DeepRCI: predicting RNA-chromatin interactions via deep learning with multi-omics data
Yuanpeng Xiong, Xuan He, Dan Zhao, Tao Jiang, Jianyang Zeng
DeepRCI: predicting RNA-chromatin interactions via deep learning with multi-omics data
Background: Chromatin-associated RNA (caRNA) acts as a ubiquitous epigenetic layer in eukaryotes, and has been reported to be essential in various biological processes, including gene transcription, chromatin remodeling and cellular differentiation. Recently, numerous experimental techniques have been developed to characterize genome-wide RNA-chromatin interactions to understand their underlying biological functions. However, these experimental methods are generally expensive, time-consuming, and limited in identifying all potential sites, while most of the existing computational methods are restricted to detecting only specific types of RNAs interacting with chromatin.
Methods: Here, we propose a highly interpretable computational framework, named DeepRCI, to identify the interactions between various types of RNAs and chromatin. In this framework, we introduce a novel deep learning component called variformer and integrate multi-omics data to capture intrinsic genomic features at both RNA and DNA levels.
Results: Extensive experiments demonstrate that DeepRCI can detect RNA-chromatin interactions more accurately when compared to the state-of-the-art baseline prediction methods. Furthermore, the sequence features extracted by DeepRCI can be well matched to known critical gene regulatory components, indicating that our model can provide useful biological insights into understanding the underlying mechanisms of RNA-chromatin interactions. In addition, based on the prediction results, we further delineate the relationships between RNA-chromatin interactions and cellular functions, including gene expression and the modulation of cell states.
Conclusions: In summary, DeepRCI can serve as a useful tool for characterizing RNA-chromatin interactions and studying the underlying gene regulatory code.
Chromatin-associated RNA (caRNA) acts as a ubiquitous epigenetic layer in eukaryotes, and has been reported to be essential in various biological processes. Here, we propose a highly interpretable computational framework, named DeepRCI, to identify the interactions between various types of RNAs and chromatin. DeepRCI can serve as a useful tool for characterizing RNA-chromatin interactions and studying the underlying gene regulatory code.
deep learning / multi-omics data / RNA-chromatin
[1] |
Bell,J. C., Jukam,D., Teran,N. A., Risca,V. I., Smith,O. K., Johnson,W. L., Skotheim,J. M., Greenleaf,W. J. Straight,A. (2018). Chromatin-associated RNA sequencing (ChAR-seq) maps genome-wide RNA-to-DNA contacts. eLife, 7: e27024
CrossRef
Google scholar
|
[2] |
Calandrelli,R., Xu,L., Luo,Y., Wu,W., Fan,X., Nguyen,T., Chen,C. Sriram,K., Tang,X., Burns,A. B.
CrossRef
Google scholar
|
[3] |
Li,X. Fu,X. (2019). Chromatin-associated RNAs as facilitators of functional genomic interactions. Nat. Rev. Genet., 20: 503–519
CrossRef
Google scholar
|
[4] |
Bonetti,A., Agostini,F., Suzuki,A. M., Hashimoto,K., Pascarella,G., Gimenez,J., Roos,L., Nash,A. J., Ghilotti,M., Cameron,C. J. F.
CrossRef
Google scholar
|
[5] |
Antonov,I. Medvedeva,Y. (2018). Purine-rich low complexity regions are potential RNA binding hubs in the human genome. F1000 Res., 7: 76
CrossRef
Google scholar
|
[6] |
Kato,M. (2020). Genome-wide technologies to study RNA–chromatin interactions. Noncoding RNA, 6: 20
CrossRef
Google scholar
|
[7] |
Watanabe,T., Tomizawa,S., Mitsuya,K., Totoki,Y., Yamamoto,Y., Kuramochi-Miyagawa,S., Iida,N., Hoki,Y., Murphy,P. J., Toyoda,A.
CrossRef
Google scholar
|
[8] |
Miao,Y., Ajami,N. E., Huang,T. Lin,F. Lou,C. Wang,Y. Li,S., Kang,J., Munkacsi,H., Maurya,M. R.
CrossRef
Google scholar
|
[9] |
Rinn,M. Kertesz,J. K. Wang,S. L. Squazzo,X. Xu,S. A. Brugmann,L. H. Goodnough,J. A. Helms,P. J. Farnham,E.
|
[10] |
Kalwa,M., nzelmann,S., Otto,S., Kuo,C. Franzen,J., Joussen,S., Fernandez-Rebollo,E., Rath,B., Koch,C., Hofmann,A.
CrossRef
Google scholar
|
[11] |
Wang,S., Ke,H., Zhang,H., Ma,Y., Ao,L., Zou,L., Yang,Q., Zhu,H., Nie,J., Wu,C.
