3D genomic organization in cancers

Junting Wang, Huan Tao, Hao Li, Xiaochen Bo, Hebing Chen

PDF(7534 KB)
PDF(7534 KB)
Quant. Biol. ›› 2023, Vol. 11 ›› Issue (2) : 109-121. DOI: 10.15302/J-QB-022-0317
REVIEW
REVIEW

3D genomic organization in cancers

Author information +
History +

Abstract

Background: The hierarchical three-dimensional (3D) architectures of chromatin play an important role in fundamental biological processes, such as cell differentiation, cellular senescence, and transcriptional regulation. Aberrant chromatin 3D structural alterations often present in human diseases and even cancers, but their underlying mechanisms remain unclear.

Results: 3D chromatin structures (chromatin compartment A/B, topologically associated domains, and enhancer-promoter interactions) play key roles in cancer development, metastasis, and drug resistance. Bioinformatics techniques based on machine learning and deep learning have shown great potential in the study of 3D cancer genome.

Conclusion: Current advances in the study of the 3D cancer genome have expanded our understanding of the mechanisms underlying tumorigenesis and development. It will provide new insights into precise diagnosis and personalized treatment for cancers.

Author summary

This review focuses on the role of 3D chromatin structures in cancer development. We also summarized common bioinformatics techniques, especially machine learning and deep learning methods for studying 3D cancer genome, and introduced their limitations.

Graphical abstract

Keywords

the three-dimensional (3D) genome / chromatin compartment / topologically associated domain (TAD) / loop / cancer

Cite this article

Download citation ▾
Junting Wang, Huan Tao, Hao Li, Xiaochen Bo, Hebing Chen. 3D genomic organization in cancers. Quant. Biol., 2023, 11(2): 109‒121 https://doi.org/10.15302/J-QB-022-0317

