science & Business Media
[110]
BrownJ.. (2000) Scaling In Biology. New York: Oxford University Press
[111]
Katz, M. (1980). Allometry formula: a cellular model. Growth, 44: 89–96
[112]
Klingenberg, C. P. Nijhout, H. (1998). Competition among growing organs and developmental control of morphological asymmetry. Proc. Biol. Sci., 265: 1135–1139
CrossRef Google scholar
[113]
Tomkins, J. L., Kotiaho, J. S. Lebas, N. (2005). Phenotypic plasticity in the developmental integration of morphological trade-offs and secondary sexual trait compensation. Proc. Biol. Sci., 272: 543–551
CrossRef Google scholar
[114]
Lockley, M. (2008). Morphodynamic perspectives on convergence between the feet and limbs of sauropods and humans: two cases of hypermorphosis. Ichnos, 15: 140–157
CrossRef Google scholar
[115]
BonnerJ.DawidI.,GerhartJ.MadersonP.DavidsonE.FreemanG.GouldS.HornH.OsterG.and SauerH.. (2012). Evolution and Development: Report of the Dahlem Workshop on Evolution and Development Berlin 1981, May 10–15. Vol. 22, New York: Springer Science & Business Media
[116]
Steiner, T., Jin, Y. (2009). Vector field embryogeny. PLoS One, 4: e8177
CrossRef Google scholar
[117]
Wong, M. Guan, D., Ng, K. H. C., Ho, V. W. S., An, X., Li, R., Ren, X. (2016). Timing of tissue-specific cell division requires a differential onset of zygotic transcription during metazoan embryogenesis. J. Biol. Chem., 291: 12501–12513
CrossRef Google scholar
[118]
Arata, Y., Takagi, H., Sako, Y. (2015). Power law relationship between cell cycle duration and cell volume in the early embryonic development of Caenorhabditis elegans. Front. Physiol., 5: 529
CrossRef Google scholar
[119]
Hara, Y. (2013). An allometric relationship between mitotic spindle width, spindle length, and ploidy in Caenorhabditis elegans embryos. Mol. Biol. Cell, 24: 1411–1419
CrossRef Google scholar
[120]
Needleman, D. (2009). Cellular allometry: the spindle in development and inheritance. Curr. Biol., 19: R846–R847
CrossRef Google scholar
[121]
FanJ.,JiT.,WangK.,HuangJ.,WangM.,ManningL.,DongX.,ShiY.,ZhangX.,ShaoZ.,. (2020) A muscle-epidermis-glia signaling axis sustains synaptic specificity during allometric growth in Caenorhabditis elegans. eLife, e558909
[122]
Zhu, M., Tao, H., Samani, M., Luo, M., Wang, X., Hopyan, S. (2020). Spatial mapping of tissue properties in vivo reveals a 3D stiffness gradient in the mouse limb bud. Proc. Natl. Acad. Sci. USA, 117: 4781–4791
CrossRef Google scholar
[123]
Guan, G., Kuang, X., Tang, C. (2022). Comparison between phase-field model and coarse-grained model for characterizing cell-resolved morphological and mechanical properties in a multicellular system. Commun. Nonlinear Sci. Numer. Simul., 117: 106966
[124]
Solnica-Krezel, L. Sepich, D. (2012). Gastrulation: making and shaping germ layers. Annu. Rev. Cell Dev. Biol., 28: 687–717
CrossRef Google scholar
[125]
Wozniak, M. A. Chen, C. (2009). Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol., 10: 34–43
CrossRef Google scholar
[126]
Chesbro, W., Evans, T. (1979). Very slow growth of Escherichia coli. J. Bacteriol., 139: 625–638
CrossRef Google scholar
[127]
Goedbloed, J. (1972). The embryonic and postnatal growth of rat and mouse. I. The embryonic and early postnatal growth of the whole embryo. A model with exponential growth and sudden changes in growth rate. Acta Anat. (Basel), 82: 305–336
CrossRef Google scholar
[128]
Luecke, R. H., Wosilait, W. D. Young, J. (1999). Mathematical modeling of human embryonic and fetal growth rates. Growth Dev. Aging, 63: 49–59
[129]
Sbarbati, R. (1982). A simple polynomial model of the growth of the gastro-intestinal tract in the mouse embryo. J. Anat., 134: 809–815
[130]
Cowan, R. Morris, V. (1986). Cell population dynamics during the differentiative phase of tissue development. J. Theor. Biol., 122: 205–224
CrossRef Google scholar
[131]
Juraver-Geslin, H. Durand, B. (2015). Early development of the neural plate: new roles for apoptosis and for one of its main effectors caspase-3. Genesis, 53: 203–224
[132]
DevlinK.. (2012) Introduction to Mathematical Thinking. New York: Pearson Education Inc
[133]
Davies, J. (2017). Using synthetic biology to explore principles of development. Development, 144: 1146–1158
CrossRef Google scholar
[134]
Slack, J. (2014). Establishment of spatial pattern. Wiley Interdiscip. Rev. Dev. Biol., 3: 379–388
CrossRef Google scholar
[135]