CrossRef
Google scholar
|
[12] |
Leary,V. B., Ovsepian,S. V., Carrascosa,L. G., Buske,F. A., Radulovic,V., Niyazi,M., Moertl,S., Trau,M., Atkinson,M. J. (2015). Particle, a triplex-forming long ncRNA, regulates locus-specific methylation in response to low-dose irradiation. Cell Rep., 11: 474–485
CrossRef
Google scholar
|
[13] |
Simon,M. (2013). Capture hybridization analysis of RNA targets (CHART). Curr. Protoc. Mol. Biol., 101: 21–25
CrossRef
Google scholar
|
[14] |
ChuC.Chang H.. (2016) Understanding RNA-chromatin interactions using chromatin isolation by RNA purification (chirp). In: Polycomb Group Proteins, pp. 115–123. New York: Springer
|
[15] |
EngreitzJ.,Lander E. S.. (2015) RNA antisense purification (rap) for mapping RNA interactions with chromatin. In: Nuclear Bodies and Noncoding RNAs, pp. 183–197. New York: Springer
|
[16] |
Wu,W., Yan,Z., Nguyen,T. C., Bouman Chen,Z., Chien,S. (2019). Mapping RNA-chromatin interactions by sequencing with iMARGI. Nat. Protoc., 14: 3243–3272
CrossRef
Google scholar
|
[17] |
Sridhar,B., Rivas-Astroza,M., Nguyen,T. C., Chen,W., Yan,Z., Cao,X., Hebert,L. (2017). Systematic mapping of RNA-chromatin interactions in vivo. Curr. Biol., 27: 602–609
CrossRef
Google scholar
|
[18] |
Zhou,B., Li,X., Luo,D., Lim,D. Zhou,Y. Fu,X. (2019). GRID-seq for comprehensive analysis of global RNA-chromatin interactions. Nat. Protoc., 14: 2036–2068
CrossRef
Google scholar
|
[19] |
Kuo,C. nzelmann,S., rk Cetin,N., Frank,S., Zajzon,B., Derks,J. Akhade,V. S., Ahuja,G., Kanduri,C., Grummt,I.
CrossRef
Google scholar
|
[20] |
Buske,F. A., Bauer,D. C., Mattick,J. S. Bailey,T. (2013). Triplex-inspector: an analysis tool for triplex-mediated targeting of genomic loci. Bioinformatics, 29: 1895–1897
CrossRef
Google scholar
|
[21] |
He,S., Zhang,H., Liu,H. (2015). LongTarget: a tool to predict lncRNA DNA-binding motifs and binding sites via Hoogsteen base-pairing analysis. Bioinformatics, 31: 178–186
CrossRef
Google scholar
|
[22] |
Zhang,Y., Long,Y. Kwoh,C. (2020). Deep learning based DNA: RNA triplex forming potential prediction. BMC Bioinformatics, 21: 522
CrossRef
Google scholar
|
[23] |
ller,A. T., Hiss,J. A. (2018). Recurrent neural network model for constructive peptide design. J. Chem. Inf. Model., 58: 472–479
CrossRef
Google scholar
|
[24] |
Sureyya Rifaioglu,A., an,T., Jesus Martin,M., Cetin-Atalay,R. (2019). Deepred: automated protein function prediction with multi-task feed-forward deep neural networks. Sci. Rep., 9: 1–16
|
[25] |
Zeng,Y., Chen,X., Luo,Y., Li,X. (2021). Deep drug-target binding affinity prediction with multiple attention blocks. Brief. Bioinform., 22: bbab117
CrossRef
Google scholar
|
[26] |
Lopez-Del Rio,A., Martin,M., Perera-Lluna,A. (2020). Effect of sequence padding on the performance of deep learning models in archaeal protein functional prediction. Sci. Rep., 10: 14634
CrossRef
Google scholar
|
[27] |
Schubert,T., Pusch,M. C., Diermeier,S., Benes,V., Kremmer,E., Imhof,A. (2012). Df31 protein and snoRNAs maintain accessible higher-order structures of chromatin. Mol. Cell, 48: 434–444
CrossRef
Google scholar
|
[28] |
Schubert,T. (2013). Changes in higher order structures of chromatin by RNP complexes. RNA Biol., 10: 175–179
CrossRef
Google scholar
|
[29] |
Sen,S., Cheng,Z., Sheu,K. M., Chen,Y. H. (2020). Gene regulatory strategies that decode the duration of NFκB dynamics contribute to LPS-versus TNF-specific gene expression. Cell Syst., 10: 169–182.e5
CrossRef
Google scholar
|
[30] |
LanchantinJ.,SinghR.,WangB.. (2017) Deep motif dashboard: visualizing and understanding genomic sequences using deep neural networks. In: Pacific Symposium on Biocomputing 2017, pp. 254–265. Singapore: World Scientific