References

[1]
Siegel, R. L., Miller, K. D., Fuchs, H. E. (2021). Cancer statistics, 2021. CA Cancer J. Clin., 71: 7–33
CrossRef Google scholar
[2]
Hanahan, D. Weinberg, R. (2000). The hallmarks of cancer. Cell, 100: 57–70
CrossRef Google scholar
[3]
Hanahan, D. Weinberg, R. (2011). Hallmarks of cancer: the next generation. Cell, 144: 646–674
CrossRef Google scholar
[4]
Hanahan, D. (2022). Hallmarks of cancer: new dimensions. Cancer Discov., 12: 31–46
CrossRef Google scholar
[5]
Ouyang, W., Cao, Z., Xiong, D., Li, G. (2020). Decoding the plant genome: from epigenome to 3D organization. J. Genet. Genomics, 47: 425–435
CrossRef Google scholar
[6]
Feng, F., Yao, Y., Wang, X. Q. D., Zhang, X. (2022). Connecting high-resolution 3D chromatin organization with epigenomics. Nat. Commun., 13: 2054
CrossRef Google scholar
[7]
Rao, S. S., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S. . (2014). A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159: 1665–1680
CrossRef Google scholar
[8]
Fullwood, M. J., Liu, M. H., Pan, Y. F., Liu, J., Xu, H., Mohamed, Y. B., Orlov, Y. L., Velkov, S., Ho, A., Mei, P. H. . (2009). An oestrogen-receptor-alpha-bound human chromatin interactome. Nature, 462: 58–64
CrossRef Google scholar
[9]
Mumbach, M. R., Rubin, A. J., Flynn, R. A., Dai, C., Khavari, P. A., Greenleaf, W. J. Chang, H. (2016). HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods, 13: 919–922
CrossRef Google scholar
[10]
Bickmore, W. A. (2013). Genome architecture: domain organization of interphase chromosomes. Cell, 152: 1270–1284
CrossRef Google scholar
[11]
Dekker, J. (2015). Long-range chromatin interactions. Cold Spring Harb. Perspect. Biol., 7: a019356
CrossRef Google scholar
[12]
Rowley, M. J. Corces, V. (2018). Organizational principles of 3D genome architecture. Nat. Rev. Genet., 19: 789–800
CrossRef Google scholar
[13]
Cremer, T. (2001). Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet., 2: 292–301
CrossRef Google scholar
[14]
Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O. . (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326: 289–293
CrossRef Google scholar
[15]
Wu, P., Li, T., Li, R., Jia, L., Zhu, P., Liu, Y., Chen, Q., Tang, D., Yu, Y. (2017). 3D genome of multiple myeloma reveals spatial genome disorganization associated with copy number variations. Nat. Commun., 8: 1937
CrossRef Google scholar
[16]
Zheng, H. (2019). The role of 3D genome organization in development and cell differentiation. Nat. Rev. Mol. Cell Biol., 20: 535–550
CrossRef Google scholar
[17]
Guo, Y., Xu, Q., Canzio, D., Shou, J., Li, J., Gorkin, D. U., Jung, I., Wu, H., Zhai, Y., Tang, Y. . (2015). Crispr inversion of ctcf sites alters genome topology and enhancer/promoter function. Cell, 162: 900–910
CrossRef Google scholar
[18]
Schwarzer, W., Abdennur, N., Goloborodko, A., Pekowska, A., Fudenberg, G., Loe-Mie, Y., Fonseca, N. A., Huber, W., Haering, C. H., Mirny, L. . (2017). Two independent modes of chromatin organization revealed by cohesin removal. Nature, 551: 51–56
CrossRef Google scholar
[19]
Nora, E. P., Lajoie, B. R., Schulz, E. G., Giorgetti, L., Okamoto, I., Servant, N., Piolot, T., van Berkum, N. L., Meisig, J., Sedat, J. . (2012). Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature, 485: 381–385
CrossRef Google scholar
[20]
Misteli, T. (2009). The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat. Rev. Mol. Cell Biol., 10: 243–254
CrossRef Google scholar
[21]
Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S. (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485: 376–380
CrossRef Google scholar
[22]
Rhie, S. K., Schreiner, S., Witt, H., Armoskus, C., Lay, F. D., Camarena, A., Spitsyna, V. N., Guo, Y., Berman, B. P., Evgrafov, O. V. . (2018). Using 3D epigenomic maps of primary olfactory neuronal cells from living individuals to understand gene regulation. Sci. Adv., 4: eaav8550
CrossRef Google scholar
[23]
Schoenfelder, S. (2019). Long-range enhancer-promoter contacts in gene expression control. Nat. Rev. Genet., 20: 437–455
CrossRef Google scholar
