3D genomic organization in cancers
Junting Wang, Huan Tao, Hao Li, Xiaochen Bo, Hebing Chen
3D genomic organization in cancers
Background: The hierarchical three-dimensional (3D) architectures of chromatin play an important role in fundamental biological processes, such as cell differentiation, cellular senescence, and transcriptional regulation. Aberrant chromatin 3D structural alterations often present in human diseases and even cancers, but their underlying mechanisms remain unclear.
Results: 3D chromatin structures (chromatin compartment A/B, topologically associated domains, and enhancer-promoter interactions) play key roles in cancer development, metastasis, and drug resistance. Bioinformatics techniques based on machine learning and deep learning have shown great potential in the study of 3D cancer genome.
Conclusion: Current advances in the study of the 3D cancer genome have expanded our understanding of the mechanisms underlying tumorigenesis and development. It will provide new insights into precise diagnosis and personalized treatment for cancers.
This review focuses on the role of 3D chromatin structures in cancer development. We also summarized common bioinformatics techniques, especially machine learning and deep learning methods for studying 3D cancer genome, and introduced their limitations.
the three-dimensional (3D) genome / chromatin compartment / topologically associated domain (TAD) / loop / cancer
[1] |
Siegel, R. L., Miller, K. D., Fuchs, H. E. (2021). Cancer statistics, 2021. CA Cancer J. Clin., 71: 7–33
CrossRef
Google scholar
|
[2] |
Hanahan, D. Weinberg, R. (2000). The hallmarks of cancer. Cell, 100: 57–70
CrossRef
Google scholar
|
[3] |
Hanahan, D. Weinberg, R. (2011). Hallmarks of cancer: the next generation. Cell, 144: 646–674
CrossRef
Google scholar
|
[4] |
Hanahan, D. (2022). Hallmarks of cancer: new dimensions. Cancer Discov., 12: 31–46
CrossRef
Google scholar
|
[5] |
Ouyang, W., Cao, Z., Xiong, D., Li, G. (2020). Decoding the plant genome: from epigenome to 3D organization. J. Genet. Genomics, 47: 425–435
CrossRef
Google scholar
|
[6] |
Feng, F., Yao, Y., Wang, X. Q. D., Zhang, X. (2022). Connecting high-resolution 3D chromatin organization with epigenomics. Nat. Commun., 13: 2054
CrossRef
Google scholar
|
[7] |
Rao, S. S., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S.
CrossRef
Google scholar
|
[8] |
Fullwood, M. J., Liu, M. H., Pan, Y. F., Liu, J., Xu, H., Mohamed, Y. B., Orlov, Y. L., Velkov, S., Ho, A., Mei, P. H.
CrossRef
Google scholar
|
[9] |
Mumbach, M. R., Rubin, A. J., Flynn, R. A., Dai, C., Khavari, P. A., Greenleaf, W. J. Chang, H. (2016). HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods, 13: 919–922
CrossRef
Google scholar
|
[10] |
Bickmore, W. A. (2013). Genome architecture: domain organization of interphase chromosomes. Cell, 152: 1270–1284
CrossRef
Google scholar
|
[11] |
Dekker, J. (2015). Long-range chromatin interactions. Cold Spring Harb. Perspect. Biol., 7: a019356
CrossRef
Google scholar
|
[12] |
Rowley, M. J. Corces, V. (2018). Organizational principles of 3D genome architecture. Nat. Rev. Genet., 19: 789–800
CrossRef
Google scholar
|
[13] |
Cremer, T. (2001). Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet., 2: 292–301
CrossRef
Google scholar
|
[14] |
Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O.
CrossRef
Google scholar
|
[15] |
Wu, P., Li, T., Li, R., Jia, L., Zhu, P., Liu, Y., Chen, Q., Tang, D., Yu, Y. (2017). 3D genome of multiple myeloma reveals spatial genome disorganization associated with copy number variations. Nat. Commun., 8: 1937
CrossRef
Google scholar
|
[16] |
Zheng, H. (2019). The role of 3D genome organization in development and cell differentiation. Nat. Rev. Mol. Cell Biol., 20: 535–550
CrossRef
Google scholar
|
[17] |
Guo, Y., Xu, Q., Canzio, D., Shou, J., Li, J., Gorkin, D. U., Jung, I., Wu, H., Zhai, Y., Tang, Y.