|
[31] |
Kelley,D. R., Snoek,J. Rinn,J. (2016). Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res., 26: 990–999
CrossRef
Google scholar
|
[32] |
Lambert,S. A., Jolma,A., Campitelli,L. F., Das,P. K., Yin,Y., Albu,M., Chen,X., Taipale,J., Hughes,T. R. Weirauch,M. (2018). The human transcription factors. Cell, 172: 650–665
CrossRef
Google scholar
|
[33] |
Gupta,S., Stamatoyannopoulos,J. A., Bailey,T. L. Noble,W. (2007). Quantifying similarity between motifs. Genome Biol., 8: R24
CrossRef
Google scholar
|
[34] |
Zhao,X., Li,D., Pu,J., Mei,H., Yang,D., Xiang,X., Qu,H., Huang,K., Zheng,L. (2016). CTCF cooperates with noncoding RNA MYCNOS to promote neuroblastoma progression through facilitating MYCN expression. Oncogene, 35: 3565–3576
CrossRef
Google scholar
|
[35] |
Guttman,M. Rinn,J. (2012). Modular regulatory principles of large non-coding RNAs. Nature, 482: 339–346
CrossRef
Google scholar
|
[36] |
Wang,I. X., Grunseich,C., Fox,J., Burdick,J., Zhu,Z., Ravazian,N., Hafner,M. Cheung,V. (2018). Human proteins that interact with RNA/DNA hybrids. Genome Res., 28: 1405–1414
CrossRef
Google scholar
|
[37] |
Engreitz,J. M., Ollikainen,N. (2016). Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat. Rev. Mol. Cell Biol., 17: 756–770
CrossRef
Google scholar
|
[38] |
Iyengar,B. R., Choudhary,A., Sarangdhar,M. A., Venkatesh,K. V., Gadgil,C. J. (2014). Non-coding RNA interact to regulate neuronal development and function. Front. Cell. Neurosci., 8: 47
CrossRef
Google scholar
|
[39] |
Li,L., Luo,H., Lim,D. Han,L., Li,Y., Fu,X. (2021). Global profiling of RNA-chromatin interactions reveals co-regulatory gene expression networks in Arabidopsis. Nat. Plants, 7: 1364–1378
CrossRef
Google scholar
|
[40] |
Chen,X., Sun,Y., Cai,R., Wang,G., Shu,X. (2018). Long noncoding RNA: multiple players in gene expression. BMB Rep., 51: 280–289
CrossRef
Google scholar
|
[41] |
Mishra,K. (2019). Understanding long noncoding RNA and chromatin interactions: what we know so far. Noncoding RNA, 5: 54
CrossRef
Google scholar
|
[42] |
Antonov,I. V., Mazurov,E., Borodovsky,M. Medvedeva,Y. (2019). Prediction of lncRNAs and their interactions with nucleic acids: benchmarking bioinformatics tools. Brief. Bioinform., 20: 551–564
CrossRef
Google scholar
|
[43] |
Quinodoz,S. A., Jachowicz,J. W., Bhat,P., Ollikainen,N., Banerjee,A. K., Goronzy,I. N., Blanco,M. R., Chovanec,P., Chow,A., Markaki,Y.
CrossRef
Google scholar
|
[44] |
Hu,M., Deng,K., Selvaraj,S., Qin,Z., Ren,B. Liu,J. (2012). HiCNorm: removing biases in Hi-C data via Poisson regression. Bioinformatics, 28: 3131–3133
CrossRef
Google scholar
|
[45] |
Fu,L., Niu,B., Zhu,Z., Wu,S. (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 28: 3150–3152
CrossRef
Google scholar
|
[46] |
RibeiroL. S. F.,BuiT.,Collomosse J.. (2020) Sketchformer: transformer-based representation for sketched structure. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14153–14162
|
[47] |
VaswaniA.,Shazeer N.,ParmarN.,UszkoreitJ.,JonesL., GomezA. N.,. (2017) Attention is all you need. In: Advances in neural information processing systems, pp. 5998–6008
|
[48] |
IoffeS.. (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, pp. 448–456
|
[49] |
Hu,H., Xiao,A., Zhang,S., Li,Y., Shi,X., Jiang,T., Zhang,L., Zhang,L. (2019). DeepHINT: understanding HIV-1 integration via deep learning with attention. Bioinformatics, 35: 1660–1667
CrossRef
Google scholar
|
[50] |
Almagro Armenteros,J. J., nderby,C. K., nderby,S. K., Nielsen,H. (2017). DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics, 33: 3387–3395
CrossRef
Google scholar
|
/
〈 | 〉 |