[24]
Deng, W., Lee, J., Wang, H., Miller, J., Reik, A., Gregory, P. D., Dean, A. Blobel, G. (2012). Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell, 149: 1233–1244
CrossRef Google scholar
[25]
Zakharova, V. V., Magnitov, M. D., Del Maestro, L., Ulianov, S. V., Glentis, A., Uyanik, B., Williart, A., Karpukhina, A., Demidov, O., Joliot, V. . (2022). SETDB1 fuels the lung cancer phenotype by modulating epigenome, 3D genome organization and chromatin mechanical properties. Nucleic Acids Res., 50: 4389–4413
CrossRef Google scholar
[26]
Li, M., Huang, H., Wang, B., Jiang, S., Guo, H., Zhu, L., Wu, S., Liu, J., Wang, L., Lan, X. . (2022). Comprehensive 3D epigenomic maps define limbal stem/progenitor cell function and identity. Nat. Commun., 13: 1293
CrossRef Google scholar
[27]
Stadhouders, R., Filion, G. J. (2019). Transcription factors and 3D genome conformation in cell-fate decisions. Nature, 569: 345–354
CrossRef Google scholar
[28]
Peng, A., Peng, W., Wang, R., Zhao, H., Yu, X. (2022). Regulation of 3D organization and its role in cancer biology. Front. Cell Dev. Biol., 10: 879465
CrossRef Google scholar
[29]
ez-Olvera, S. I., Puente-Rivera, J., rez-Plasencia, C., Salinas-Vera, Y. M., Aguilar-Arnal, L. (2021). Three-dimensional genome organization in breast and gynecological cancers: how chromatin folding influences tumorigenic transcriptional programs. Cells, 11: 75
CrossRef Google scholar
[30]
Ouimette, J. F., Rougeulle, C. Veitia, R. (2019). Three-dimensional genome architecture in health and disease. Clin. Genet., 95: 189–198
CrossRef Google scholar
[31]
Anania, C. ez, D. (2020). Order and disorder: abnormal 3D chromatin organization in human disease. Brief. Funct. Genomics, 19: 128–138
CrossRef Google scholar
[32]
Adeel, M. M., Jiang, H., Arega, Y., Cao, K., Lin, D., Cao, C., Cao, G., Wu, P. (2021). Structural variations of the 3D genome architecture in cervical cancer development. Front. Cell Dev. Biol., 9: 706375
CrossRef Google scholar
[33]
Tao, H., Li, H., Xu, K., Hong, H., Jiang, S., Du, G., Wang, J., Sun, Y., Huang, X., Ding, Y. . (2021). Computational methods for the prediction of chromatin interaction and organization using sequence and epigenomic profiles. Brief. Bioinform., 22: 1–18
CrossRef Google scholar
[34]
MacKay, K. (2020). Computational methods for predicting 3D genomic organization from high-resolution chromosome conformation capture data. Brief. Funct. Genomics, 19: 292–308
CrossRef Google scholar
[35]
Haddad, N., Vaillant, C. (2017). IC-Finder: inferring robustly the hierarchical organization of chromatin folding. Nucleic Acids Res., 45: e81
CrossRef Google scholar
[36]
Lyu, H., Li, L., Wu, Z., Wang, T., Zheng, J. (2020). TADBD: a sensitive and fast method for detection of typologically associated domain boundaries. Biotechniques, 69: 376–383
CrossRef Google scholar
[37]
Belokopytova, P. S., Nuriddinov, M. A., Mozheiko, E. A., Fishman, D. (2020). Quantitative prediction of enhancer-promoter interactions. Genome Res., 30: 72–84
CrossRef Google scholar
[38]
Tang, L., Hill, M. C., Wang, J., Wang, J., Martin, J. F. (2020). Predicting unrecognized enhancer-mediated genome topology by an ensemble machine learning model. Genome Res., 30: 1835–1845
CrossRef Google scholar
[39]
Tang, L., Zhong, Z., Lin, Y., Yang, Y., Wang, J., Martin, J. F. (2022). EPIXplorer: a web server for prediction, analysis and visualization of enhancer-promoter interactions. Nucleic Acids Res., 50: W290–W297
CrossRef Google scholar
[40]
Fang, K., Wang, J., Liu, L. Jin, V. (2022). Mapping nucleosome and chromatin architectures: a survey of computational methods. Comput. Struct. Biotechnol. J., 20: 3955–3962
CrossRef Google scholar
[41]
Barutcu, A. R., Lajoie, B. R., McCord, R. P., Tye, C. E., Hong, D., Messier, T. L., Browne, G., van Wijnen, A. J., Lian, J. B., Stein, J. L. . (2015). Chromatin interaction analysis reveals changes in small chromosome and telomere clustering between epithelial and breast cancer cells. Genome Biol., 16: 214
CrossRef Google scholar
[42]