CrossRef
Google scholar
|
[18] |
Schwarzer, W., Abdennur, N., Goloborodko, A., Pekowska, A., Fudenberg, G., Loe-Mie, Y., Fonseca, N. A., Huber, W., Haering, C. H., Mirny, L.
CrossRef
Google scholar
|
[19] |
Nora, E. P., Lajoie, B. R., Schulz, E. G., Giorgetti, L., Okamoto, I., Servant, N., Piolot, T., van Berkum, N. L., Meisig, J., Sedat, J.
CrossRef
Google scholar
|
[20] |
Misteli, T. (2009). The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat. Rev. Mol. Cell Biol., 10: 243–254
CrossRef
Google scholar
|
[21] |
Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S. (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485: 376–380
CrossRef
Google scholar
|
[22] |
Rhie, S. K., Schreiner, S., Witt, H., Armoskus, C., Lay, F. D., Camarena, A., Spitsyna, V. N., Guo, Y., Berman, B. P., Evgrafov, O. V.
CrossRef
Google scholar
|
[23] |
Schoenfelder, S. (2019). Long-range enhancer-promoter contacts in gene expression control. Nat. Rev. Genet., 20: 437–455
CrossRef
Google scholar
|
[24] |
Deng, W., Lee, J., Wang, H., Miller, J., Reik, A., Gregory, P. D., Dean, A. Blobel, G. (2012). Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell, 149: 1233–1244
CrossRef
Google scholar
|
[25] |
Zakharova, V. V., Magnitov, M. D., Del Maestro, L., Ulianov, S. V., Glentis, A., Uyanik, B., Williart, A., Karpukhina, A., Demidov, O., Joliot, V.
CrossRef
Google scholar
|
[26] |
Li, M., Huang, H., Wang, B., Jiang, S., Guo, H., Zhu, L., Wu, S., Liu, J., Wang, L., Lan, X.
CrossRef
Google scholar
|
[27] |
Stadhouders, R., Filion, G. J. (2019). Transcription factors and 3D genome conformation in cell-fate decisions. Nature, 569: 345–354
CrossRef
Google scholar
|
[28] |
Peng, A., Peng, W., Wang, R., Zhao, H., Yu, X. (2022). Regulation of 3D organization and its role in cancer biology. Front. Cell Dev. Biol., 10: 879465
CrossRef
Google scholar
|
[29] |
ez-Olvera, S. I., Puente-Rivera, J., rez-Plasencia, C., Salinas-Vera, Y. M., Aguilar-Arnal, L. (2021). Three-dimensional genome organization in breast and gynecological cancers: how chromatin folding influences tumorigenic transcriptional programs. Cells, 11: 75
CrossRef
Google scholar
|
[30] |
Ouimette, J. F., Rougeulle, C. Veitia, R. (2019). Three-dimensional genome architecture in health and disease. Clin. Genet., 95: 189–198
CrossRef
Google scholar
|
[31] |
Anania, C. ez, D. (2020). Order and disorder: abnormal 3D chromatin organization in human disease. Brief. Funct. Genomics, 19: 128–138
CrossRef
Google scholar
|
[32] |
Adeel, M. M., Jiang, H., Arega, Y., Cao, K., Lin, D., Cao, C., Cao, G., Wu, P. (2021). Structural variations of the 3D genome architecture in cervical cancer development. Front. Cell Dev. Biol., 9: 706375
CrossRef
Google scholar
|
[33] |
Tao, H., Li, H., Xu, K., Hong, H., Jiang, S., Du, G., Wang, J., Sun, Y., Huang, X., Ding, Y.