SabilloA.,RamirezJ.DomingoC.. (2016) Making muscle: morphogenetic movements and molecular mechanisms of myogenesis in Xenopus laevis. Semin. Cell Dev. Biol., 80–91
[136]
Rohde, L. A. Heisenberg, C. (2007). Zebrafish gastrulation: cell movements, signals, and mechanisms. Int. Rev. Cytol., 261: 159–192
CrossRef Google scholar
[137]
Santella, A., Catena, R., Kovacevic, I., Shah, P., Yu, Z., Marquina-Solis, J., Kumar, A., Wu, Y., Schaff, J., n-Ramos, D. . (2015). WormGUIDES: an interactive single cell developmental atlas and tool for collaborative multidimensional data exploration. BMC Bioinformatics, 16: 189
CrossRef Google scholar
[138]
Baldock, R. A., Bard, J. B. L., Burger, A., Burton, N., Christiansen, J., Feng, G., Hill, B., Houghton, D., Kaufman, M., Rao, J. . (2003). Emap and emage: a framework for understanding spatially organized data. Neuroinformatics, 1: 309–325
CrossRef Google scholar
[139]
Smith, C. M., Finger, J. H., Kadin, J. A., Richardson, J. E. (2014). The gene expression database for mouse development (GXD): putting developmental expression information at your fingertips. Dev. Dyn., 243: 1176–1186
CrossRef Google scholar
[140]
Yi, H., Xue, L., Guo, M. X., Ma, J., Zeng, Y., Wang, W., Cai, J. Y., Hu, H. M., Shu, H. B., Shi, Y. B. . (2010). Gene expression atlas for human embryogenesis. FASEB J., 24: 3341–3350
CrossRef Google scholar
[141]
Schnabel, R., Hutter, H., Moerman, D. (1997). Assessing normal embryogenesis in Caenorhabditis elegans using a 4D microscope: variability of development and regional specification. Dev. Biol., 184: 234–265
CrossRef Google scholar
[142]
Gasser, R. (2006). Evidence that some events of mammalian embryogenesis can result from differential growth, making migration unnecessary. Anat. Rec. B New Anat., 289B: 53–63
CrossRef Google scholar
[143]
Savageau, M. (1979). Growth of complex systems can be related to the properties of their underlying determinants. Proc. Natl. Acad. Sci. USA, 76: 5413–5417
CrossRef Google scholar
[144]
Zaman, M. H., Kamm, R. D., Matsudaira, P. Lauffenburger, D. (2005). Computational model for cell migration in three-dimensional matrices. Biophys. J., 89: 1389–1397
CrossRef Google scholar
[145]
Boocock, C. (1989). Unidirectional displacement of cells in fibrillar matrices. Development, 107: 881–890
CrossRef Google scholar
[146]
Tian, B., Guan, G., Tang, L. (2020). Why and how the nematode’s early embryogenesis can be precise and robust: a mechanical perspective. Phys. Biol., 17: 026001
CrossRef Google scholar
[147]
Siegenfeld, A. F. (2020). An introduction to complex systems science and its applications. Complexity, 2020: 6105872
CrossRef Google scholar
[148]
AyN.,OlbrichE.,BertschingerN.. (2006) A unifying framework for complexity measures of finite systems. In: Proceedings of ECCS
[149]
Kuang, X., Guan, G., Wong, M. Chan, L. Zhao, Z., Tang, C. (2022). Computable early Caenorhabditis elegans embryo with a phase field model. PLOS Comput. Biol., 18: e1009755
CrossRef Google scholar
[150]
Havel, T. (1991). Some examples of the use of distances as coordinates for Euclidean geometry. J. Symbolic Comp., 11: 579–593
CrossRef Google scholar
[151]
Gower, J. (1982). Euclidean distance geometry. Math. Sci., 7: 1–14
[152]
Chan, H., Shea, J., Withers, P. (2002). Podocyte complexity and terrestriality in frogs. J. R. Soc. West. Aust., 85: 181–182
[153]
Ricklefs, R. (1987). Comparative analysis of avian embryonic growth. J. Exp. Zool. (Supplement: published under auspices of the American Society of Zoologists and the Division of Comparative Physiology and Biochemistry), 1: 309–323
[154]
JungersW.. (1985) Body size and scaling of limb proportions in primates. In: Size and Scaling in Primate biology, pp. 345–381. New York: Springer
[155]
Blanchard, O. L. Smoliga, J. (2015). Translating dosages from animal models to human clinical trials-revisiting body surface area scaling. FASEB J., 29: 1629–1634
CrossRef Google scholar
[156]
Bassil, G., Zarzoso, M. Noujaim, S. (2017). Allometric scaling of electrical excitation and propagation in the mammalian heart. J. Theor. Biol., 419: 238–242
CrossRef Google scholar
[157]
Howland, H. C., Merola, S. Basarab, J. (2004). The allometry and scaling of the size of vertebrate eyes. Vision Res., 44: 2043–2065
CrossRef Google scholar
[158]
Beuchat, C. A. Braun, E. (1988). Allometry of the kidney: implications for the ontogeny of osmoregulation. Am. J. Physiol., 255: R760–R767
CrossRef Google scholar
[159]