Johnstone, S. E., Reyes, A., Qi, Y., Adriaens, C., Hegazi, E., Pelka, K., Chen, J. H., Zou, L. S., Drier, Y., Hecht, V. . (2020). Large-scale topological changes restrain malignant progression in colorectal cancer. Cell, 182: 1474–1489.e23
CrossRef Google scholar
[43]
Vilarrasa-Blasi, R., Soler-Vila, P., Verdaguer-Dot, N., ol, N., Di Stefano, M., Chapaprieta, V., Clot, G., Farabella, I., Kulis, M. . (2021). Dynamics of genome architecture and chromatin function during human B cell differentiation and neoplastic transformation. Nat. Commun., 12: 651
CrossRef Google scholar
[44]
Rada-Iglesias, A., Grosveld, F. G. (2018). Forces driving the three-dimensional folding of eukaryotic genomes. Mol. Syst. Biol., 14: e8214
CrossRef Google scholar
[45]
Gong, Y., Lazaris, C., Sakellaropoulos, T., Lozano, A., Kambadur, P., Ntziachristos, P., Aifantis, I. (2018). Stratification of TAD boundaries reveals preferential insulation of super-enhancers by strong boundaries. Nat. Commun., 9: 542
CrossRef Google scholar
[46]
Flavahan, W. A., Drier, Y., Liau, B. B., Gillespie, S. M., Venteicher, A. S., Stemmer-Rachamimov, A. O., Bernstein, B. (2016). Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature, 529: 110–114
CrossRef Google scholar
[47]
Kloetgen, A., Thandapani, P., Ntziachristos, P., Ghebrechristos, Y., Nomikou, S., Lazaris, C., Chen, X., Hu, H., Bakogianni, S., Wang, J. . (2020). Three-dimensional chromatin landscapes in T cell acute lymphoblastic leukemia. Nat. Genet., 52: 388–400
CrossRef Google scholar
[48]
Grabher, C., von Boehmer, H. Look, A. (2006). Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat. Rev. Cancer, 6: 347–359
CrossRef Google scholar
[49]
Sanchez-Martin, M. (2017). The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia. Blood, 129: 1124–1133
CrossRef Google scholar
[50]
Dietlein, F., Wang, A. B., Fagre, C., Tang, A., Besselink, N. J. M., Cuppen, E., Li, C., Sunyaev, S. R., Neal, J. T. Van Allen, E. (2022). Genome-wide analysis of somatic noncoding mutation patterns in cancer. Science, 376: eabg5601
CrossRef Google scholar
[51]
Akdemir, K. C., Le, V. T., Kim, J. M., Killcoyne, S., King, D. A., Lin, Y. P., Tian, Y., Inoue, A., Amin, S. B., Robinson, F. S. . (2020). Somatic mutation distributions in cancer genomes vary with three-dimensional chromatin structure. Nat. Genet., 52: 1178–1188
CrossRef Google scholar
[52]
Du, Y., Gu, Z., Li, Z., Yuan, Z., Zhao, Y., Zheng, X., Bo, X., Chen, H. (2022). Dynamic interplay between structural variations and 3D genome organization in pancreatic cancer. Adv. Sci. (Weinh.), 9: e2200818
CrossRef Google scholar
[53]
Phillips-Cremins, J. E., Sauria, M. E., Sanyal, A., Gerasimova, T. I., Lajoie, B. R., Bell, J. S., Ong, C. T., Hookway, T. A., Guo, C., Sun, Y. . (2013). Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell, 153: 1281–1295
CrossRef Google scholar
[54]
Schuetzmann, D., Walter, C., van Riel, B., Kruse, S., nig, T., Erdmann, T., nges, A., Bindels, E., Weilemann, A., Gebhard, C. . (2018). Temporal autoregulation during human PU. 1 locus SubTAD formation. Blood, 132: 2643–2655
CrossRef Google scholar
[55]
Desprez, P. Y., Krtolica, A. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol., 5: 99–118
CrossRef Google scholar
[56]
Zampetidis, C. P., Galanos, P., Angelopoulou, A., Zhu, Y., Polyzou, A., Karamitros, T., Kotsinas, A., Lagopati, N., Mourkioti, I., Mirzazadeh, R. . (2021). A recurrent chromosomal inversion suffices for driving escape from oncogene-induced senescence via subTAD reorganization. Mol. Cell, 81: 4907–4923.e8
CrossRef Google scholar
[57]
Yang, L., Chen, F., Zhu, H., Chen, Y., Dong, B., Shi, M., Wang, W., Jiang, Q., Zhang, L., Huang, X. . (2021). 3D genome alterations associated with dysregulated HOXA13 expression in high-risk T-lineage acute lymphoblastic leukemia. Nat. Commun., 12: 3708
CrossRef Google scholar
[58]
Montefiori, L. E., Bendig, S., Gu, Z., Chen, X., nen, P., Ma, X., Murison, A., Zeng, A., Garcia-Prat, L., Dickerson, K. . (2021). Enhancer hijacking drives oncogenic bcl11b expression in lineage-ambiguous stem cell leukemia. Cancer Discov., 11: 2846–2867