CrossRef
Google scholar
|
[34] |
MacKay, K. (2020). Computational methods for predicting 3D genomic organization from high-resolution chromosome conformation capture data. Brief. Funct. Genomics, 19: 292–308
CrossRef
Google scholar
|
[35] |
Haddad, N., Vaillant, C. (2017). IC-Finder: inferring robustly the hierarchical organization of chromatin folding. Nucleic Acids Res., 45: e81
CrossRef
Google scholar
|
[36] |
Lyu, H., Li, L., Wu, Z., Wang, T., Zheng, J. (2020). TADBD: a sensitive and fast method for detection of typologically associated domain boundaries. Biotechniques, 69: 376–383
CrossRef
Google scholar
|
[37] |
Belokopytova, P. S., Nuriddinov, M. A., Mozheiko, E. A., Fishman, D. (2020). Quantitative prediction of enhancer-promoter interactions. Genome Res., 30: 72–84
CrossRef
Google scholar
|
[38] |
Tang, L., Hill, M. C., Wang, J., Wang, J., Martin, J. F. (2020). Predicting unrecognized enhancer-mediated genome topology by an ensemble machine learning model. Genome Res., 30: 1835–1845
CrossRef
Google scholar
|
[39] |
Tang, L., Zhong, Z., Lin, Y., Yang, Y., Wang, J., Martin, J. F. (2022). EPIXplorer: a web server for prediction, analysis and visualization of enhancer-promoter interactions. Nucleic Acids Res., 50: W290–W297
CrossRef
Google scholar
|
[40] |
Fang, K., Wang, J., Liu, L. Jin, V. (2022). Mapping nucleosome and chromatin architectures: a survey of computational methods. Comput. Struct. Biotechnol. J., 20: 3955–3962
CrossRef
Google scholar
|
[41] |
Barutcu, A. R., Lajoie, B. R., McCord, R. P., Tye, C. E., Hong, D., Messier, T. L., Browne, G., van Wijnen, A. J., Lian, J. B., Stein, J. L.
CrossRef
Google scholar
|
[42] |
Johnstone, S. E., Reyes, A., Qi, Y., Adriaens, C., Hegazi, E., Pelka, K., Chen, J. H., Zou, L. S., Drier, Y., Hecht, V.
CrossRef
Google scholar
|
[43] |
Vilarrasa-Blasi, R., Soler-Vila, P., Verdaguer-Dot, N., ol, N., Di Stefano, M., Chapaprieta, V., Clot, G., Farabella, I., Kulis, M.
CrossRef
Google scholar
|
[44] |
Rada-Iglesias, A., Grosveld, F. G. (2018). Forces driving the three-dimensional folding of eukaryotic genomes. Mol. Syst. Biol., 14: e8214
CrossRef
Google scholar
|
[45] |
Gong, Y., Lazaris, C., Sakellaropoulos, T., Lozano, A., Kambadur, P., Ntziachristos, P., Aifantis, I. (2018). Stratification of TAD boundaries reveals preferential insulation of super-enhancers by strong boundaries. Nat. Commun., 9: 542
CrossRef
Google scholar
|
[46] |
Flavahan, W. A., Drier, Y., Liau, B. B., Gillespie, S. M., Venteicher, A. S., Stemmer-Rachamimov, A. O., Bernstein, B. (2016). Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature, 529: 110–114
CrossRef
Google scholar
|
[47] |
Kloetgen, A., Thandapani, P., Ntziachristos, P., Ghebrechristos, Y., Nomikou, S., Lazaris, C., Chen, X., Hu, H., Bakogianni, S., Wang, J.
CrossRef
Google scholar
|
[48] |
Grabher, C., von Boehmer, H. Look, A. (2006). Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat. Rev. Cancer, 6: 347–359
CrossRef
Google scholar
|
[49] |
Sanchez-Martin, M. (2017). The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia. Blood, 129: 1124–1133
CrossRef
Google scholar
|
[50] |
Dietlein, F., Wang, A. B., Fagre, C., Tang, A., Besselink, N. J. M., Cuppen, E., Li, C., Sunyaev, S. R., Neal, J. T. Van Allen, E. (2022). Genome-wide analysis of somatic noncoding mutation patterns in cancer. Science, 376: eabg5601
CrossRef
Google scholar
|
[51] |
Akdemir, K. C., Le, V. T., Kim, J. M., Killcoyne, S., King, D. A., Lin, Y. P., Tian, Y., Inoue, A., Amin, S. B., Robinson, F. S.
CrossRef
Google scholar
|
[52] |
Du, Y., Gu, Z., Li, Z., Yuan, Z., Zhao, Y., Zheng, X., Bo, X., Chen, H. (2022). Dynamic interplay between structural variations and 3D genome organization in pancreatic cancer. Adv. Sci. (Weinh.), 9: e2200818
CrossRef
Google scholar
|
[53] |
Phillips-Cremins, J. E., Sauria, M. E., Sanyal, A., Gerasimova, T. I., Lajoie, B. R., Bell, J. S., Ong, C. T., Hookway, T. A., Guo, C., Sun, Y.