Pollock, C. M. Shadwick, R. (1994). Allometry of muscle, tendon, and elastic energy storage capacity in mammals. Am. J. Physiol., 266: R1022–R1031
CrossRef Google scholar
[160]
Karamaoun, C., Dempsey, J. (2022). The origin of the allometric scaling of lung ventilation in mammals. Peer Community J., 2: 1–27
[161]
Ucciferri, N., Sbrana, T. (2014). Allometric scaling and cell ratios in multi-organ in vitro models of human metabolism. Front. Bioeng. Biotechnol., 2: 74
CrossRef Google scholar
[162]
Needleman, D. (2009). Cellular allometry: the spindle in development and inheritance. Curr. Biol., 19: R846–R847
CrossRef Google scholar
[163]
Godfrey, R. K., Swartzlander, M. (2021). Allometric analysis of brain cell number in Hymenoptera suggests ant brains diverge from general trends. Proc. Biol. Sci., 288: 20210199
CrossRef Google scholar
[164]
Pond, C. M. Mattacks, C. (1986). Allometry of the cellular structure of intra-orbital adipose tissue in eutherian mammals. J. Zool. (Lond.), 209: 35–42
CrossRef Google scholar
[165]
Stone, K. C., Mercer, R. R., Gehr, P., Stockstill, B. Crapo, J. (1992). Allometric relationships of cell numbers and size in the mammalian lung. Am. J. Respir. Cell Mol. Biol., 6: 235–243
CrossRef Google scholar
[166]
Dingli, D. Pacheco, J. (2006). Allometric scaling of the active hematopoietic stem cell pool across mammals. PLoS One, 1: e2
CrossRef Google scholar
[167]
Miettinen, T. P. (2017). Mitochondrial function and cell size: an allometric relationship. Trends Cell Biol., 27: 393–402
CrossRef Google scholar
[168]
LopezM. L. D.,LinY.SchneiderS. Q.MachidaR.. (2021) Allometric scaling of RNA abundance from genes to communities. bioRxiv, doi: 10.1101/2021.10.03.462954
[169]
Poot, M., Rizk-Rabin, M., Hoehn, H. Pavlovitch, J. (1990). Cell size and RNA content correlate with cell differentiation and proliferative capacity of rat keratinocytes. J. Cell. Physiol., 143: 279–286
CrossRef Google scholar
[170]
Wu, R. (2006). A hyperspace model to decipher the genetic architecture of developmental processes: allometry meets ontogeny. Genetics, 172: 627–637
CrossRef Google scholar
[171]
Katz, D. C., Aponte, J. D., Liu, W., Green, R. M., Mayeux, J. M., Pollard, K. M., Pomp, D., Munger, S. C., Murray, S. A., Roseman, C. C. . (2020). Facial shape and allometry quantitative trait locus intervals in the Diversity Outbred mouse are enriched for known skeletal and facial development genes. PLoS One, 15: e0233377
CrossRef Google scholar
[172]
West, G. B., Woodruff, W. H. Brown, J. (2002). Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc. Natl. Acad. Sci. USA, 99: 2473–2478
CrossRef Google scholar
[173]
McKechnie, A. E. Wolf, B. (2004). The allometry of avian basal metabolic rate: good predictions need good data. Physiol. Biochem. Zool., 77: 502–521
CrossRef Google scholar
[174]
Pavan Kumar, V. V. Srinivas, N. (2008). Application of allometry principles for the prediction of human pharmacokinetic parameters for irbesartan, a AT1 receptor antagonist, from animal data. Eur. J. Drug Metab. Pharmacokinet., 33: 247–252
CrossRef Google scholar
[175]
Zuideveld, K. P., Van der Graaf, P. H., Peletier, L. A. (2007). Allometric scaling of pharmacodynamic responses: application to 5-Ht1A receptor mediated responses from rat to man. Pharm. Res., 24: 2031–2039
CrossRef Google scholar
[176]
Mager, D. E., Woo, S. Jusko, W. (2009). Scaling pharmacodynamics from in vitro and preclinical animal studies to humans. Drug Metab. Pharmacokinet., 24: 16–24
CrossRef Google scholar

ACKNOWLEDGEMENTS

We would like to express our profound gratitude to Prof. Dr. Ralf Schnabel (Institut fur Genetik, Technical University at Braunschweig, Germany), who provided the data of the embryo and SIMI-BioCell software in simi website, and The Wellcome Trust Sanger Institute at Cambridge. Our gratitude should be extended to other investigators involved in the development of softwares, and to Mrs. H. AliAkbar for editing the manuscript.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Ali Tarihi, Mujtaba Tarihi and Taki Tiraihi declare that they have no conflict of interest or financial conflicts to disclose.
This article does not contain any studies with human or animal materials performed by any of the authors.

OPEN ACCESS

This article is licensed by the CC By under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2023 The Author(s). Published by Higher Education Press.
AI Summary AI Mindmap
PDF(4317 KB)

Accesses

Citations

Detail

Sections
Recommended

/