CrossRef Google scholar
[59]
Rhie, S. K., Perez, A. A., Lay, F. D., Schreiner, S., Shi, J., Polin, J. Farnham, P. (2019). A high-resolution 3D epigenomic map reveals insights into the creation of the prostate cancer transcriptome. Nat. Commun., 10: 4154
CrossRef Google scholar
[60]
Rheinbay, E., Nielsen, M. M., Abascal, F., Wala, J. A., Shapira, O., Tiao, G., Hess, J. M., Juul, R. I., Lin, Z. . (2020). Analyses of non-coding somatic drivers in 2658 cancer whole genomes. Nature, 578: 102–111
CrossRef Google scholar
[61]
Zhang, Y., Chen, F., Fonseca, N. A., He, Y., Fujita, M., Nakagawa, H., Zhang, Z., Brazma, A., Creighton, C. J., Group, P. S. V. W. . (2020). High-coverage whole-genome analysis of 1220 cancers reveals hundreds of genes deregulated by rearrangement-mediated cis-regulatory alterations. Nat. Commun., 11: 736
CrossRef Google scholar
[62]
Ahn, J. H., Davis, E. S., Daugird, T. A., Zhao, S., Quiroga, I. Y., Uryu, H., Li, J., Storey, A. J., Tsai, Y. H., Keeley, D. P. . (2021). Phase separation drives aberrant chromatin looping and cancer development. Nature, 595: 591–595
CrossRef Google scholar
[63]
Chu, Z., Gu, L., Hu, Y., Zhang, X., Li, M., Chen, J., Teng, D., Huang, M., Shen, C. H., Cai, L. . (2022). STAG2 regulates interferon signaling in melanoma via enhancer loop reprogramming. Nat. Commun., 13: 1859
CrossRef Google scholar
[64]
Durand, N. C., Robinson, J. T., Shamim, M. S., Machol, I., Mesirov, J. P., Lander, E. S. Aiden, E. (2016). Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst., 3: 99–101
CrossRef Google scholar
[65]
Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y. C., Laslo, P., Cheng, J. X., Murre, C., Singh, H. Glass, C. (2010). Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell, 38: 576–589
CrossRef Google scholar
[66]
Kruse, K., Hug, C. B. Vaquerizas, J. (2020). FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data. Genome Biol., 21: 303
CrossRef Google scholar
[67]
Zheng, X. (2018). CscoreTool: fast Hi-C compartment analysis at high resolution. Bioinformatics, 34: 1568–1570
CrossRef Google scholar
[68]
Xiong, K. (2019). Revealing Hi-C subcompartments by imputing inter-chromosomal chromatin interactions. Nat. Commun., 10: 5069
CrossRef Google scholar
[69]
Liu, Y., Nanni, L., Sungalee, S., Zufferey, M., Tavernari, D., Mina, M., Ceri, S., Oricchio, E. (2021). Systematic inference and comparison of multi-scale chromatin sub-compartments connects spatial organization to cell phenotypes. Nat. Commun., 12: 2439
CrossRef Google scholar
[70]
Magnitov, M. D., Garaev, A. K., Tyakht, A. V., Ulianov, S. V. Razin, S. (2022). Pentad: a tool for distance-dependent analysis of Hi-C interactions within and between chromatin compartments. BMC Bioinformatics, 23: 116
CrossRef Google scholar
[71]
Chen, F., Li, G., Zhang, M. Q. (2018). HiCDB: a sensitive and robust method for detecting contact domain boundaries. Nucleic Acids Res., 46: 11239–11250
CrossRef Google scholar
[72]
Zufferey, M., Tavernari, D., Oricchio, E. (2018). Comparison of computational methods for the identification of topologically associating domains. Genome Biol., 19: 217
CrossRef Google scholar
[73]
An, L., Yang, T., Yang, J., Nuebler, J., Xiang, G., Hardison, R. C., Li, Q. (2019). OnTAD: hierarchical domain structure reveals the divergence of activity among TADs and boundaries. Genome Biol., 20: 282
CrossRef Google scholar
[74]
Du, G., Li, H., Ding, Y., Jiang, S., Hong, H., Gan, J., Wang, L., Yang, Y., Li, Y., Huang, X. . (2021). The hierarchical folding dynamics of topologically associating domains are closely related to transcriptional abnormalities in cancers. Comput. Struct. Biotechnol. J., 19: 1684–1693
CrossRef Google scholar
[75]
Guo, D., Xie, Q., Jiang, S., Xie, T., Li, Y., Huang, X., Li, F., Wang, T., Sun, J., Wang, A. . (2021). Synergistic alterations in the multilevel chromatin structure anchor dysregulated genes in small cell lung cancer. Comput. Struct. Biotechnol. J., 19: 5946–5959
CrossRef Google scholar