CrossRef
Google scholar
|
[54] |
Schuetzmann, D., Walter, C., van Riel, B., Kruse, S., nig, T., Erdmann, T., nges, A., Bindels, E., Weilemann, A., Gebhard, C.
CrossRef
Google scholar
|
[55] |
Desprez, P. Y., Krtolica, A. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol., 5: 99–118
CrossRef
Google scholar
|
[56] |
Zampetidis, C. P., Galanos, P., Angelopoulou, A., Zhu, Y., Polyzou, A., Karamitros, T., Kotsinas, A., Lagopati, N., Mourkioti, I., Mirzazadeh, R.
CrossRef
Google scholar
|
[57] |
Yang, L., Chen, F., Zhu, H., Chen, Y., Dong, B., Shi, M., Wang, W., Jiang, Q., Zhang, L., Huang, X.
CrossRef
Google scholar
|
[58] |
Montefiori, L. E., Bendig, S., Gu, Z., Chen, X., nen, P., Ma, X., Murison, A., Zeng, A., Garcia-Prat, L., Dickerson, K.
CrossRef
Google scholar
|
[59] |
Rhie, S. K., Perez, A. A., Lay, F. D., Schreiner, S., Shi, J., Polin, J. Farnham, P. (2019). A high-resolution 3D epigenomic map reveals insights into the creation of the prostate cancer transcriptome. Nat. Commun., 10: 4154
CrossRef
Google scholar
|
[60] |
Rheinbay, E., Nielsen, M. M., Abascal, F., Wala, J. A., Shapira, O., Tiao, G., Hess, J. M., Juul, R. I., Lin, Z.
CrossRef
Google scholar
|
[61] |
Zhang, Y., Chen, F., Fonseca, N. A., He, Y., Fujita, M., Nakagawa, H., Zhang, Z., Brazma, A., Creighton, C. J., Group, P. S. V. W.
CrossRef
Google scholar
|
[62] |
Ahn, J. H., Davis, E. S., Daugird, T. A., Zhao, S., Quiroga, I. Y., Uryu, H., Li, J., Storey, A. J., Tsai, Y. H., Keeley, D. P.
CrossRef
Google scholar
|
[63] |
Chu, Z., Gu, L., Hu, Y., Zhang, X., Li, M., Chen, J., Teng, D., Huang, M., Shen, C. H., Cai, L.
CrossRef
Google scholar
|
[64] |
Durand, N. C., Robinson, J. T., Shamim, M. S., Machol, I., Mesirov, J. P., Lander, E. S. Aiden, E. (2016). Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst., 3: 99–101
CrossRef
Google scholar
|
[65] |
Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y. C., Laslo, P., Cheng, J. X., Murre, C., Singh, H. Glass, C. (2010). Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell, 38: 576–589
CrossRef
Google scholar
|
[66] |
Kruse, K., Hug, C. B. Vaquerizas, J. (2020). FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data. Genome Biol., 21: 303
CrossRef
Google scholar
|
[67] |
Zheng, X. (2018). CscoreTool: fast Hi-C compartment analysis at high resolution. Bioinformatics, 34: 1568–1570
CrossRef
Google scholar
|
[68] |
Xiong, K. (2019). Revealing Hi-C subcompartments by imputing inter-chromosomal chromatin interactions. Nat. Commun., 10: 5069
CrossRef
Google scholar
|
[69] |
Liu, Y., Nanni, L., Sungalee, S., Zufferey, M., Tavernari, D., Mina, M., Ceri, S., Oricchio, E. (2021). Systematic inference and comparison of multi-scale chromatin sub-compartments connects spatial organization to cell phenotypes. Nat. Commun., 12: 2439
CrossRef
Google scholar
|
[70] |
Magnitov, M. D., Garaev, A. K., Tyakht, A. V., Ulianov, S. V. Razin, S. (2022). Pentad: a tool for distance-dependent analysis of Hi-C interactions within and between chromatin compartments. BMC Bioinformatics, 23: 116
CrossRef
Google scholar
|
[71] |
Chen, F., Li, G., Zhang, M. Q. (2018). HiCDB: a sensitive and robust method for detecting contact domain boundaries. Nucleic Acids Res., 46: 11239–11250
CrossRef
Google scholar
|
[72] |
Zufferey, M., Tavernari, D., Oricchio, E. (2018). Comparison of computational methods for the identification of topologically associating domains. Genome Biol., 19: 217
CrossRef
Google scholar
|
[73] |
An, L., Yang, T., Yang, J., Nuebler, J., Xiang, G., Hardison, R. C., Li, Q. (2019). OnTAD: hierarchical domain structure reveals the divergence of activity among TADs and boundaries. Genome Biol., 20: 282
CrossRef
Google scholar
|
[74] |
Du, G., Li, H., Ding, Y., Jiang, S., Hong, H., Gan, J., Wang, L., Yang, Y., Li, Y., Huang, X.
CrossRef
Google scholar
|
[75] |
Guo, D., Xie, Q., Jiang, S., Xie, T., Li, Y., Huang, X., Li, F., Wang, T., Sun, J., Wang, A.
CrossRef
Google scholar
|
[76] |
Jiang, S., Li, H., Hong, H., Du, G., Huang, X., Sun, Y., Wang, J., Tao, H., Xu, K., Li, C.
CrossRef
Google scholar
|
[77] |
Wang, X., Xu, J., Zhang, B., Hou, Y., Song, F., Lyu, H. (2021). Genome-wide detection of enhancer-hijacking events from chromatin interaction data in rearranged genomes. Nat. Methods, 18: 661–668
CrossRef
Google scholar
|
[78] |
Iyyanki, T., Zhang, B., Wang, Q., Hou, Y., Jin, Q., Xu, J., Yang, H., Liu, T., Wang, X., Song, F.
CrossRef
Google scholar
|
[79] |
Wang, J., Huang, T. Y., Hou, Y., Bartom, E., Lu, X., Shilatifard, A., Yue, F. (2021). Epigenomic landscape and 3D genome structure in pediatric high-grade glioma. Sci. Adv., 7: eabg4126
CrossRef
Google scholar
|
[80] |
Cameron, C. J., Dostie, J. (2020). HIFI: estimating DNA-DNA interaction frequency from Hi-C data at restriction-fragment resolution. Genome Biol., 21: 11
CrossRef
Google scholar
|
[81] |
Ay, F., Bailey, T. L. Noble, W. (2014). Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res., 24: 999–1011
CrossRef
Google scholar
|
[82] |
Kaul, A., Bhattacharyya, S. (2020). Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2. Nat. Protoc., 15: 991–1012
CrossRef
Google scholar
|
[83] |
Zhang, Y., An, L., Xu, J., Zhang, B., Zheng, W. J., Hu, M., Tang, J. (2018). Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus. Nat. Commun., 9: 750
CrossRef
Google scholar
|
[84] |
Liu, T. (2019). HiCNN: a very deep convolutional neural network to better enhance the resolution of Hi-C data. Bioinformatics, 35: 4222–4228
CrossRef
Google scholar
|
[85] |
Liu, T. (2019). Hicnn2: enhancing the resolution of hi-c data using an ensemble of convolutional neural networks. Genes (Basel), 10: 862
CrossRef
Google scholar
|
[86] |
Liu, Q., Lv, H. (2019). hicGAN infers super resolution Hi-C data with generative adversarial networks. Bioinformatics, 35: i99–i107
CrossRef
Google scholar
|
[87] |
Hong, H., Jiang, S., Li, H., Du, G., Sun, Y., Tao, H., Quan, C., Zhao, C., Li, R., Li, W.
CrossRef
Google scholar
|
[88] |
Marusyk, A. (2010). Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta, 1805: 105–117
|
[89] |
Maston, G. A., Evans, S. K. Green, M. (2006). Transcriptional regulatory elements in the human genome. Annu. Rev. Genomics Hum. Genet., 7: 29–59
CrossRef
Google scholar
|
[90] |
Feng, Y., Liu, X. (2021). 3D chromatin architecture and epigenetic regulation in cancer stem cells. Protein Cell, 12: 440–454
CrossRef
Google scholar
|
[91] |
Nagano, T., Lubling, Y., Stevens, T. J., Schoenfelder, S., Yaffe, E., Dean, W., Laue, E. D., Tanay, A. (2013). Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature, 502: 59–64
CrossRef
Google scholar
|
[92] |
Mi, J. Li, A. Zhou, L. (2020). Review study of interpretation methods for future interpretable machine learning. IEEE Access, 8: 191969–191985
CrossRef
Google scholar
|
/
〈 | 〉 |