[76]
Jiang, S., Li, H., Hong, H., Du, G., Huang, X., Sun, Y., Wang, J., Tao, H., Xu, K., Li, C. . (2021). Spatial density of open chromatin: an effective metric for the functional characterization of topologically associated domains. Brief. Bioinform., 22: 1–11
CrossRef Google scholar
[77]
Wang, X., Xu, J., Zhang, B., Hou, Y., Song, F., Lyu, H. (2021). Genome-wide detection of enhancer-hijacking events from chromatin interaction data in rearranged genomes. Nat. Methods, 18: 661–668
CrossRef Google scholar
[78]
Iyyanki, T., Zhang, B., Wang, Q., Hou, Y., Jin, Q., Xu, J., Yang, H., Liu, T., Wang, X., Song, F. . (2021). Subtype-associated epigenomic landscape and 3D genome structure in bladder cancer. Genome Biol., 22: 105
CrossRef Google scholar
[79]
Wang, J., Huang, T. Y., Hou, Y., Bartom, E., Lu, X., Shilatifard, A., Yue, F. (2021). Epigenomic landscape and 3D genome structure in pediatric high-grade glioma. Sci. Adv., 7: eabg4126
CrossRef Google scholar
[80]
Cameron, C. J., Dostie, J. (2020). HIFI: estimating DNA-DNA interaction frequency from Hi-C data at restriction-fragment resolution. Genome Biol., 21: 11
CrossRef Google scholar
[81]
Ay, F., Bailey, T. L. Noble, W. (2014). Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res., 24: 999–1011
CrossRef Google scholar
[82]
Kaul, A., Bhattacharyya, S. (2020). Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2. Nat. Protoc., 15: 991–1012
CrossRef Google scholar
[83]
Zhang, Y., An, L., Xu, J., Zhang, B., Zheng, W. J., Hu, M., Tang, J. (2018). Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus. Nat. Commun., 9: 750
CrossRef Google scholar
[84]
Liu, T. (2019). HiCNN: a very deep convolutional neural network to better enhance the resolution of Hi-C data. Bioinformatics, 35: 4222–4228
CrossRef Google scholar
[85]
Liu, T. (2019). Hicnn2: enhancing the resolution of hi-c data using an ensemble of convolutional neural networks. Genes (Basel), 10: 862
CrossRef Google scholar
[86]
Liu, Q., Lv, H. (2019). hicGAN infers super resolution Hi-C data with generative adversarial networks. Bioinformatics, 35: i99–i107
CrossRef Google scholar
[87]
Hong, H., Jiang, S., Li, H., Du, G., Sun, Y., Tao, H., Quan, C., Zhao, C., Li, R., Li, W. . (2020). DeepHiC: a generative adversarial network for enhancing Hi-C data resolution. PLOS Comput. Biol., 16: e1007287
CrossRef Google scholar
[88]
Marusyk, A. (2010). Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta, 1805: 105–117
[89]
Maston, G. A., Evans, S. K. Green, M. (2006). Transcriptional regulatory elements in the human genome. Annu. Rev. Genomics Hum. Genet., 7: 29–59
CrossRef Google scholar
[90]
Feng, Y., Liu, X. (2021). 3D chromatin architecture and epigenetic regulation in cancer stem cells. Protein Cell, 12: 440–454
CrossRef Google scholar
[91]
Nagano, T., Lubling, Y., Stevens, T. J., Schoenfelder, S., Yaffe, E., Dean, W., Laue, E. D., Tanay, A. (2013). Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature, 502: 59–64
CrossRef Google scholar
[92]
Mi, J. Li, A. Zhou, L. (2020). Review study of interpretation methods for future interpretable machine learning. IEEE Access, 8: 191969–191985
CrossRef Google scholar

ACKNOWLEDGEMENTS

We thank Prof. Cheng Li for the helpful discussion. This work was supported by the Beijing Nova Program of Science and Technology (No. 20220484198 to HC) and the National Natural Science Foundation of China (Nos. 62173338, 61873276 and 31900488 to HC, XB, and HL, respectively).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Junting Wang, Huan Tao, Hao Li, Xiaochen Bo and Hebing Chen declare that they have no conflict of interest or financial conflicts to disclose.
This article is a review article and does not contain any studies with human or animal materials performed by any of the authors.

OPEN ACCESS

This article is licensed by the CC By under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2023 The Author(s). Published by Higher Education Press.
AI Summary AI Mindmap
PDF(7534 KB)

Accesses

Citations

Detail

Sections
Recommended

/